
THE MOST IMPORTANT FORMULAE

VECTOR DESCRIPTION OF MOTION

• Position vector r (t)=[ x (t) ; y (t) ; z (t )]
• Velocity vector v (t )=ṙ (t)=[ ẋ (t) ; ẏ( t ) ; ż (t)]
• Acceleration vector a( t)=r̈ (t)=[ ẍ (t ) ; ÿ (t) ; z̈ (t)]

◦ Tangent acceleration vector as=
a∘v
∣v∣2

⋅v

◦ Normal acceleration vector an= a−as

Rotational motion

• Angular distance α(t)
• Angular velocity ω(t) = α̇(t)  ω=ω e
• Angular acceleration ε(t )= α̈( t)   ε=ε e

Other measures of motion expressed by measures of rotational motion:
• velocity vector v =ω×r
• tangent acceleration vector as= ε×r
• normal acceleration vector an=ω×v

Rotation in plane XY around fixed axis r (t)= [R cos (α(t)) ; R sin(α(t )) ; 0 ]

NATURAL DESCRIPTION OF MOTION
• Parametric  equation  of  trajectory  –system  of  equations  for
coordinates  of  a  point  on  trajectory,  dependent  on  chosen
parameter.

{x = x (λ)
y = y(λ)
z = z (λ)

• Initial point Ω0

• Orientation – an agreement on on what side of the initial point
the measure of distance is considered positive or negative.

• Equation  of  motion  –  a  time  dependent  information  on  the
distance s covered within time t: s = s (t) . Measure of distance
(also  „measure  of  length”)  means  that  it  may  be  positive  or
negative,depending on chosen orientation of trajectory. A specific
case is  when the trajectory is  parametrized with co calle  natural
parameter λ = s , the absolute value of which is equal the length
of the section of trajectory starting from the initial point.
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MEASURES OF MOTION IN NATURAL DESRIPTION

• Tangent versor τ = dr
d s

• Normal versor ν= d τ
dα

• Velocity v = ṡ τ

• Acceleration a = s̈ τ+ ṡ2

ρ ν

▪ Tangent acceleration as= s̈ τ

▪ Normal acceleration an=
ṡ2

ρ ν

VECTOR DESCRIPTION → NATURAL DESCRIPTION

1. Position vector r (t) gives us the equations of trajectory which may be parametrized with time
λ=t

r (t) ⇒ r(λ=t ) : {x = x (λ)
y = y (λ)
z = z (λ)

2. Initial point Ω0 is the one corresponding with t=0 .

3. Equation of motion is obtained via integration along trajectory starting from t=0 :

s =∫ds = ∫
λ0=0

λ=t √(d x
dλ )

2

+(d y
dλ )

2

+(d z
dλ )

2

d λ ⇒ s(t )

4. Orientation is chosen in such a way that the measure of a length of an arc of trajectory was positive
at that side towards which the motion is performed.

NATURAL DESCRIPTION → VECTOR DESCRIPTION

1. Having the trajectory parametrized with λ , we may find the measure of length of section of the
trajectory. It is found as a curvilinear integral of a unitary scalar field along trajectory. Lower bound
of integration is the value of parameter corresponding with initial point.

s(λ)=∫
Ω0

P

ds =∫
λ0

λ √(d x
d λ )

2

+(d y
d λ )

2

+(d z
d λ )

2

d λ

2. This measure must be equal the equation of motion. 

s(λ)=∫
λ0

λ √(d x
d λ )

2

+(d y
d λ )

2

+(d z
d λ )

2

d λ =±s( t )

The sign is according to the chosen orientation – since s(λ) will always increase with increase of
λ (the  integrand  is  positive),  so  if  the  point  moves  from  the  initial  point  towards  positive

orientation (function s( t)>0 ), then in the above equation we take „+”, otherwise  „-”.

3. As a result we obtain dependency λ(t) , which may be substituted in the equations of trajectory
giving us a vector desription.
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THEOREMS ON DISTRIBUTION OF VELOCITY IN RIGID BODY

1. Any planar motion of a rigid body in any time t may be considered a rotation about an instant
center of rotation.
• In general, instant center of rotation moves itself
• In particular the instant center of rotation may be located in infinity but in certain direction –

the rotation becomes then a parallel translation in a perpendicular direction.

2. For points lying on a single straight line projections of their velocity vectors on that line are the
same.

3. For points lying on a single straight line the heads of their velocity vectors line on a single straight
line (in general a different one).
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CONCLUSION

1. Velocity vector is always perpendicular to a line connecting the given point with the instant center
of rotation.

2. If we know directions of velocity vectors in two points not lying on a line, which is perpendicular to
those  directions,  then  the  instant  center  of  rotation  lies  at  intersections  of  lines,  which  are
perpendicular to the velocity vectors (in particular the intersection may be in infinity for parallel
lines)

3. If we know directions of velocity vectors in two points lying on a line, which is perpendicular to
those directions, then the instant center of rotation lies at intersections of this line line with a line
connecting the heads of velocity vectors.

4. Velocity vectors of  points lying on a single straight line connecting them with instant center of
rotation  have  their  magnitudes  proportional  to  the  distance  from  this  center.  Proportionality
coefficient is the angular velocity.

5. Vertical components of velocity vector may be translated vertically.
Horizontal components of velocity vector may be translated horizontally.
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EXERCISE 1

Motion of a point is given in vector description:

r (t)= {x( t )= 4 t2+1
y (t )=−2 t
z (t) = 3t2−2

Find the velocity vector, acceleration vector and its tangent and normal components..

ROZWIĄZANIE:

Velocity vector:

v (t )= d r
d t

= {
d x
d t

= 8 t

d y
d t

=−2

d z
d t

= 6 t

Acceleration vector:

a( t)= d v
d t

= {
d2 x
d t 2 = 8

d2 y

d t 2
= 0

d2 z
d t 2 = 6

Tangent  acceleration  vector  is  obtained  via  projection  of  acceleration  vector  on  direction  of
velocity vector:

as=
a∘v
∣v∣2

⋅v =
8⋅(8 t)+0⋅(−2)+6⋅(6t )

√(8 t)2+(−2)2+(6 t)2
[8 t ; −2 ; 6 t ] = 100 t

100 t 2+4
[8t ; −2 ; 6 t ]=

= [ 200 t2

25 t 2+1
; − 50 t

25t 2+1
;

150t 2

25 t 2+1]
Normal acceleration vector:

an= a−as= [8− 200 t2

25 t 2+1
;

50 t
25 t2+1

; 6− 150 t2

25 t 2+1]= [ 8
25 t 2+1

;
50 t

25 t 2+1
;

6
25 t 2+1]



EXERCISE 2

A material point moves along a circle of radius R = 2 m . Distance covered in time t is describet
by function s( t)= 2t 2 .

Find:
• Velocity vector and acceleration vector
• Angular velocity and angular acceleration
• Angular velocity vector and angular acceleration vector. With the use of those quantities

find the velocity vector as well as tangent and normal acceleration vectors.

ROZWIĄZANIE:

Let's determine position vector. Let's chose a Cartesian coordinate system, the origin of which lies
in the center of circle and the initial point lies on x axis. Position of any point of this circle is
described with equations:

r = {x = R cosα
y = Rsinα

Distance covered by a point moving along a circular trajectory is the length of an arch s( t)=ł ,
which is in the following relation with angular distance (expressed in radians!):

s( t)= R⋅α(t) ⇒ α(t ) =
s (t)

R
= t 2

Position vector: r (t)= {x (t)= Rcos t2

y (t)= Rsin t 2

Velocity vector: v (t )= ṙ (t) ={ẋ (t ) =−2 t R sin t 2

ẏ (t ) = 2 t R cos t2

Acceleration vector: a( t)= r̈ (t )= {ẍ (t )=−2 R sin t 2−4 t 2 R cos t 2

ÿ (t )= 2 R cos t 2−4 t2 Rsin t 2

Having the angular distance expressed as a function of time α(t) we may determine:
• angular velocity: ω= α̇ = 2 t
• angular acceleration: ε = α̈ = 2

Angular velocity vector and angular acceleration vector are perpendicular to the plane of motion:
• angular velocity vector: ω= [0 ; 0 ; ω] = [0 ; 0 ; 2 t ]
• angular acceleration vector: ε = [0 ; 0 ; ε] = [0 ; 0 ; 2]

Velocity and acceleration vectors are found from the following relations:

v =ω×r , as= ε×r , an=ω×v , a = as+an



Velocity vector:

v =ω×r = [0 ; 0 ; 2t ]×[R cos t 2 ; R sin t 2 ; 0] = [−2 t R sin t 2 ; 2 t R cos t 2 ; 0 ]

Tangent acceleration vector:

as= ε×r = [0 ; 0 ; 2]×[R cos t 2 ; R sin t 2 ; 0 ]= [−2R sin t 2 ; 2 R cos t 2 ; 0]

Normal acceleration vector:

an=ω×v = [0 ; 0 ; 2 t ]×[−2t Rsin t2 ; 2 t R cos t2 ; 0] = [−4 t 2 Rcos t 2 ; −4 t 2 Rsin t 2 ; 0]

Acceleration vector:

a = as+an= [−2 R sin t 2−4 t 2 R cos t 2 ; 2 R cos t2−4 t2 R sin t 2 ; 0 ]



EXERCISE 3

A material point moves along a trajectory given by parametric equations:

K : {x(λ)= 2 λ
y(λ)= 4−2λ
z (λ)= λ+3

The initial point is Ω0=(4 ; 0 ; 5) . The trajectory is oriented in such a way that the measure of
covered distance s>0 for z<5 . Equation of motion is s = t 2 . Find the position vector as a
function of time (vector description)

SOLUTION:

Our task is to transform a natural description into a vector one.
• Initial point Ω0 corresponds with λ=2 .
• Increment of distance covered as a function of parameter λ is equal:

s(λ)=∫
λ0

λ √(d x
d λ )

2

+(d y
d λ )

2

+(d z
d λ )

2

d λ =∫
2

λ

√(2)2+(−2)2+(1)2d λ = 3∫
2

λ

d λ = 3(λ−2)

• The result is compared with the equation of motion:

±s (λ) = s (t ) ⇒ ±3(λ−2)=±t 2

• The sign is chosen by checking if the sign in increment of distance covered is the same in
the left hand side and right hand side of the above relation. According to the orientation of
trajectory  we  should  have s>0 ⇔ z<5 .  Substituting s(λ) and  the  last  of
parametric equations of trajectory, we obtain:

±3(λ−2)>0 ⇔ λ+3<5
±[3λ−6 ]>0 ⇔ λ<2

±[λ ]>2 ⇔ λ<2

Incerement of distance in expression s(λ)=3(λ−2) is opposite then the one resulting
from orientation, so we chose −s (λ)=s (t) .

−3(λ−2)= t 2 ⇒ λ = 2−1
3

t 2

• Substituting it in the equations of trajectory, we obtain the position vector as a function of
time:

r (t) ={x (t) = 4−2
3

t2

y (t) = 2
3

t2

z(t )= 5−1
3

t 2



EXERCISE 4

Knowing  the  velocity  vectors  in  two  point  of  a  plne  rigid
body, find velocity vectors in point A, B, C, D. Grid lines are
spaced with a single unitary distance.

SOLUTION:

POINT A:
•Projection of v E on line AE is zero,so horizontal component of v A is zero.
•Projection of v F on line FA is zero, so vertical component of v A is zero.
•Since both horizontal  and vertical  component of v A is  zero, then v A must be a zero
vector and point A does not move at all.

POINT B:
•Projection of v E on line AB is zero  ,  so  horizontal
component of v B is zero – it is a vertical vector.

•Points A, E, B lies on a single line, so heads of their
velocity  vectors  must  also  lie  on a  line.  Similarity  of
triangles gives us ∣vB∣= 2v .

POINT D:
•Projection  of v F on  line  FD  is  zero,  so  vertical
component of vD is zero – it is a horizontal vector.

•Points A, F, D lies on a single line, so heads of their
velocity  vectors  must  also  lie  on a  line.  Similarity  of
triangles gives us ∣vD∣= 3v .

POINT C:
•Projection of vD on horizontal line DC is equal 3 v ,
so horizontal component of vC is equal 3v .

•Projection of v B on vertical line BC is equal 2v , so
vertical component of vC is equal 2v

• ∣vC∣= √(3v)2+(2 v)2 = √13 v
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EXERCISE 5

Find velocity vectors in points B, C, D, 
knowing that velocity in A is equal:

v A=[0,8] m /s .

SOLUTION:

We know that planar motion of a rigid body may be interpreted as a rotation about instant center
of rotation. If we find the position of this center and determine the angular velocity, we will be
able to find velocity of any point of the body.

Instant  center  of  rotation  is  always  placed  at
intersection of  lines  which are  perpendicular  to the
permissible directions of velocities. Support in point A
allows  for  vertical  motion  only.  Support  in  point  B
allows for horizontal motion only. It allows us to find
the location of instant center of rotation.

Linear  and  angular  velocities  hold  the  following
relation: v =ωR , where R is the distance from the
center of rotation. Magnitude of velocity vector in A is
equal v A =∣v∣= 8 m /s .  Distance  from  A  to  O  is
equal 4 m , hence ω= 2 rad /s . Basing on it, we
can find velocity in B which is surely horizontal  and
oriented  in  such  a  way  that  it  is  consistent  with
clockwise rotation of the body:

 v B =ω RB = 2 rad /s⋅3 m = 6 m /s .

In order to find components of velocity vector in C we
will  first determine velocities in two fictitious points
which do not belong to the body and which will have a
horizontal and vertical velocity respectively, equal to
the (respectively)  horizontal  and vertical  component
of velocity vector in C.

A=(0;3)

B=(4;0)

C=(6;4)

x

y

v=[8;0]

A=(0;3)

B=(4;0)

C=(6;4)

x

y

O=(4;3)

x

y

v
A
= 8

v
B
= 6

ω = 2
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v
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ω = 2

1
 m

2 m

2
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Components  of  velocity  vector  in  C  are  found  by
translating appropriate projections along axes which
are parallel to them.

Finally:
v A=[0 ; 8] m /s
v B= [−6 ; 0] m /s
vC = [2 ; −4 ] m /s
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EXERCISE 6

There is a system of two truss bodies connected with a joint (hinge) over a middle support. Find
the velocities of nodes of trusses after removing the middle support.

SOLUTION:

Static diagram after removing the support..

Let's determine the center of rotation of body I. Since it is pinned in a single point, this point must
be the center of rotation O1 . Let's assume the angular velocity ω= v /a.

A common point of two bodies may move only vertically. Supported point of the second body may
move only horizontally.  We draw lines which are perpendicular to the permissible direction of
velocities in those two point of body II. At intersection of those lines an instant center of rotation

O2  for that body lies. 
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We determine velocities of nodes of truss respective to angular velocity determined according to
the known position of center of rotation and known linear velocity in joint.
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EXERCISE 7
Determine the distribution of velocity in the mechanical system shown below:

OUTLINE OF SOLUTION
(a system of rigid bodies connected with a joint with no known velocities)

1. For each body we have to determine its instant center of rotation and angular velocity –
knowing them we are able to determine velocity vectors in any point of each body.

2. We start our analysis with a body to which the greatest number of constraints (supports)
are applied. Usually it is the one which is supporte with
• two roller supports or
• single pinned support

3. Determine the location of instant center of rotation.
4. Assuming  a  chosen  angular  velocity,  determine  velocities  in  all  points  of  the  body,  in

particular in the joint connecting it with another body.
5. Knowing the velocity in joint and supports applied to the second body (or  velocities in

other point of the second body) find the instant center of rotation and angular velocity for
that body.

6. Repeat steps 4 and 5 until all required velocities are found.

REMARKS:
• If  at  any  step  of  our  solution  we  obtain  any  incosistency  (e.g.  due  to  theorems  on

distribution of velocities a velocity is required along a direction which is not allowed due to
support, instant center of rotation has non-zero velocity etc.) it means that the assumption
on the motion of the first body is incorrect. We assume then that this first body holds still
and the joint becomes an instant center of rotation for the connected body (it is immovable
and allows rotation). Such a change of initial assumption may happen more than once.

• If the instant center of rotation is an improper point in infinity (lines perpendicular to the
permissible  directions  of  velocities  are  parallel),  then  the  body  performs  a  parallel
translation (no rotation) and velocity vectors in all points of that body are the same.
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SOLUTION:

Let's start with body 1 (notation as in the picture) since
there  are  two  roller  supports.  We  determine  the
permissible directions of velocities in supported points. At
intersection  of  lines  perpendicular  to  that  permissible
directions there is an instant center of rotation.

Let's  assume  angular  velocity ω1 = v /a -  orientation
may be chosen arbitrary. In any point at distance a from
the center of rotation the velocity is equal v . Direction
of velocity is always perpendicular to the line connecting
the  considered  point  with  the  center  of  rotation.
Orientation yields from orientation of angular velocity.

Knowing the direction of velocity in joint and permissible
direction of velocity on support in the 2nd body, we draw
lines perpendicular to those directions and find the instant
center of rotation for body 2 at their intersection.

Angular velocity for the 2nd body is found with the use of
relation ω=v /r knowing  the  velocity  in  joint.  It  is  at
distance r = a √2 ,  hence  the  angular  velocity
ω2 = v /a .  Knowing  the  angular  velocity  we  find  the

velocities in all other points of the body.
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Approximate deformation:
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EXERCISE 8
Determine the distribution of velocity in the mechanical system shown below:

SOLUTION:

Let's start with body 1 (notation as in the picture) since
there  are  two  roller  supports.  We  determine  the
permissible directions of velocities in supported points. At
intersection  of  lines  perpendicular  to  that  permissible
directions there is an instant center of rotation. It emerges
to be an improper point (in infinity).

Since the instant center of rotation is in infinity, the body
performs parallel translation – velocity vectors in all points
are  all  the  same.  Supports  allow  only  for  horizontal
displacements. Orientation and magnitude of velocity may
be  chosen  arbitrary.  Let's  assume v towards  right.  In
particular this is also the velocity of joint.

Knowing the direction of velocity in joint and permissible
direction of velocity on support in the 2nd body, we draw
lines perpendicular to those directions and find the instant
center of rotation for body 2 at their intersection.
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Angular velocity for the 2nd body is found with the use of
relation ω=v /r knowing  the  velocity  in  joint.  It  is  at
distance r = a , hence the angular velocity ω2 = v /a .
Knowing the angular velocity we find the velocities in all
other points of the body.

Approximate deformation:
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EXERCISE 9
Determine the distribution of velocity in the mechanical system shown below:

SOLUTION:

Let's start with body 1 (notation as in the picture) since there isa
pinned support. Instant center of rotation is located at the support
for body 1. Let's assume angular velocity ω1 = v /a -- orientation
may  be  chosen  arbitrary.  In  any  point  at  distance a from  the
center of rotation the velocity is equal v . Direction of velocity is
always  perpendicular  to the line connecting the considered point
with the center of rotation. Orientation yields from orientation of
angular velocity.

Knowing the direction of velocity in joint and permissible direction
of velocity on support in the 2nd body, we draw lines perpendicular
to those directions and find the instant center of rotation for body 2
at their intersection. It emerges to be an improper point (in infinity).
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Since the instant center of rotation is in infinity, the body performs
parallel translation – velocity vectors in all points are all the same.
Since the joint moves with v downwards it will also be the velocity
of all other points of that body.

Approximate deformation:
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EXERCISE 10
Determine the distribution of velocity in the mechanical system shown below:

SOLUTION:

Let's  start  with  body  1  (notation  as  in  the
picture) since there is a pinned support. Instant
center of rotation is located at the support for
body  1.  Let's  assume  angular  velocity
ω1 = v /a --  orientation  may  be  chosen

arbitrary. In any point at distance a from the
center  of  rotation  the  velocity  is  equal  v .
Direction of velocity is always perpendicular  to
the  line  connecting  the  considered  point  with
the center  of  rotation.  Orientation  yields  from
orientation of angular velocity.

Knowing  the  direction  of  velocity  in  joint  and
knowing the permissible direction of velocity at
support in body 2 we draw lines perpendicular
to that directions and we find the instant center
of  rotation  at  intersection  of  those  lines.  It
emerges that the intersection is in the joint, in
which  the  velocity  is  non-zero  –  it  is  an
inconsistency,  since  instant  center  of  rotation
must be a point in which the velocity is  zero.
What's  more,  if  we  wanted  to  translate  the
vertical component of velocity in joint along a vertical line down to the support, we would have ti
have a vertical  component of velocity at support which do not allow for such a motion. Both
those facts indicate that our initial assumption on rotation of body 1 around the pinned support
was incorrect. As it is the only way in which body 1 may move, we conclude that it must remain
still.
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Since body 1 is immovable, then also the
joint does not move. As it  is  immovable,
allows for rotation and belongs to body 2 it
must be the instant center of rotation for
body  2.  Let's  assume  angular  velocity
ω2 = v /a -- orientation may be chosen

arbitrary. In any point at distance a from
the center of rotation the velocity is equal

v .  Direction  of  velocity  is  always
perpendicular  to  the  line  connecting  the
considered  point  with  the  center  of
rotation.  Orientation  yields  from
orientation of angular velocity.

Approximate deformation:
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