EXERCISE 1

Find the reaction forces with the use of equilibrium equations. Check if your calculations are correct.

SOLUTION:

Each exercise in which we have to find reaction forces should be started with marking proper force markings (arrows) on appropriate supports:

Orientation of reaction may be chosen in any way - it has no influence on final results. If it happens that chosen orientation is wrong (it means that the force will in fact act in an opposite direction than we have already marked with an arrow) then we will simply obtain negative value of reaction. Sometimes we are able to predict orientation of certain reaction so that we can instantly draw an arrow correctly - it is, however, not always so easy to be predicted so we can arbitrary assume orientation of reaction at the beginning of solution.

Reaction may be determined with the use of equilibrium equations. There are three such equations for plane systems:

$$
\begin{cases}\Sigma X=0 & \text { Sum of forces along X-axis is equal } 0 \\ \Sigma Y=0 & \text { Sum of forces along Y-axis is equal } 0 \\ \Sigma M_{P}=0 & \text { Sum of moments about any point } \mathrm{P} \text { is equal } 0\end{cases}
$$

or

$$
\left\{\begin{array}{l}
\Sigma M_{A}=0 \\
\Sigma M_{B}=0 \\
\Sigma M_{C}=0
\end{array},\right. \text { points A, B, C may not lie on a single straight line. }
$$

It is most easy to use those equations in such a way that we avoid solving a system of equations and only solve independent (uncoupled) equations with a single unknown. In our case such a situation occurs when we chose the equation for sum of forces along X -axis:

$$
\Sigma X=0: \quad H_{A}+0=0 \quad \Rightarrow \quad H_{A}=0 \mathrm{kN}
$$

WE can see that sum of forces along Y-axis contains two unknons - reactions V_{A} and V_{B}. It won't help us in determining any of them without using any other equation. The only equation we are left with is equating the sum of moments to 0 , yet point about which the moments are calculated may be chosen in any way. It is the best way to chose such a point that only a single reaction gives a non-zero moment about it. Therefore it must lie
on (intersection of) lines of action of those reactions that we want to omit in our equation. Obtained result will be independent of values of those ignored reactions also in the sense that if we made a mistake in determining them, then this error won't influence further results. In our case we could calculated sum of moments about A (omitting influence of reaction V_{A}) or about B (omitting influence of V_{B}). The choice is up to us - let it be point A:

$$
\Sigma M_{A}=0: \quad+V_{B} \cdot 6-20 \cdot 6 \cdot 3=0 \quad \Rightarrow \quad V_{B}=60 \mathrm{kN}
$$

What's only left is to determine the final reaction - in order to do it, we will make use of sum of vertical forces:

$$
\Sigma Y=0: \quad V_{A}+V_{B}-20 \cdot 6=0 \quad \Rightarrow \quad V_{A}=60 \mathrm{kN}
$$

We could as well use different equation - e.g. Sum of moments about B. The result must be of course the same:

$$
\Sigma M_{B}=0: \quad-V_{A} \cdot 6+20 \cdot 6 \cdot 3=0 \quad \Rightarrow \quad V_{A}=60 \mathrm{kN}
$$

Checking if the calculations are correct consists in writing down any equilibrium equation - if all reactions are determined correctly, then such an equation will be automaticly satisfied. Following criteria may be accounted for when looking for an equation for checking our results:

- We chose an equation which has not been already used - if we solved it correctly and we made a mistake in a different equation such a check won't inform us about it. If in our solution both sums along axes are used, then check equation will always be a sum of moments.
- A point about which a sum of moment is to be calculated should be chosen in such a way that possibly many (at best: all) determined reactions give a non-zero moment about it (the point lies outside their line of action) - if any reaction makes a zero moment about a chosen point and we made a mistake in determining this reaction, then such a check won't inform us about it.
- A point about which a sum of moment is to be calculated should be chosen in such a way that possibly many external loads give zero moment about it - such an equation is easier to be written down and thus it is more reliable.

In our case a good point for check is the middle of beam's span. Let's denote it with P. Then:

$$
\Sigma M_{P}=-V_{A} \cdot 3+V_{B} \cdot 3=-60 \cdot 3+60 \cdot 3=-180+180=0
$$

The fact that the sum of moments due to calculated reactions is zero confirms that they were determined correctly.

Since point P lies on line of action of H_{A} the above equation will be satisfied always, even if this reaction is determined wrongly. On the other hand, this reaction was determined with the use of a very simple equation, the solution of which we are sure of.

EXERCISE 2

Find the reaction forces with the use of equilibrium equations. Check if your calculations are correct.

SOLUTION:

We assign proper forces to supports:

We use the equilibrium equations:

$$
\begin{array}{ll}
\Sigma X=0: & H_{A}+0=0 \\
\Sigma Y=0: & V_{A}-10 \cdot 2=0 \\
\Sigma M_{A}=0: & \Rightarrow M_{A}-10 \cdot 2 \cdot 1=0
\end{array} \quad \Rightarrow V_{A}=20 \mathrm{kN}, M_{A}=20 \mathrm{kNm}
$$

Check:

$$
\Sigma M_{B}=0: \quad+M_{A}+10 \cdot 2 \cdot 1-V_{A} \cdot 2=20-20+20 \cdot 2=0 \quad \text { ОК! }
$$

EXERCISE 3

Find the reaction forces with the use of equilibrium equations. Check if your calculations are correct.

SOLUTION:

Let's assign forces to supports. We may instantly decompose an oblique load into hotizontal and vertical component

We use the equilibrium equation:

$$
\Sigma X=0: \quad H_{C}+10=0 \quad \Rightarrow \quad H_{C}=-10 \mathrm{kN}
$$

In case when obtained value is negative it means that the orientation assumed by us at the beginning is wrong. A common procedure in such a situation is to change the orientation of an arrow in the picture and to change the value of reaction to a positive one. Such a solution requires an attention - it is necessary to clearly mark in the picture (i.e. in all pictures if there are more than one) which orientation is correct and to cross out a negative value obtained in calculations. Neglecting these rules often leads to errors - it concerns especially situations when a single force is present in few pictures, in which it is oriented in different way (these are the cases of "cutting" the structre - what will be discussed later - or equilibrating nodes of truss)

In my opinion it is much better to leave the originally assumed orientation of arrow and to stay with negative value of reaction. Further equations may be written at first symbolically (H_{C}) and later proper value may be substituted. Such a procedure has an additional advantege - equation written down symbolically is easier to be checked and if it is written correctly then its correctness does not depend on values of reactions determined earlier. Possible corrections are done simply by substituting certain symbols with apropriately modified values.

We determine the rest of reactions:

$$
\begin{array}{ll}
\Sigma M_{C}=0:-V_{B} \cdot 4+10 \cdot 6=0 \quad & \Rightarrow V_{B}=15 \mathrm{kN} \\
\Sigma Y=0:-10+V_{B}+V_{C}-\frac{1}{2} \cdot 6 \cdot 2=0 & \Rightarrow \quad V_{C}=1 \mathrm{kN}
\end{array}
$$

If we want to check our results with a sum of moments, then choice of proper point is not limited to the points belonging to the structure - it may be any point one the plane. Let's chose such a point that does not lie on line of action of negative reaction $\quad H_{C}$ in order to show how an equation is written first symbolically and then how proper values are substituted:

$$
\begin{aligned}
\Sigma M_{C}=0: & 10 \cdot 2+V_{B} \cdot 2+V_{C} \cdot 6+H_{C} \cdot 2-\left(\frac{1}{2} \cdot 6 \cdot 2\right) \cdot\left(2+\frac{2}{3} \cdot 6\right)= \\
& =10 \cdot 2+15 \cdot 2+1 \cdot 6+(-10) \cdot 2-\left(\frac{1}{2} \cdot 6 \cdot 2\right) \cdot\left(2+\frac{2}{3} \cdot 6\right)= \\
& =20+30+6-20-6 \cdot 6=36-36=0
\end{aligned}
$$

EXERCISE 4

Find the reaction forces with the use of equilibrium equations. Check if your calculations are correct.

SOLUTION:

$$
\begin{aligned}
& \sum X=0: H_{E}-20=0 \Rightarrow H_{E}=20 \mathrm{kN} \\
& \Sigma Y=0: \\
& \Sigma V_{A}-2 \cdot 6-8=0 \Rightarrow V_{A}=20 \mathrm{kN} \\
& \Sigma M_{E}=0: \quad+M_{A}-V_{A} \cdot 6-12+2 \cdot 6 \cdot 3+20 \cdot 2=0 \quad \Rightarrow M_{A}=56 \mathrm{kNm}
\end{aligned}
$$

Sprawdzenie:

$$
\begin{aligned}
\Sigma M_{P}=0: & M_{A}-V_{A} \cdot 6-12+2 \cdot 6 \cdot 3+20 \cdot 4-H_{E} \cdot 2= \\
& =56-20 \cdot 6-12+36+80-20 \cdot 2= \\
& =56-120-12+36+80-40=0
\end{aligned}
$$

EXERCISE 5

Find the reaction forces with the use of equilibrium equations.

SOLUTION:

$$
\begin{aligned}
& \Sigma X=0: \quad H_{A}+4-2 \cdot 8=0 \Rightarrow H_{A}=12 \mathrm{kN} \\
& \sum M_{A}=0: \quad-4 \cdot 4+20-12 \cdot 4+2 \cdot 8 \cdot 4+V_{F} \cdot 8=0 \quad \Rightarrow \quad V_{F}=-2,5 \mathrm{kN} \\
& \Sigma Y=0: \quad V_{A}-12+V_{F}=0 \quad \Rightarrow \quad V_{A}=14,5 \mathrm{kN}
\end{aligned}
$$

EXERCISE 6

Find the reaction forces with the use of equilibrium equations.

SOLUTION:

$$
\begin{aligned}
& \Sigma Y=0: \quad V_{A}-24=0 \quad \Rightarrow \quad V_{A}=24 \mathrm{kN} \\
& \Sigma M_{A}=0: \quad-4 \cdot 4 \cdot 2+6-24 \cdot 6+H_{C} \cdot 4=0 \quad \Rightarrow \quad H_{C}=42,5 \mathrm{kN} \\
& \Sigma X=0: \quad H_{A}+4 \cdot 4-H_{C}=0 \Rightarrow H_{A}=26,5 \mathrm{kN}
\end{aligned}
$$

EXERCISE 7

Find the reaction forces with the use of equilibrium equations.

SOLUTION:

$$
\begin{aligned}
& \Sigma X=0: 8-H_{E}=0 \quad \Rightarrow \quad H_{E}=8 \mathrm{kN} \\
& \Sigma M_{D}=0:+8 \cdot 2-V_{A} \cdot 4+12=0 \Rightarrow V_{A}=7 \mathrm{kN} \\
& \Sigma Y=0: \quad V_{A}-2 \cdot 4+V_{D}=0 \Rightarrow V_{D}=1 \mathrm{kN}
\end{aligned}
$$

EXERCISE 8

Find the reaction forces with the use of equilibrium equations.

SOLUTION:

In case when there is a support with oblique displacement permissed reaction at such a support is always perpendicular to the direction of permissed displacement. It will always be a single unknown, however we will decompose it into its vertical and horizontal component.

$$
\begin{aligned}
& \Sigma X=0: \frac{R_{A}}{\sqrt{2}}+8=0 \Rightarrow R_{A}=-8 \sqrt{2} \mathrm{kN} \\
& \Sigma Y=0: \quad \frac{R_{A}}{\sqrt{2}}-2 \cdot 4+V_{D}=0 \quad \Rightarrow \quad V_{D}=16 \mathrm{kN}
\end{aligned}
$$

When chosing a point about which we would like to calculate sum of moment in order to find M_{A} we may notice that point D lies at the line of action of both force V_{D} and reaction R_{A} - despite fact that D does not lie on line of action of neither component of R_{A}, yet sum of those two components gives us obviously a zero moment about D :

$$
\Sigma M_{D}=0:+M_{A}+8 \cdot 2+2 \cdot 4 \cdot 2-8=0 \quad \Rightarrow \quad M_{A}=-24 \mathrm{kNm}
$$

EXERCISE 9

Find the reaction forces with the use of equilibrium equations. Check if your calculations are correct.

SOLUTION:

In systems with joints there are additionally two more equations for every joint, except three basic equilibrium equations: sum of moments about the joint due to forces applied to either one or the second part of the structure which meet in the joint. Those two equations are not independent of the three basic equilibrium equations, so each joint gives us a single additional independent equation which enables us to find unknown reaction.

At the beginning we will find horizontal reaction at fixed suport:

$$
\Sigma X=0: \quad H_{A}-10=0 \quad \Rightarrow \quad H_{A}=10 \mathrm{kN}
$$

Please note, that sum of forces along Y-axis as well as any sum of moments about a point always contain two or more unknowns. Anyway we would be forced to use an equation for sum of moments about a joint due to forces applied to one or to another side od joint. If we write down such an equation for forces at right side of the joint, we will obtain an equation depending on only one unknown. When writing down this equation, we totally neglect the forces applied to the second part of the structure.

REMARK:

One must remember that sum of moment from one side of a point may be written down ONLY FOR A JOINT.
The second vertical reaction may be found from equation of sum of forces along Y -axis:

$$
\Sigma Y=0: \quad V_{A}-4 \cdot 4-30+V_{D}=0 \quad \Rightarrow \quad V_{A}=31 \mathrm{kN}
$$

Moment at fixed support may be determined with the use of the second equation that is delivered to use by the presence of the joint:

$$
\Sigma M_{B}^{\leftarrow}=0:+M_{A}-V_{A} \cdot 4+4 \cdot 4 \cdot 2=0 \quad \Rightarrow \quad M_{A}=92 \mathrm{kNm}
$$

In order to check our calculations we must calculate the sum of moments (due to total load) about any point. It would be erroneus to chose pont B, since we've already used equations equating sum of moments from both sides of joint to zero. It implies from those two equations that sum of moments due to total load about B will surely be 0 (that's what means that each joint gives us two equartions but only one is independent of the rest of equilibrium equations). We may calculate e.g. sum of moment about C :

$$
\Sigma M_{C}=M_{A}-V_{A} \cdot 6+4 \cdot 4 \cdot 4+V_{D} \cdot 2=92-31 \cdot 6+64+15 \cdot 2=0
$$

EXERCISE 10

Find the reaction forces with the use of equilibrium equations. Check if your calculations are correct.

SOLUTION:

$$
\begin{aligned}
& \sum X=0: \quad H_{A}+20=0 \Rightarrow H_{A}=-20 \mathrm{kN} \\
& \sum M_{C}^{\rightarrow}=0: \quad+V_{D} \cdot 2-\left(\frac{1}{2} \cdot 6 \cdot 6\right) \cdot 4=0 \Rightarrow V_{D}=36 \mathrm{kN} \\
& \sum M_{A}=0: \quad+10+V_{B} \cdot 2-20 \cdot 4+V_{D} \cdot 6-\left(\frac{1}{2} \cdot 6 \cdot 6\right) \cdot 8=0 \Rightarrow V_{B}=-1 \mathrm{kN} \\
& \sum M_{C}^{\leftarrow}=: \quad+10-V_{A} \cdot 4-V_{B} \cdot 2=0 \quad \Rightarrow \quad V_{A}=3 \mathrm{kN}
\end{aligned}
$$

Check:

$$
\Sigma Y=V_{A}+V_{B}+V_{D}-20-\frac{1}{2} \cdot 6 \cdot 6=3-1+36-20-18=0 \quad \text { ОК! }
$$

EXERCISE 11

Find the reaction forces and check if your calculations are correct.

SOLUTION:

$$
\begin{aligned}
& \Sigma M_{D}^{\vec{~}}=0: \quad V_{E} \cdot 4-6 \cdot 4 \cdot 2=0 \Rightarrow V_{E}=12 \mathrm{kN} \\
& \Sigma X=0: \quad 12-H_{B}=0 \quad \Rightarrow \quad H_{B}=12 \mathrm{kN} \\
& \Sigma M_{D}^{\downarrow}=0: \quad 12 \cdot 2-H_{B} \cdot 4+6 \cdot 3 \cdot 1,5-V_{A} \cdot 3=0 \quad \Rightarrow V_{A}=1 \mathrm{kN} \\
& \Sigma Y=0: \quad V_{A}+V_{B}+V_{E}-6 \cdot 3-6 \cdot 4=0 \quad \Rightarrow \quad V_{B}=29 \mathrm{kN}
\end{aligned}
$$

Check:

$$
\Sigma M_{P}=-V_{A} \cdot 5-V_{B} \cdot 2-H_{B} \cdot 2+V_{E} \cdot 2+6 \cdot 3 \cdot 3,5=-5-58-24+24+63=0 \quad \text { ок! }
$$

EXERCISE 12

Find the reaction forces.

SOLUTION:

$$
\begin{aligned}
& \Sigma X=0: \quad H_{A}-24=0 \Rightarrow H_{A}=24 \mathrm{kN} \\
& \Sigma M_{D}^{\rightarrow}=0: \quad-12-24 \cdot 4+V_{E} \cdot 4=0 \Rightarrow V_{E}=27 \mathrm{kN} \\
& \Sigma M_{B}^{\vec{~}}=0: \quad-2 \cdot 3 \cdot 1,5+V_{c} \cdot 3-12-24 \cdot 10+V_{E} \cdot 10=0 \Rightarrow V_{C}=-3 \mathrm{kN} \\
& \Sigma Y=: \quad V_{A}+V_{C}+V_{E}-2 \cdot 7-24=0 \Rightarrow V_{A}=14 \mathrm{kN} \\
& \Sigma M_{B}^{\leftarrow}=0: \quad M_{A}-V_{A} \cdot 4+2 \cdot 4 \cdot 2=0 \Rightarrow M_{A}=40 \mathrm{kNm}
\end{aligned}
$$

EXERCISE 13

Find the reaction forces.

SOLUTION:

$$
\begin{aligned}
& \Sigma M_{C}=0: \quad-V_{A} \cdot 8+2 \cdot 8 \cdot 4=0 \Rightarrow V_{A}=8 \mathrm{kN} \\
& \Sigma M_{B}^{\leftarrow}=0: \quad-V_{A} \cdot 4+H_{A} \cdot 4+2 \cdot 4 \cdot 2=0 \Rightarrow H_{A}=4 \mathrm{kN} \\
& \Sigma X=0: \quad H_{A}-H_{C}=0 \quad \Rightarrow \quad H_{C}=4 \mathrm{kN} \\
& \Sigma Y=: \quad V_{A}+V_{C}-2 \cdot 8=0 \quad \Rightarrow \quad V_{C}=8 \mathrm{kN}
\end{aligned}
$$

EXERCISE 14

Find the reaction forces.

SOLUTION:

$$
\begin{aligned}
& \Sigma Y=0:-4 \cdot 8+V_{E}=0 \Rightarrow V_{E}=32 \mathrm{kN} \\
& \Sigma M_{C}^{\downarrow}=0: \quad 12-4 \cdot 4 \cdot 2-2 \cdot 3 \cdot 1,5+H_{E} \cdot 3+V_{E} \cdot 4=0 \quad \Rightarrow \quad H_{E}=-33 \mathrm{kN} \\
& \Sigma X=0: \quad H_{A}-2 \cdot 6+H_{E}=0 \Rightarrow H_{A}=45 \mathrm{kN} \\
& \Sigma Y=:+M_{A}-H_{A} \cdot 3+4 \cdot 4 \cdot 2+2 \cdot 3 \cdot 1,5=0 \quad \Rightarrow \quad M_{A}=94 \mathrm{kNm}
\end{aligned}
$$

EXERCISE 15

Find the reaction forces.

SOLUTION:

$$
\begin{aligned}
& \Sigma M_{F}^{\leftarrow}=0:-V_{A} \cdot 12-24 \cdot 3+\frac{1}{2} \cdot 6 \cdot 2 \cdot 8+36=0 \Rightarrow V_{A}=1 \mathrm{kN} \\
& \Sigma M_{D}^{\leftarrow}=0: \quad-V_{A} \cdot 6+H_{A} \cdot 6+24 \cdot 3+\frac{1}{2} \cdot 6 \cdot 2 \cdot 2=0 \Rightarrow H_{A}=-13 \mathrm{kN} \\
& \Sigma X=0: \quad H_{A}+24-4 \cdot 6+H_{G}=0 \Rightarrow V_{C}=13 \mathrm{kN} \\
& \Sigma Y=: \quad V_{A}-\frac{1}{2} \cdot 6 \cdot 2-V_{G}=0 \Rightarrow V_{G}=-5 \mathrm{kN} \\
& \Sigma M_{F}^{\uparrow}=0: \quad+M_{G}-H_{G} \cdot 6+4 \cdot 6 \cdot 3=0 \Rightarrow M_{G}=6 \mathrm{kNm}
\end{aligned}
$$

EXERCISE 16

Find the reaction forces.

SOLUTION:

$$
\begin{array}{lll}
\Sigma M_{D}^{\rightarrow}=0: & -10 \cdot 2-4 \cdot 2 \cdot 1+M_{E}=0 & \Rightarrow M_{E}=28 \mathrm{kNm} \\
\Sigma M_{B}^{\leftarrow}=0: & -\frac{R_{A}}{\sqrt{2}} \cdot 2-\frac{R_{A}}{\sqrt{2}} \cdot 2+4 \cdot 2 \cdot 1=0 & \Rightarrow R_{A}=2 \sqrt{2} \mathrm{kN} \\
\Sigma Y=0: & \frac{R_{A}}{\sqrt{2}}+V_{D}-4 \cdot 6-10=0 \Rightarrow V_{D}=32 \mathrm{kN} \\
\Sigma M_{D}^{\uparrow}=: & +12+H_{C} \cdot 2-\frac{R_{A}}{\sqrt{2}} \cdot 4+4 \cdot 4 \cdot 2=0 \Rightarrow H_{C}=-18 \mathrm{kN} \\
\Sigma X=0: & -\frac{R_{A}}{\sqrt{2}}-H_{C}-H_{E}=0 \Rightarrow H_{E}=16 \mathrm{kN}
\end{array}
$$

EXERCISE 17

Find the reaction forces.

SOLUTION:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \Sigma M _ { E } = 0 } \\
{ \Sigma M _ { C } ^ { \leftarrow } = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ + H _ { A } \cdot 2 - V _ { A } \cdot 6 + 5 \cdot 6 \cdot 3 = 0 } \\
{ + H _ { A } \cdot 4 - V _ { A } \cdot 2 + 5 \cdot 2 \cdot 1 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
H_{A}=6 \mathrm{kN} \\
V_{A}=17 \mathrm{kN}
\end{array}\right.\right.\right. \\
& \Sigma X=0: \quad H_{A}+H_{E}=0 \Rightarrow H_{E}=-6 \mathrm{kN} \\
& \Sigma Y=0: \quad V_{A}+V_{E}-5 \cdot 6=0 \quad \Rightarrow \quad V_{E}=13 \mathrm{kN}
\end{aligned}
$$

EXERCISE 18

Find reactions and check if your calculations are correct.

$\Sigma Y=0: \quad V_{C}-6 \cdot 6-20=0 \Rightarrow V_{C}=56$
$\Sigma M_{P}=0: \quad+20 \cdot 2-6 \cdot 6 \cdot 1+12-20 \cdot 4+H_{E} \cdot 2=0 \quad \Rightarrow \quad H_{E}=32$
$\Sigma X=0: \quad H_{A}+20-H_{E}=0 \Rightarrow H_{A}=12$

Check:

$$
\begin{aligned}
\Sigma M_{D}= & -H_{A} \cdot 2+12-V_{C} \cdot 4+6 \cdot 6 \cdot 3+H_{E} \cdot 4= \\
& -12 \cdot 2+12-56 \cdot 4+6 \cdot 6 \cdot 3+32 \cdot 4=0
\end{aligned}
$$

EXERCISE 19

Find reactions and check if your calculations are correct.

$$
\begin{aligned}
& \text { K } 4 \mathrm{~m} \quad \text { K } 2 \mathrm{~m} \quad \mathrm{~m}^{K} \\
& \Sigma X=0: \quad H_{A}+2 \cdot 4-10=0 \quad \Rightarrow \quad H_{A}=2 \\
& \Sigma Y=0: \quad V_{F}-6-10=0 \quad \Rightarrow \quad V_{F}=16 \\
& \Sigma M_{P}=0: \quad M_{A}+6 \cdot 4+2 \cdot 4 \cdot 2+8=0 \quad \Rightarrow \quad M_{A}=-48
\end{aligned}
$$

Check:

$$
\begin{aligned}
\Sigma M_{E}= & +M_{A}-H_{A} \cdot 2+6 \cdot 2+8+V_{F} \cdot 2= \\
& -48-2 \cdot 2+6 \cdot 2+8+16 \cdot 2=0
\end{aligned}
$$

EXERCISE 20

Find reactions at supports.

$\Sigma X=0: \quad 16-H_{G}=0 \Rightarrow H_{G}=16$
$\Sigma M_{P}=0: \quad-V_{A} \cdot 22+\left[\frac{1}{2} \cdot 6 \cdot 12\right] \cdot\left[16+\frac{1}{3} \cdot 6\right]+8 \cdot 8 \cdot 4-16 \cdot 2+8=0 \quad \Rightarrow \quad V_{A}=40$
$\Sigma Y=0: \quad V_{A}-\frac{1}{2} \cdot 6 \cdot 12-8 \cdot 8+V_{E}=0 \quad \Rightarrow \quad V_{E}=60$

EXERCISE 21

Find reactions and check if your calculations are correct.

$\Sigma X=0: \quad H_{A}-5=0 \Rightarrow H_{A}=5$
$\Sigma M_{B}^{\text {lewo }}=0: \quad+M_{A}+[2 \cdot 4] \cdot\left[\frac{1}{2} \cdot 4\right]+\left[\frac{1}{2} \cdot 4 \cdot(8-2)\right] \cdot\left[\frac{1}{3} \cdot 4\right]=0 \Rightarrow M_{A}=-32$
$\Sigma M_{D}^{\text {prawo }}=0: \quad-20 \cdot 2+V_{F} \cdot 4=0 \Rightarrow V_{F}=10$
$\Sigma M_{D}^{\text {lewo }}=0: \quad+M_{A}+[2 \cdot 4] \cdot\left[4+\frac{1}{2} \cdot 4\right]+\left[\frac{1}{2} \cdot 4 \cdot(8-2)\right] \cdot\left[4+\frac{1}{3} \cdot 4\right]+16-V_{C} \cdot 2=0 \quad \Rightarrow \quad V_{C}=48$
$\Sigma Y=0: \quad-2 \cdot 4-\frac{1}{2} \cdot 4 \cdot(8-2)+V_{C}+V_{D}-20+V_{F}=0 \quad \Rightarrow \quad V_{D}=-18$
Check:

$$
\begin{aligned}
\Sigma M_{E}= & +M_{A}+[2 \cdot 4] \cdot\left[6+\frac{1}{2} \cdot 4\right]+\left[\frac{1}{2} \cdot 4 \cdot(8-2)\right] \cdot\left[6+\frac{1}{3} \cdot 4\right]+16-V_{C} \cdot 4-V_{D} \cdot 2+V_{F} \cdot 2= \\
& -32+8 \cdot 8+12 \cdot \frac{22}{3}+16-48 \cdot 4-(-18) \cdot 2+10 \cdot 2=0
\end{aligned}
$$

EXERCISE 22

Find reactions at supports.

$$
\begin{aligned}
& \Sigma M_{C}^{d o t}=0:+12-H_{E} \cdot 2=0 \Rightarrow H_{E}=6 \\
& \Sigma X=0:+2 \cdot 4-H_{A}-H_{E}=0 \Rightarrow H_{A}=2 \\
& \Sigma Y=0: \quad V_{A}-8=0 \Rightarrow V_{A}=8 \\
& \Sigma M_{E}=0: \quad M_{A}-H_{A} \cdot 2-V_{A} \cdot 2+12=0 \Rightarrow \\
& \quad \Rightarrow \quad M_{A}=8
\end{aligned}
$$

EXERCISE 23

Find reactions at supports.

EXERCISE 24

Find reactions at supports.

$\Sigma M_{B}^{d o t}=0: \quad+2 \cdot 4 \cdot 2-H_{A} \cdot 4=0 \Rightarrow H_{A}=4$
$\Sigma M_{C}^{d o t}=0: \quad-12 \cdot 3-H_{F} \cdot 2=0 \Rightarrow H_{F}=-18$
$\Sigma X=0: \quad-H_{A}+2 \cdot 4-H_{E}-H_{F}=0: \quad \Rightarrow \quad H_{E}=22$
$\Sigma M_{B}^{\text {prawo }}=0: \quad-24-V_{D} \cdot 4-12 \cdot 6-H_{F} \cdot 2=0 \Rightarrow V_{D}=-15$
$\Sigma Y=0: \quad V_{A}-V_{D}-12=0 \Rightarrow V_{A}=-3$

EXERCISE 25

Find reactions at supports and a force in bowstring 5-6.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \Sigma M _ { 5 } ^ { \text { dot } } = 0 } \\
{ \Sigma M _ { 6 } ^ { \text { lewo } } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
+24+H_{1} \cdot 3-V_{1} \cdot 1+12 \cdot 3=0 \\
+24+H_{1} \cdot 3-V_{1} \cdot 7-12 \cdot 3=0
\end{array} \Rightarrow \begin{array}{l}
\begin{array}{l}
H_{1}=-24 \\
V_{1}=-12
\end{array} \\
\hline
\end{array} \Rightarrow H_{1}+20+H_{4}=0 \Rightarrow H_{4}=4\right.\right. \\
& \Sigma X=0: \quad \Rightarrow \quad V_{3}=3 \\
& \Sigma M_{4}=0:+24-V_{1} \cdot 10-12 \cdot 6-V_{3} \cdot 4-20 \cdot 3=0 \quad \\
& \Sigma Y=0: \quad V_{1}+12+V_{3}+V_{4}=0: \Rightarrow V_{4}=-3
\end{aligned}
$$

In order to find a force in bowstring we make a cut through the bowstring:

The force is determined from equilibrium of system of forces applied to any part of the structure. For example, for the left part:

$$
\Sigma X=0: \quad H_{1}+N=0 \Rightarrow N=24
$$

In order to find reaction forces it was necessary to solve a system of equations. We may avoid solving such a system if we chose a different solution of the EXERCISE. We may cut through bar 5-6 at the very beginning. We get then two separate parts. If a whole mechanical system is in equilibrium then any separated part of it (with additional forces describing mutual interaction between parts) must be in equilibrium - three basic equilibrium equations (and possible additional equations due to joints) may be applied to each of the part separately. In our case deleting bar 5-6 results in that joints in points 5 and 6 to not allow for any rotation (they are included in a single rigid body), so they do not provide any additional equation.

Part I-3 unknowns and 3 equilibrium equations:

$$
\begin{array}{ll}
\Sigma Y^{I}=0: & V_{1}+12=0 \Rightarrow V_{1}=-12 \mathrm{kN} \\
\Sigma M_{1}^{I}=0: & 24+12 \cdot 4-N \cdot 3=0 \Rightarrow N=24 \mathrm{kN} \\
\Sigma X^{I}=0: & H_{1}+N=0 \Rightarrow H_{1}=-24 \mathrm{kN}
\end{array}
$$

Determined value of axial force in bar 5-6 is applied to part II of the structure:

$$
\begin{aligned}
& \Sigma X^{I I}=0: H_{4}+20-N=0 \Rightarrow H_{4}=4 \mathrm{kN} \\
& \Sigma M_{4}^{I I}=0: \quad-V_{3} \cdot 4-20 \cdot 3+N \cdot 3=0 \Rightarrow V_{3}=3 \mathrm{kN} \\
& \Sigma Y^{I I}=0: \quad V_{3}+V_{4}=0 \Rightarrow V_{4}=-3 \mathrm{kN}
\end{aligned}
$$

EXERCISE 26

Find reactions at supports and a force in bowstring C-F.

In order to get additional equations (sum of moments due to load applied to one side of a joint) we will cut the structure through bowstring C-F:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \Sigma M _ { D } ^ { \text { lewo } } = 0 } \\
{ \Sigma M _ { E } ^ { \text { lewo } } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
+\frac{N}{\sqrt{2}} \cdot 2-V_{A} \cdot 2=0 \\
-12+\frac{N}{\sqrt{2}} \cdot 2+24 \cdot 2-V_{A} \cdot 4=0
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array}{l}
V_{A}=18 \\
N=18 \sqrt{2}
\end{array}\right. \\
& \Sigma M_{I}=0: \quad-V_{H} \cdot 2-12+24 \cdot 6-V_{A} \cdot 8=0 \Rightarrow V_{H}=-6
\end{aligned}
$$

EXERCISE 27

Find reactions at supports and a force in bowstring B-E.

In order to get additional equations (sum of moments due to load applied to one side of a joint) we will cut the structure through bowstring B-E:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\Sigma M_{D}^{\text {prawo }}=0 \\
\Sigma M_{C}^{\text {prawo }}=0 \\
\sum M_{A}=0
\end{array}\right. \\
\Rightarrow\left\{\begin{array}{l}
-N \cdot 2+H_{E} \cdot 2+V_{E} \cdot 2=0 \\
-N \cdot 2+H_{E} \cdot 2+V_{E} \cdot 6-4 \cdot 4 \cdot 2=0 \\
-H_{E} \cdot 4+V_{E} \cdot 9-4 \cdot 4 \cdot 5-2 \cdot 6 \cdot 3=0
\end{array}\right. \\
\Rightarrow\left\{\begin{array}{l}
V_{E}=8 \\
H_{E}=-11 \\
N=-3
\end{array}\right. \\
\Sigma X=0: H_{A}+2 \cdot 6+H_{E}=0 \Rightarrow H_{A}=-1
\end{array}\right\} \begin{aligned}
& \Sigma Y=0: \quad V_{A}-4 \cdot 4+V_{E}=0 \Rightarrow V_{A}=8
\end{aligned}
$$

EXERCISE 28

Find reactions at supports.

In order to get additional equations (sum of moments due to load applied to one side of a joint) we will cut the structure through bowstring 2-7:

$$
\begin{aligned}
& \Sigma M_{6}^{\text {prawo }}=0: \\
& -36-\frac{3 N}{\sqrt{10}} \cdot 2=0 \Rightarrow N=-6 \sqrt{10} \\
& \Sigma M_{4}^{\text {gora }}=0: \\
& -4 \cdot 2 \cdot 1-36-\frac{3 N}{\sqrt{10}} \cdot 2-\frac{N}{\sqrt{10}} \cdot 2+H_{7} \cdot 2=0 \\
& \Rightarrow H_{7}=-2 \\
& \Sigma M_{2}^{\text {lewo }}=0: \\
& -V_{1} \cdot 4+H_{7} \cdot 6-36-4 \cdot 6 \cdot 3=0 \\
& \Rightarrow V_{1}=-30 \\
& \Sigma Y=0: V_{1}-24+V_{5}=0 \Rightarrow V_{5}=54
\end{aligned}
$$

$\Sigma M_{2}^{\text {prawo }}=0: \quad V_{5} \cdot 4-H_{5} \cdot 4=0 \quad \Rightarrow \quad H_{5}=54$
$\Sigma X=0:-H_{7}+H_{1}+H_{5}+4 \cdot 6=0 \Rightarrow H_{1}=-80$

EXERCISE 29

Find reactions at supports.

In order to get additional equations (sum of moments due to load applied to one side of a joint) we will cut the structure through bowstring B-F:

$$
\left\{\begin{array}{l}
\Sigma M_{C}^{\text {dót }}=0 \\
\Sigma M_{D}^{\text {lewo }}=0 \\
\Sigma M_{E}^{\text {lewo }}=0
\end{array} \quad \Rightarrow\right.
$$

$$
\Rightarrow\left\{\begin{array}{l}
+4 \cdot 6 \cdot 3+N \cdot 3+H_{A} \cdot 6=0 \\
+4 \cdot 8 \cdot 4+N \cdot 5+H_{A} \cdot 8-V_{A} \cdot 4+20 \cdot 4 \cdot 2=0 \\
+4 \cdot 8 \cdot 2+N \cdot 3+H_{A} \cdot 6-V_{A} \cdot 8+20 \cdot 8 \cdot 4=0
\end{array}\right.
$$

$$
\Rightarrow\left\{\begin{array}{l}
H_{A}=-74 \\
V_{A}=79 \\
N=124
\end{array}\right.
$$

$\Sigma X=0: \quad H_{A}+4 \cdot 8+H_{G}=0 \quad \Rightarrow \quad H_{G}=42$
$\Sigma Y=0: \quad V_{A}-20 \cdot 8+V_{G}=0 \quad \Rightarrow \quad V_{G}=81$

$\Sigma M_{E}^{d o t}=0: \quad-N \cdot 3+H_{G} \cdot 6+M_{G}=0 \quad \Rightarrow \quad M_{G}=120$

EXERCISE 30

Find reactions at supports.

$\Sigma X=0: \quad-40-8.4-H_{C}=0 \Rightarrow H_{C}=-72$
In order to get additional equations (sum of moments due to load applied to one side of a joint) we will cut the structure through joint B:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \Sigma M _ { D } ^ { d o t } = 0 } \\
{ \Sigma M _ { F } ^ { d o t } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
+H_{B} \cdot 2-V_{B} \cdot 2=0 \\
-H_{B} \cdot 2-V_{B} \cdot 2-H_{C} \cdot 2-8 \cdot 2 \cdot 1=0
\end{array} \Rightarrow\right.\right. \\
& \Rightarrow\left\{\begin{array}{l}
H_{B}=32 \\
V_{B}=32
\end{array}\right. \\
& \Sigma M_{H}^{d \dot{b} t}=0: \quad+N \cdot 4-V_{A} \cdot 2-40 \cdot 2=0 \quad \Rightarrow \quad V_{A}=24 \\
& \Sigma M_{C}=0 \text { : } \\
& -V_{A} \cdot 4+40 \cdot 2+8 \cdot 4 \cdot 2-10+V_{H} \cdot 2=0 \quad \Rightarrow \\
& \Rightarrow V_{H}=-19 \\
& \Sigma Y=0: \quad V_{A}-V_{H}-V_{I}=0 \quad \Rightarrow \quad V_{I}=43
\end{aligned}
$$

EXERCISE 31

Find reactions with the use of equilibrium equations.

SOLUTION:

$\Sigma M_{C}=0: \quad 12+M_{A}-30 \cdot 3-18 \cdot 2+3 \cdot 2 \cdot 1=0 \quad \Rightarrow \quad M_{A}=108 \mathrm{kNm}$
$\Sigma Y=0: \quad V_{A}-18-24+3 \cdot 8=0 \quad \Rightarrow \quad V_{A}=18 \mathrm{kN}$
$\Sigma M_{C}^{\leftarrow}=0:-6+24 \cdot 3+H_{D} \cdot 3-3 \cdot 6 \cdot 3=0 \quad \Rightarrow \quad H_{D}=-4 \mathrm{kN}$
$\Sigma X=0: H_{D}+H_{B}+30=0 \quad \Rightarrow \quad H_{B}=-26 \mathrm{kN}$

EXERCISE 32

Find reactions with the use of equilibrium equations.

SOLUTION:

$$
\begin{aligned}
& \Sigma M_{F}^{\uparrow}=0: \quad \Rightarrow \quad H_{G}=0 \mathrm{kN} \\
& \Sigma M_{E}^{\vec{~}}=0:-24+4 \cdot 2 \cdot 1-H_{G} \cdot 2+V_{G} \cdot 2=0 \quad \Rightarrow \quad V_{G}=8 \mathrm{kN} \\
& \Sigma M_{E}^{\leftarrow}=0:-4 \cdot 2 \cdot 1-V_{C} \cdot 4=0 \Rightarrow V_{C}=-2 \mathrm{kN} \\
& \Sigma Y=0: V_{C}+V_{G}-60+4 \cdot 4+\frac{R_{A}}{\sqrt{2}}=0 \Rightarrow R_{A}=38 \sqrt{2} \mathrm{kN} \\
& \Sigma X=0: \quad H_{C}+H_{G}-\frac{R_{A}}{\sqrt{2}}=0 \quad \Rightarrow H_{C}=38 \mathrm{kN}
\end{aligned}
$$

EXERCISE 33

Find reactions with the use of equilibrium equations.

$$
\xrightarrow{2 \mathrm{~m}} \xrightarrow{2 \mathrm{~m}} \xrightarrow{2 \mathrm{~m}}
$$

SOLUTION:

$$
\begin{aligned}
& \Sigma M_{D}=0:-60+M_{G}=0 \quad \Rightarrow \quad M_{G}=60 \mathrm{kNm} \\
& \Sigma M_{E}^{\rightarrow}=0: M_{G}+\frac{R_{G}}{\sqrt{2}} \cdot 6=0 \quad \Rightarrow R_{G}=-10 \sqrt{2} \mathrm{kN} \\
& \Sigma Y=0: V_{D}+\frac{R_{G}}{\sqrt{2}}=0 \quad V_{D}=10 \mathrm{kN} \\
& \Sigma X=0: H_{D}-\frac{R_{G}}{\sqrt{2}}=0 \quad \Rightarrow H_{D}=-10 \mathrm{kN}
\end{aligned}
$$

EXERCISE 34

Find reactions with the use of equilibrium equations.

SOLUTION:

$$
\begin{array}{ll}
\Sigma M_{G}^{\downarrow}=0: H_{I} \cdot 2+4 \cdot 2 \cdot 1=0 & \Rightarrow H_{I}=-4 \mathrm{kN} \\
\Sigma X=0: 4 \cdot 6+H_{F}+H_{I}=0 & \Rightarrow H_{F}=-20 \mathrm{kN} \\
\Sigma M^{\leftarrow}=0:-V_{F} \cdot 4-4 \cdot 2 \cdot 1=0 & \Rightarrow V_{F}=-2 \mathrm{kN} \\
\Sigma M^{\leftarrow}=0: 12+V_{E} \cdot 4-4 \cdot 2 \cdot 3=0 & \Rightarrow V_{E}=3 \mathrm{kN} \\
\Sigma Y=0: & V_{F}+V_{I}+V_{E}=0 \quad \Rightarrow
\end{array} V_{I}=-1 \mathrm{kN}, ~ l
$$

EXCERCISE 35

Find reactions at supports and axial force in bars $A B$ and $F G$ with the use of equilibrium equations.

SOLUTION:

In order to get required number of equations we have to perform a cut through structure. We may cut through joints A, B, F and G. Bar FG is a truss bar - only axial force occurs in it. Bar AB is a bent bar which is loaded transversally, so joints at its end bear also transverse force. We will determine it from equilibrium of bar $A B$:

$$
\begin{aligned}
& \Sigma X^{I}=0: \quad \Rightarrow \quad N_{A}=N_{B} \\
& \Sigma M_{A}^{I}=0: Q_{B} \cdot 4-6 \cdot 4 \cdot 2=0 \quad \Rightarrow \quad Q_{B}=12 \mathrm{kN} \\
& \Sigma M_{B}^{I}=0:-Q_{A} \cdot 4+6 \cdot 4 \cdot 2=0 \quad \Rightarrow \quad Q_{A}=12 \mathrm{kN}
\end{aligned}
$$

We may draw:

Sum of moment about D for the right part of structure gives us:

$$
\Sigma M_{D}^{I I I}=0: \quad 12 \cdot 4+6 \cdot 4 \cdot 2+H_{I} \cdot 2=0 \quad \Rightarrow \quad H_{I}=-48 \mathrm{kN}
$$

The rest of equations may be written down for the whole (not cutted) system:

$$
\begin{aligned}
& \Sigma X=0: H_{E}+H_{I}=0 \Rightarrow H_{E}=48 \mathrm{kN} \\
& \Sigma M_{E}=0:-6 \cdot 12 \cdot 6+V_{I} \cdot 12-H_{I} \cdot 2=0 \quad \Rightarrow \quad V_{I}=28 \mathrm{kN} \\
& \Sigma Y=0: \quad V_{E}+V_{I}-6 \cdot 12=0 \Rightarrow V_{E}=44 \mathrm{kN}
\end{aligned}
$$

Unknown axial forces may be found e.g. from equilibrium of the left part of structure:

$$
\begin{array}{lll}
\Sigma Y^{I I}: & V_{E}+\frac{N_{2}}{\sqrt{5}}-12-6 \cdot 4=0 & \Rightarrow N_{2}=-8 \sqrt{5} \mathrm{kN} \\
\Sigma X^{I I}: & H_{E}+\frac{2}{\sqrt{5}} N_{2}+N_{1}=0 \quad \Rightarrow N_{1}=-32 \mathrm{kN}
\end{array}
$$

Check may be performed by writing down the sum of forces applied to the right part of structure:

$$
\begin{aligned}
& \Sigma Y^{I I I}=-12-6 \cdot 4-\frac{N_{2}}{\sqrt{5}}+V_{I}=-12-24+8+28=0 \\
& \Sigma X^{I I I}=-N_{1}-\frac{2}{\sqrt{5}} N_{2}+H_{I}=32+16-48=0
\end{aligned}
$$

EXCERCISE 36

Find reactions at suports and axial force in bars EF and EH with the use of equilibrium equations.

SOLUTION:

In order to get required number of equations we may perform a cut through joints D, E, F and G. Bars DF and EG are loaded transversally so the joints at their ends bear both longitudinal and transverse forces. Transverse forces may be determined from equilibrium fo those bars.

For oblique bars it is convenient to introduce a local coordinate system, one axis of which is parallel to the bar's axis.

Oblique foces may be decomposed into horizontal and vertical components:

Sum of moment about B for upper part of the structure:

$$
\Sigma M_{B}^{I I I}=0:-H_{A} \cdot 2-50 \cdot 2+50 \cdot 2+50 \cdot 2+50 \cdot 2=0 \quad \Rightarrow \quad H_{A}=100 \mathrm{kN}
$$

Sum of forces along X -axis for the whole structure:

$$
\Sigma X=0: H_{A}+H_{B}+100+100=0 \quad \Rightarrow \quad H_{B}=-300 \mathrm{kN}
$$

Sum of forces along X -axis for bottom part of structure:

$$
\Sigma X^{I V}=0: 100+50-50-\frac{N_{2}}{\sqrt{2}}=0 \quad \Rightarrow \quad N_{2}=100 \sqrt{2} \mathrm{kN}
$$

Sum of forces along Y -axis for the upper part of the structure:

$$
\Sigma Y^{I I I}=0:-50-50+50-N_{1}-\frac{N_{2}}{\sqrt{2}}=0 \quad \Rightarrow \quad N_{1}=-150 \mathrm{kN}
$$

Sum of moments about H for bottom part of the structure:

$$
\Sigma M_{H}^{I V}=0:-N_{1} \cdot 4+100 \cdot 2-V_{I} \cdot 4=0 \quad \Rightarrow \quad V_{I}=200 \mathrm{kN}
$$

Sum of forces along Y -axis for the bottom part of the structure:

$$
\Sigma Y^{I V}=0: N_{1}+V_{I}+V_{K}+\frac{N_{2}}{\sqrt{2}}-50=0 \quad \Rightarrow \quad V_{K}=-100 \mathrm{kN}
$$

EXCERCISE 37

Find reactions at supports with the use of equilibrium equations.

SOLUTION:

We cut out bar AC:

The rest of equations may be written down for the whole structure:

$$
\begin{aligned}
& \sum Y=0: \\
& V_{E}+V_{D}-6 \cdot 8=0 \Rightarrow V_{D}=12 \mathrm{kN} \\
& \sum M_{E}=0: \\
& -H_{D} \cdot 4+V_{D} \cdot 8+24-6 \cdot 8 \cdot 4=0 \quad \Rightarrow H_{D}=-18 \mathrm{kN} \\
& \Sigma X=0 \quad H_{E}+H_{D}=0 \Rightarrow H_{E}=18 \mathrm{kN}
\end{aligned}
$$

EXCERCISE 38

Find reactions at supports with the use of equilibrium equations.

SOLUTION:

We will cut out bars $A B$ and $E F$. Tansverse forces in joints A, B, E and F may be determined from equilibrium of those bars. In both cases the system of forces is symmetric, co finding unknown values is easy:

$$
\begin{array}{ll}
Q_{A}=Q_{B}=\frac{1}{2} \cdot 2 \cdot 2=2 \mathrm{kN} & Q_{E}=Q_{F}=\frac{1}{2} \cdot 4 \cdot 6=12 \mathrm{kN} \\
N_{B}=-N_{A} & N_{F}=-N_{E}
\end{array}
$$

$$
\begin{aligned}
& \Sigma Y^{I}=V_{E}-12-2-2 \cdot 2=0 \Rightarrow V_{E}=18 \mathrm{kN} \\
& \Sigma Y^{I I}=V_{G}-12-2-2 \cdot 4=0 \Rightarrow V_{G}=22 \mathrm{kN} \\
& \Sigma M_{E}^{I}=N_{A} \cdot 2-2 \cdot 2-2 \cdot 2 \cdot 1=0 \\
& \Sigma M_{D}^{I I}=N_{E} \cdot 2+2 \cdot 4+12 \cdot 2+2 \cdot 4 \cdot 2=0 \quad N_{A}=4 \mathrm{kN} \\
& \Sigma X^{I}=H_{E}-N_{E}-N_{A}=0 \quad \Rightarrow \quad N_{E}=-24 \mathrm{kN} \\
& \Sigma X_{E}^{I I}=N_{A}+N_{E}+H_{D}=0 \Rightarrow H_{D}=20 \mathrm{kN}
\end{aligned}
$$

EXCERCISE 39

Find reactions at supports by dividing the system into simple frames.

SOLUTION:

We may distinguish two simple frames in the system above:

- Frame ABCD of a shape of inverted „T"
- Frame FEC of a shape of bent bar

Frame ABCD has enough supports to remain in equilibrium. For this reason it constitutes a support for frame FEC - both frames are connected in a joint, which bears horizontal and vertical force. Those forces may be determined as reaction forces at a fictious support of frame FEC and they are treated as external load for frame ABCD.

Frame II:

$$
\begin{aligned}
& \Sigma Y^{I I}=V_{C}=0 \quad \Rightarrow \quad V_{C}=0 \mathrm{kN} \\
& \Sigma M_{C}=24-2 \cdot 4 \cdot 2+H_{F} \cdot 4=0 \quad \Rightarrow \quad H_{F}=-2 \mathrm{kN} \\
& \Sigma X^{I I}=H_{F}+H_{C}-2 \cdot 4=0 \quad \Rightarrow \quad H_{C}=10 \mathrm{kN}
\end{aligned}
$$

Frame I:

$$
\Sigma M_{D}=-V_{C} \cdot 2+16 \cdot 2+16 \cdot 2+2 \cdot 2 \cdot 1+12-M_{B}=0 \quad \Rightarrow \quad M_{B}=80 \mathrm{kNm}
$$

$$
\Sigma Y^{I}=-16+V_{C}+\frac{R_{D}}{\sqrt{2}}=0 \quad \Rightarrow \quad R_{D}=16 \sqrt{2} \mathrm{kN}
$$

$$
\Sigma X^{I}=H_{F}-16-H_{C}-\frac{R_{D}}{\sqrt{2}}-2 \cdot 2=0 \quad \Rightarrow \quad H_{F}=46 \mathrm{kN}
$$

