
THEORY OF ELASTICITY

EXAMPLE 22

Deformation equations in material description are given 
for  a cube of edge of unit length:

{x1 = 2 X 1+3X 2−4 X 3
x2=−3 X 3

x3=−X 1−X 2

Check if the above equations are invertible and find:

1. deformation equations in spatial description,
2. displacement vector in material and spatial description,
3. actual configuration – make a sketch,
4. material  deformation  gradient  F  and  spatial  deformation  gradient  f  –  perform  polar

decomposition of F,
5. material deformation tensor C and spatial deformation tensor c,
6. material strain tensor E and spatial strain tensor e as well as small strain tensor and small

rotation tensor,
7. Piola-Kirchhoff  stress tensor of  the 1st and 2nd kind as well  as the Cauchy stress tensor

assuming linear constitutive relation of generalized Hooke's Law between material strain
tensor and Piola-Kirchhoff stress tensor of the 2nd kind:

S ij = 2G E ij+λ Ekkδij , Young modulus E = 11 kPa , Poisson's ratio ν = 0,1

8. actual surface load on BCGF face referred to actual configuration (true load),
9. actual surface load on BCGF face referred to reference configuration (nominal load),
10. surface area of BCGF face before and after deformation,
11. length of AG segment before and after deformation,
12. volume of the cube before and after deformation.

SOLUTION:

At first, let's determine material deformation gradient. The i , j component is equal derivative of
i -th spatial coordinate x with respect to j -th material coordinate X :

F = [
∂ x1
∂ X 1

∂ x1
∂ X 2

∂ x1
∂ X 3

∂ x2
∂ X 1

∂ x2
∂ X 2

∂ x2
∂ X 3

∂ x3
∂ X 1

∂ x3
∂ X 2

∂ x3
∂ X 3

]= [ 2 3 −4
0 0 −3

−1 −1 0 ] (1)

© CC-BY-NC-SA 3.0 PL - Paweł Szeptyński 2020 1

A

B C

D

F

E H

G

X 1

X 2

X 3



THEORY OF ELASTICITY

We may check if the equations are invertible by finding the determinant of jacobian matrix:

J = det F=∣
∂ x1
∂ X 1

∂ x1
∂ X 2

∂ x1
∂ X 3

∂ x2
∂ X 1

∂ x2
∂ X 2

∂ x2
∂ X 3

∂ x3
∂ X 1

∂ x3
∂ X 2

∂ x3
∂ X 3

∣=∣ 2 3 −4
0 0 −3

−1 −1 0 ∣= 3 (2)

Determinant is greater than 0, so the equations are locally invertible in each point.

AD 1) DEFORMATION EQUATIONS IN SPATIAL DESCRIPTION

Deformation  equations  constitute  a  system  of  equations  biding  material  and  spatial
coordinates – this system may be solved with respect to one or another set of coordinates. We
want to express material coordinates X in terms of the spatial ones, so we look for X as a
solution of this system. In our case this is a linear system – it can be solved easily with the use of
the Cramer formulae:

{x1 = 2 X 1+3X 2−4 X 3
x2=−3 X 3

x3=−X 1−X 2

(3)

Determinants: W = det (F)= 3 (4)

W 1 =[ x1 3 −4
x2 0 −3
x3 −1 0 ]=−3 x1+4 x2−9 x3  (5)

W 2= [ 2 x1 −4
0 x2 −3

−1 x3 0 ]= 3 x1−4 x2+6 x 3 (6)

W 3 = [ 2 3 x1
0 0 x2

−1 −1 x3]= x2 (7)

Solution: {X 1=
W 1

W
=−x 1+

4
3
x2−3 x3

X 2 =
W 2

W
= x1−

4
3
x2+2 x3

X 3=
W 3

W
=−

x2
3

(8)

In case of non-linear relations such an approach is impossible and a non-linear system of equations
must be solved.
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AD 2) DISPLACEMENT VECTOR

Displacement vector is defined as: u = x−X (9)

Depending on that, in which description we want it to be express, we should express one of the
coordinates in the above formula in terms of the other one, according to relations (3) or (8).

• material  description  –  material  coordinates X are  independent  variables  now,  so  we
need to express spatial coordinates x in terms of material ones according to (3):

{u1(X)= x1((X))−X 1= X 1+3 X 2−4 X 3

u2(X)= x2((X))−X 2 =−X 2−3 X 3

u3(X)= x3((X))−X 3=−X 1−X 2−X 3

(10)

• spatial description: – spatial coordinates x are independent variables now, so we need to
express material coordinates X in terms of spatial ones according to (8):

{u1(x )= x1−X 1(x) = 2 x1−
4
3
x2+3 x3

u2(x)= x2−X 2(x) =− x1+
7
3
x2−2 x3

u3(x)= x3−X 3(x )= x3+
x2
3

(11)

It may be easily checked that substituting (8) in (10) results in (11) and substituting (3) in (11) gives
us (10).

AD 3) ACTUAL CONFIGURATION OF THE CUBE

Deformation equations are linear functions, which means that each straight line segment
is transformed into a straight segment, however, in general its position, orientation and length is
changed.  Since  the  reference  configuration  is  a  cube,  then  actual  configuration  will  be  a
parallelepiped – so it is enough to find location of its corners and connect them with straight line
segments.

Position  in  actual  configuration  is  given  by  spatial  coordinates x .  Let's  make  use  of
relations  (3) and for each corner in reference configuration we read its initial position (material
coordinates X ) and substitute appropriate coordinates in relations (3). We obtain:

A : x(0 ;0 ; 0)=[0 ;0 ;0]T B : x(1 ;0 ;0)=[2 ;0 ;−1]T

C : x (1 ;1 ;0)=[5 ;0 ;−2]T D : x(0 ;1 ;0)=[3 ;0 ;−1]T

E : x (0 ;0 ;1)=[−4 ;−3 ; 0]T F : x (1 ;0 ;1)=[−2 ;−3 ;−1]T

G : x(1 ;1 ;1)=[1 ;−3 ;−2]T H : x (0 ;1 ;1)=[−1 ;−3 ;−1]T
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AD 4) POLAR DECOMPOSITION OF MATERIAL DEFORMATION GRADIENT

Polar  decomposition  of  material  deformation  gradient  is  a  possibility  to  express  the
gradient as a product of a symmetric tensor and of an orthogonal tensor in one of two forms:

F =R U= VR (12)
where:

• R rotation tensor – orthogonal: det (R)= 1 , RT = R−1

• U right stretch tensor – symmetric: UT = U
• V left stretch tensor – symmetric: VT = V

An algorithm for finding the components of this decomposition is as follows:
1. find material deformation gradient: F
2. find deformation tensor: C= FTF

3. find  eigenvalues C1 ,C2 ,C3 and  eigenvectors ω1 , ω2 , ω3 of  deformation  tensor.
Deformation tensor in its eigenvector coordinate system has a diagonal form:

C[ω ] = [C1 0 0
0 C 2 0
0 0 C3]

4. find transformation matrix:

A =[ω(1)

ω(2)

ω(3)]= [ω1
(1) ω2

(1) ω3
(1)

ω1
(2) ω2

(2) ω3
(2)

ω1
(3) ω2

(3) ω3
(3)]
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THEORY OF ELASTICITY

5. find right stretch tensor in its eigenvector coordinate system:

U[ω] =[√C1 0 0

0 √C2 0

0 0 √C3]
6. find inverse of the right stretch tensor in its eigenvector coordinate system:

U−1
[ω] =[

1

√C 1

0 0

0 1

√C2
0

0 0
1

√C3
]  

7. find right stretch tensor in the original coordinate system:

U= ATU[ ω]A

8. find inverse of the right stretch tensor in the original coordinate system:

U−1= ATU−1
[ω]A

9. find rotation tensor: R = FU−1

10. find left stretch tensor: V = RURT =F RT

Deformation tensor:

C= FT⋅F= [ 2 0 −1
3 0 −1

−4 −3 0 ][ 2 3 −4
0 0 −3

−1 −1 0 ]= [ 5 7 −8
7 10 −12

−8 −12 25 ] (13)

In order to find eigenvalues of deformation tensor we need to solve the secular equation:

C3− I 1C
2 + I 2C − I 3= 0 (14)

the coefficients of which are given by invariants of deformation tensor:
• the first invariant – trace of the tensor:        

I 1 = tr (C) = C11 +C22 + C 33 = 40 (15)

• the second invariant:

I 2 =∣C22 C 23

C32 C33∣+∣C11 C 13
C31 C 33∣+∣C11 C12

C21 C22∣= 168 (16)

• the third invariant – determinant of the tensor:

I 3 = det(C)=∣C 11 C12 C 13
C 21 C22 C 23
C 31 C32 C 33

∣= 9 (17)
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Secular equation: C3−40C 2+168C−9= 0 (18)

It may be shown that due to symmetry and positive definiteness of this tensor the above
equation has  exactly three real and positive roots. We may find them with the use of Cardano
formulae (as below) or numerically with the use of calculator or computer:

Analytical computation require finding following parameters:

p =
1
3

(C11 + C22 + C33)= 13,333 (19)

J 2=
1
6

[(C 22−C33)
2 +(C 33−C11)

2+ (C11−C 22)
2] +(C23

2 +C31
2 +C12

2 )= 365,333 (20)

J 3 = (C11− p)(C 22− p)(C33− p)+2C23C31C12 −
− (C11− p )C23

2 −(C22− p )C31
2 −(C 33− p)C12

2 = 2509,741
(21)

q = √2 J 2= 27,031 (22)

θ = 1
3
arccos(3√32 J 3

J 2
3/ 2)= 0,122 rad (23)

Roots of the secular equation: C1= p + √ 23 q cos (θ ) = 35,240 (24)

C2 = p+ √ 23 qcos(θ + 2π
3 )= 0,0543 (25)

C3= p + √ 23 q cos(θ + 4π
3 )= 4,706 (26)

Numbering of the above roots may be chosen arbitrary. It is commonly done in such a way that the
smallest one is the first one, the intermediate is the second one and the largest one is the third
one (or exactly the other way round):

Eigenvalues of deformation tensor: C1=0,0543 C2=4,706 C3=35,240 (27)

For each single eigenvalue there is one principal direction and any vector parallel to that
direction  is  an  eigenvector  corresponding  with  that  eigenvalue.  Among  an  infinite  number  of
possible vectors we will choose normalized vectors (of unit length), the sense (orientation) of two
eigenvectors will be chosen arbitrary and the  sense of the third eigenvector will be chosen in
such a way that those vectors constituted a right-handed set. This set will be used to construct a
transformation matrix allowing us to change the original coordinate system into an eigenvector
coordinate system. Due to symmetry of  the tensor it  is  known that eigenvectors are  mutually
orthogonal. Normalization and preserving proper orientation will provide us with a right-handed
orthonormal (Crtesian) coordinate system.
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In  order  to  find  first  eigenvector ω(1) corresponding  with  the  first  eigenvalue C1 let's  write
down the following expression:

Cω(1) − C1ω
(1) = 0 ⇒ (C−C11)ω

(1) = 0

[5−0,0543 7 −8
7 10−0,0543 −12

−8 −12 25−0,0543][ω1
(1)

ω2
(1)

ω3
(1)]= [000] (28)

The above vector equation is satisfied by definition of the eigenvector. It corresponds with a
system of homogeneous (with right hand side equal 0) linear equations. Such a system has a non-
zero solution if  the determinant of matrix of coefficients is equal 0. Zero determinant may be
interpreted as a zero value of a triple product of vectors, the components of which are described
by three rows of the matrix of coefficients of that system. This in turn means that these vectors lie
in a single plane. Simultaneously each equation in the above system may be interpreted as a dot
product of one of those vectors and eigenvector ω(1) - since the right hand side of that equation
is  0,  this  means  that  those  vectors  are  perpendicular.  It  means  that  eigenvector ω(1) is
perpendicular  to  the plane  determined by  vectors  corresponding  with  rows  of  the  coefficient
matrix. Such a perpendicular vector may be determined as a cross product of any two vectors lying
in that plane, e.g. First two vectors:

[4,946 7 −8
7 9,946 −12

−8 −12 24,946] ⇒

[4,946 ; 7 ;−8]
× [7 ; 9,946 ;−12 ]

v(1) = [−4,434 ;3,349 ;0,189]

   (29)

Eigenvector is obtained by normalization of the above result:

ω(1) =
v(1)

∣v(1)∣
=

[−4,434 ;3,349 ;0,189]

√(−4,434)2+ (3,349)2+ (0,189)2
= [−0,798 ;0,603;0,034 ]    (30)

In an analogous way we may find the second eigenvector ω(2) corresponding with the second
eigenvalue C2 .

(C−C 21)ω
(2) = 0

[5−4,706 7 −8
7 10−4,706 −12

−8 −12 25−4,706][ω1
(2)

ω2
(2)

ω3
(2)]= [000] (31)

[0,294 7 −8
7 5,294 −12

−8 −12 20,294] ⇒

[0,294 ; 7 ;−8]
× [7 ; 5,294 ;−12]

v(2) = [−41,646 ;−52,470 ;−47,442 ]

(32)

© CC-BY-NC-SA 3.0 PL - Paweł Szeptyński 2020 7



THEORY OF ELASTICITY

ω(2) = v(2)

∣v(2)∣
= [−41,646 ;−52,470 ;−47,442 ]

√(−41,646)2 + (−52,470 )2 +(−47,442)2
= [−0,507 ;−0,639 ;−0,578 ] (33)

The third eigenvector is  determined in a  different  way.  Since we know that  it  must  be
perpendicular to two others and we want it to be normalized and oriented in such a way so that it
constituted with the rest of eigenvectors a right-hand set, then all those features are provided by a
vector which is a cross product of two other eigenvectors:

ω(1) = [−0,798 ; 0,602 ; 0,034 ]
ω(2)= [−0,507 ;−0,639 ;−0,578]

ω(3) = ω(1)×ω(2) [−0,326 ;−0,478;0,815]

 (34)

Eigenvectors of deformation tensor: ω(1 ) = [−0,798 ; 0,602 ; 0,034 ]
ω(2) = [−0,507 ;−0,639 ;−0,578]
ω(3) = [−0,326 ;−0,478 ; 0,815]

The i , j -th  component  of  transformation  matrix  is  equal j -th  component  of i -th
eigenvector:

Transformation matrix:

A = [−0,798 0,602 0,034
−0,507 −0,639 −0,578
−0,326 −0,478 0,815 ] (35)

Right stretch tensor in eigenvector coordinate system:

U[ω] = [√C1 0 0

0 √C2 0

0 0 √C3]= [0,233 0 0
0 2,169 0
0 0 5,936] (36)

Inverse of U in eigenvector coordinate system:

U[ω]
−1 =[

1

√C 1

0 0

0 1

√C2
0

0 0
1

√C3
]=[4,293 0 0

0 0,461 0
0 0 0,169] (37)
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Right stretch tensor U in the original coordinate system:

U =ATU[ω]A =

= [−0,798 −0,507 −0,326
0,602 −0,639 −0,478
0,034 −0,578 0,815][0,233 0 0

0 2,169 0
0 0 5,936][−0,798 0,602 0,034

−0,507 −0,639 −0,578
−0,326 −0,478 0,815]=

= [−0,186 −1.100 −1.935
0,140 −1.386 −2.837
0,00792−1.254 4.838][

−0,798 0,602 0,034
−0,507 −0,639 −0,578
−0,326 −0,478 0,815]= [ 1,339 1,518 −0,950

1,518 2,328 −1,508
−0,950 −1,508 4,671]

(38)

Inverse of the right stretch tensor U−1 in the original coordinate system:
U−1 =ATU−1

[ω]A=

= [−0,798 −0,507 −0,326
0,602 −0,639 −0,478
0,034 −0,578 0,815][4,293 0 0

0 0,461 0
0 0 0,169][−0,798 0,602 0,034

−0,507 −0,639 −0,578
−0,326 −0,478 0,815]=

= [−3,423 −0,234 −0,055
2,585 −0,295 −0,081
0,146 −0,266 0,137][

−0,798 0,602 0,034
−0,507 −0,639 −0,578
−0,326 −0,478 0,815]= [ 2,867 −1,886 −0,026

−1,886 1,784 0,192
−0,026 0,192 0,271]

  

(39)

Rotation tensor:
R = FU−1=

= [ 2 3 −4
0 0 −3

−1 −1 0][
2,867 −1,886 −0,026

−1,886 1,784 0,192
−0,026 0,192 0,271]= [ 0,179 0,810 −0,558

0,078 −0,577 −0,813
−0,981 0,102 −0,167]  (40)

Left stretch tensor:
V = RURT = FRT =

= [ 2 3 −4
0 0 −3

−1 −1 0][
0,179 0,078 −0,981
0,810 −0,577 0,102

−0,558 −0,813 −0,167]= [ 5,018 1,676−0,988
1,676 2,440 0,500

−0,988 0,500 0,879] (41)

Check:
            UT = U - tensor U is symmetric
            VT = V - tensor V is symmetric
            det (R)= 1

            R RT = [ 0,179 0,810 −0,558
0,078 −0,577 −0,813

−0,981 0,102 −0,167][ 0,179 0,078 −0,981
0,810 −0,577 0,102

−0,558 −0,813 −0,167]= [1 0 0
0 1 0
0 0 1]

            RU= [ 0,179 0,810 −0,558
0,078 −0,577 −0,813

−0,981 0,102 −0,167][ 1,339 1,518 −0,950
1,518 2,328 −1,508

−0,950 −1,508 4,671 ]= [ 2 3 −4
0 0 −3

−1 −1 0 ]= F
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DEFORMATION OF MATERIAL FIBRE dX =[0 ;1 ;0]
Stretching before rotation:

U⋅dX = [ 1,339 1,518 −0,950
1,518 2,328 −1,508

−0,950 −1,508 4,671 ]⋅[010]= [ 1,5182,328
−1,508]  

Rotation after stretching:

F dX = R(U dX)= [ 0,179 0,810 −0,558
0,078 −0,577 −0,813

−0,981 0,102 −0,167]⋅[ 1,5182,328
−1,508]= [ 30−1]

Rotation before stretching:

R⋅dX = [ 0,179 0,810 −0,558
0,078 −0,577 −0,813

−0,981 0,102 −0,167]⋅[010]= [ 0,810−0,577
0,102 ]  

Stretching after rotation:

F dX = V(R dX) = [ 5,018 1,676 −0,988
1,676 2,440 0,500

−0,988 0,500 0,879 ]⋅[ 0,810−0,577
0,102 ]= [ 30−1]
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AD 5) DEFORMATION TENSOR 

In order to find spatial deformation tensor we need to determine spatial deformation gradient:

Spatial deformation gradient:

f = F−1 =
(cof (F))T

det (F)
=

=
1
3 [(−1)

(1+1)∣ 0 −3
−1 0 ∣ (−1)(1+2)∣ 0 −3

−1 0 ∣ (−1)(1+3)∣ 0 0
−1 −1∣

(−1)(2+1)∣ 3 −4
−1 0 ∣ (−1)(2+2)∣ 2 −4

−1 0 ∣ (−1)(2+3)∣ 2 3
−1 −1∣

(−1)(3+1 )∣3 −4
0 −3∣ (−1)(3+2)∣2 −4

0 −3∣ (−1)(3+3)∣2 3
0 0∣ ]

T

= [−1
4
3

−3

1 − 4
3

2

0 − 1
3

0 ]  

(42)

It may be as well found by definition with the use of relations (8):

f = [
∂ X 1

∂ x1

∂ X 1

∂ x2

∂ X 1
∂ x3

∂ X 2

∂ x1

∂ X 2

∂ x2

∂ X 2
∂ x3

∂ X 3

∂ x1

∂ X 3

∂ x2

∂ X 3
∂ x3

]= [−1
4
3

−3

1 −
4
3

2

0 − 1
3

0 ] (43)

Right Cauchy-Green deformation tensor (material deformation tensor):

C= FT⋅F= [ 2 0 −1
3 0 −1

−4 −3 0 ][ 2 3 −4
0 0 −3

−1 −1 0 ]= [ 5 7 −8
7 10 −12

−8 −12 25 ] (44)

Cauchy deformation tensor (spatial deformation tensor):

c= f T⋅f =

= [ −1 1 0
1,333 −1,333 −0,333
−3 2 0 ][−1 1,333 −3

1 −1,333 2
0 −0,333 0 ]= [ 2 − 2,667 5

−2,667 3,667 −6,667
5 −6,667 13 ]  (45)
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AD 6) STRAIN TENSOR 

Green – de Saint-Venant strain tensor (material strain tensor):

E= 1
2
(C−1)= 1

2 ([ 5 7 −8
7 10 −12

−8 −12 25 ]−[1 0 0
0 1 0
0 0 1])= [ 2 3,5 −4

3,5 4,5 −6
−4 −6 12 ]  (46)

Almansi-Hamel strain tensor (spatial strain tensor)

e= 1
2

(1−c )= 1
2([1 0 0

0 1 0
0 0 1]−[ 2 −2,667 5

−2,667 3,667 −6,667
5 −6,667 13 ])= [−0,5 1,333 −2,5

1,333 −1,333 3,333
−2,5 3,333 −6 ]  (47)

In  order  to  find  small  strain  tensor  and  small  rotation  tensor  we  need  to  find  material
displacement gradient:

H = F−1= [ 2 3 −4
0 0 −3

−1 −1 0 ]−[1 0 0
0 1 0
0 0 1]= [ 1 3 −4

0 −1 −3
−1 −1 −1] (48)

Small strain tensor:

ε = 1
2

(H+HT ) = 1
2 ([ 1 3 −4

0 −1 −3
−1 −1 −1]+[ 1 0 −1

3 −1 −1
−4 −3 −1])= [ 1 1,5 −2,5

1,5 −1 −2
−2,5 −2 −1 ] (49)

Small rotation tensor:

ω = 1
2

(H−HT) = 1
2([ 1 3 −4

0 −1 −3
−1 −1 −1]−[ 1 0 −1

3 −1 −1
−4 −3 −1])= [ 0 1,5 −1,5

−1,5 0 −1
1,5 1 0 ] (50)
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AD 7) STRESS TENSOR

Piola-Kirchhoff  stress  tensor  of  the  2nd kind  is  determined  with  the  use  of  given  constitutive
relations, parameters of which are found according to known values of the Young modulus and
Poisson's ratio:

• Young modulus: E = 11 kPa (51)
• Poisson's ratio: ν = 0,1 (52)

• Kirchhoff modulus: G = E
2(1+ν)

= 5 kPa (53)

• Lame parameter: λ = E ν
(1+ν)(1−2 ν)

= 1,25 kPa (54)

Piola-Kirchhoff stress tensor of the 2nd kind (material stress tensor)

TS = 2G E+λ trE1= 2⋅5⋅[ 2 3,5 −4
3,5 4,5 −6
−4 −6 12 ]+ 1,25⋅(2+4,5+12)[1 0 0

0 1 0
0 0 1]=

= [43,125 35 −40
35 68,125 −60

−40 −60 143,125] [kPa ]

 

(55)

Piola-Kirchhoff stress tensor of the 1st kind (nominal stress tensor)

TR = F⋅TS = [ 2 3 −4
0 0 −3

−1 −1 0 ][43,125 35 −40
35 68,125 −60

−40 −60 143,125]=

= [ 351,25 514,375 −832,5
120 180 −429,375

−78,125 −103,125 100 ] [kPa ]

 (56)

Cauchy stress tensor (true stress tensor)

Tσ = 1
J
TR⋅F

T = 1
3 [ 2 0 −1
3 0 −1

−4 −3 0 ][ 351,25 514,375 −832,5
120 180 −429,375

−78,125 −103,125 100 ]=

= [1858,542 832,5 −288,542
832,5 429,375 −100

−288,542 −100 60,417 ] [ kPa]

 (57)
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AD 8) ACTUAL LOAD ON BCGF FACE REFERRED TO ACTUAL CONFIGURATION

Face  BCGF before deformation lied in a plane given by equation:

AR: X 1−1= 0 (58)

Equation of the face after deformation may be obtained by substitution of (8) into (58):

A : X 1( x1, x2, x3)−1=−x1+
4
3
x2−3 x3−1= 0 (59)

Exterior unit normal for face BCGF is found as a normalized gradient of the function describing
the form of deformed face:

n =
∇ x A

∣∇ x A∣
=

[−1 ; 43 ;−3]
√(−1)2+(43)

2

+(−3)2
= [−0,291 ; 0,389 ;−0,874 ] (60)

True load vector on BCGF face:

q = Tσ⋅n= [1858,542 832,5 −288,542
832,5 429,375 −100

−288,542 −100 60,417 ][−0,2910,398
−0,874]= [ 34,11611,655

−7,588] [kPa ]  (61)

AD 9) ACTUAL LOAD ON BCGF FACE REFERRED TO REFERENCE CONFIGURATION

Face  BCGF before deformation lied in a plane given by equation:

AR: X 1−1= 0 (62)

Exterior unit normal for face BCGF is found as a normalized gradient of the function describing
the undeformed face:

N =
∇X AR

∣∇X AR∣
=

[1 ; 0 ; 0 ]
√12+02+02

= [1 ; 0 ; 0 ] (63)

Nominal load vector on BCGF face:

Q= TR⋅N = [ 351,25 514,375 −832,5
120 180 −429,375

−78,125 −103,125 100 ][100]= [ 351,25120
−78,125] [kPa ]  (64)
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AD 10) SURFACE AREA OF FACE BCGF

Surface  area  of  a  part  of  any  curvilinear  surface  parametrized  by  two  parameters  may  be
calculated as a double integral in which integrand is a constant unit function:

A=∬
A

d A=∬
A √(∣∂ X 2

∂α
∂ X 2
∂β

∂ X 3

∂α
∂ X 3
∂β

∣)
2

+ (∣∂ X 3

∂α
∂ X 3
∂β

∂ X 1

∂α
∂ X 1
∂β

∣)
2

+ (∣∂ X 1

∂α
∂ X 1

∂β
∂ X 2

∂α
∂ X 2

∂β
∣)
2

dα dβ (65)

In  our  case  the  considered  surface  is  a  plane  perpendicular  to  X 1 axis,  so  it  is  easy  to
parametrize it with coordinates X 2 , X 3 :

AR= {X : X 1= 1 ∧ X 2∈〈0 ;1 〉 ∧ X 3∈〈0 ;1〉} (66)

Surface ares of face BCGF before deformation:

AR= ∬
BCGF

d AR= ∫
X 2=0

1

∫
X 3=0

1

d X 2d X 3= 1 (67)

Surface area of deformed face may be calculated in an analogous way – the difference is that we
need to integrate deformed surface elements. We will use the relation between undeformed and
deformed infinitesimal surface elements:

d A= J √(NTF−1)⋅(NTF−1)Td AR (68)
Then:

A = ∬
BCGF

d A= ∬
BCGF

J √(NTF−1)⋅(NTF−1)Td AR (69)

We calculate:

NTF−1= [1 ;0 ;0 ][−1
4
3

−3

1 − 4
3

2

0 − 1
3

0 ]= [−1 ; 43 ;−3] (70)

(NTF−1)⋅(NTF−1)T= [−1 ; 43 ;−3]⋅[−143
−3

]=(−1)2+( 43)
2

+(−3)2= 106
9

≈11,778  (71)
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Surface ares of face BCGF after deformation:

A = ∬
BCGF

d A= ∬
BCGF

3⋅√11,778d AR = 10,296 ∫
X 2=0

1

∫
X 3=0

1

d X 2d X 3 = 10,296⋅1= 10,296 [m 2]  

(72)

AD 11) LENGTH OF SEGMENT AG

Arc length of a curve may be calculated as a line integral in which the integrand is constant unit
function:

LR=∫
LR

d S =∫
LR

√d X 1
2+d X 2

2+d X 3
2 =∫

LR √(d X 1

d λ )
2

+(d X 2

d λ )
2

+(d X 3

d λ )
2

d λ (73)

Line containing segment AG before deformation is given by parametric equations:

X AG(λ)= XA+λ(XG−XA) = {X 1(λ)= X 1
A+λ(X 1

G−X 1
A) = 0+λ(1−0)= λ

X 2(λ)= X 2
A+λ(X 2

G−X 1
A)= 0+λ(1−0)= λ

X 3(λ)= X 3
A+λ(X 3

G−X 1
A) = 0+λ(1−0)= λ

(74)

Segment AG corresponds with the following values of parameter: λ∈〈0 ; 1〉

Derivatives of coordinates of point of the curve with respect to parameter:

d X 1

d λ
= 1 ,

d X 2

d λ
= 1 ,

d X 3

d λ
= 1  (75)

Length of segment AG before deformation:

LR= ∫
AG

d S = ∫
AG

√d X 1
2+d X 2

2+d X 3
2=∫

0

1 √(d X 1

dλ )
2

+(d X 2

d λ )
2

+(d X 3d λ )
2

d λ =

=∫
0

1

√(1)2+(1)2+(1)2d λ =∫
0

1

√3d λ = √3∫
0

1

dλ = √3⋅1= √3 ≈ 1,732 [m ] (76)

Length of deformed curve may be calculated in an analogous way – the difference is that we need
to integrate deformed line elements. We will use the relation between undeformed and deformed
infinitesimal line elements:

d s = √C ij d X id X j (77)
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Length of segment AG after deformation:

L =∫
L

d s= ∫
AG

√C ijd X i d X j = ∫
AG √C ij d X i

d λ
d X j

d λ
d λ =

=∫
0

1 √C11( d X 1

d λ )
2

+C 22(d X 2d λ )
2

+C33(d X 3

d λ )
2

+2C23
d X 2

d λ
d X 3
dλ

+2C31
d X 3

d λ
d X 1

dλ
+2C12

d X 1

d λ
d X 2

dλ
dλ =

 

=∫
0

1

√5⋅(1)2+10⋅(1)2+25⋅(1)2+2⋅(−12)⋅1⋅1+2⋅(−8)⋅1⋅1+2⋅7⋅1⋅1d λ =∫
0

1

√14d λ =

= √14∫
0

1

d λ = √14⋅1= √14≈ 3,742 (78)

AD 12) VOLUME

Volume of a block may be calculated as a triple integral. Reference configuration is defined as:

V R= {X : X 1∈〈0 ;1 〉 ∧ X 2∈〈0 ;1 〉 ∧ X 3∈〈0 ;1〉} (79)

Volume before deformation:

V R=∭
V

d V R = ∫
X 1=0

1

∫
X 2=0

1

∫
X 3=0

1

d X 1d X 2d X 3= 1

Volume of deformed block may be calculated in an analogous way – the difference is that we need
to  integrate  deformed  volume  elements.  We  will  use  the  relation  between  undeformed  and
deformed infinitesimal volume elements:

d V = J dV R (80)

Volume after deformation:

V =∭
V

dV =∭
V

J dV R = ∫
X 1=0

1

∫
X 2=0

1

∫
X 3=0

1

(3)d X 1d X 2d X 3 (81)

= 3 ∫
X 1=0

1

∫
X 2=0

1

∫
X 3=0

1

d X 1d X 2d X 3= 3⋅1= 3
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