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NOMINAL STRESS
● We would like to have equations of motion in the material description.

● Equations of motion describe local equilibrium between stress, body forces and fictious inertial forces.

● The Cauchy stress tensor is a measure of true stress – surface density of actual internal surface forces related 
to the deformed surface area (current configuration). For this reason it is termed also true stress tensor.

● In the material description the domain of the spatial variables is the reference configuration. We need such a 
measure of internal forces, which could be used in such a domain – it is a density of  actual internal surface 
forces related to the original (undeformed) surface elements' areas. Such stress is termed a nominal stress.
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NOMINAL STRESS
– true rupture stress

– strength of material

REMARKS:

● In the formulae used in the strength of 
materials, we're not accounting for the fact 
that area of cross-section or its 2nd moment 
of area change during the deformation:

● Similar formulae are used in code 
recommendations, co construction codes 
usually use the nominal stress.
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NOMINAL STRESS
Let's introduce the nominal stress vector          defined in such a way 
that the sum of true stresses integrated over an infinitely small 
deformed surface element was the same as the sum of nominal 
stresses integrated over the same surface element before 
deformation:

Let's express the true stress vector in terms of Cauchy stress tensor:

The vector               is transformed according to the Nanson formula:

S= t d A = t R d AR

tR

(Tσ)
T nd A = tR d AR

n d A

n d A= J NF−1 d AR ⇔ ni d A= J N j f ji d AR

n d A= J (F−1)T Nd AR ⇔ ni d A= J f ji N j d AR

t
R

tS S

dA
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NOMINAL STRESS
As a result, we obtain:

This relation must hold true for any surface element dA
R 

, so:

In an analogous way as in case of relation of the Cauchy stress tensor and true stress vector, making use of the 
symmetry of the Cauchy stress tensor                        , we may write:

The tensor         is termed the Piola – Kirchhoff stress tensor of the 1st kind or the nominal stress tensor. Since 
the tensor          is not symmetric, so also the PK1 stress tensor is not symmetric.

J Tσ
T F−T N d AR = tR d AR

J Tσ
T F -T N = tR

TR N = tR
TR= J Tσ F-T

where

Tσ
T= Tσ

T ij N j= T i where T ij= J t ik f jk

TR

F−1 
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EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
Let's consider a small sub region of the reference configuration of a continuum.

● Interaction of this subregion with the rest of the body is provided by the stress, whichin reference 
configuration is described by a nominal stress vector.

● It is easy to finde a relation between body forces in the reference configuration and in the current 
configuration. Sum of the forces must be the same in both configurations:

In case of a load due to gravity:
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EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
Let's write down the principle of momentum:

Domain of integration is time-independent, so we may put the time derivative symbol inside the integral.

Reference density is also time-independent:

Nominal stress is expressed in terms of the PK1 tensor:
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Ṗ = S ⇔
d
d t∭V R

ρR v i d V R =∭
V R

B i d V R +∬
S R

T i d S R i=1,2 ,3

∭
V R

d
d t
ρR vi d V R =∭

V R

Bi d V R +∬
S R

T i d S R

∭
V R

ρR ai d V R =∭
V R

Bi d V R+∬
S R

T i d S R

∭
V R

ρR a i d V R =∭
V R

B i d V R +∬
S R

T ij N j d S R

Presentation:© 2021 – Paweł Szeptyński – Creative Commons BY-SA 4.0
Figures: © 2021 – Paweł Szeptyński, Politechnika Krakowska – Creative Commons BY-NC-SA 4.0

THEORY OF ELASTICITY AND PLASTICITY
DYNAMICS (cont.), CONSTITUTIVE RELATIONS

Paweł Szeptyński PhD, Eng.



  

9/39

EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
We're using the Green – Gauss – Ostrogradski theorem:

Due to additivity of integrals:

This relation must hold true for any subregion V
R
 :

We've obtained equations of motion of a continuum
in the material description.

Still, there is a tiny problem...
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EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
● Equations of motion guarantee satisfying the principle of momentum.
● In the spatial description satisfying of the principle of angular momentum was provided by the symmetry of 

the true stress tensor.
● In the material description, the nominal stress tensor that we're using is not symmetric. It has 9 independent 

components and we have only 3 equations of motion.
● Satisfying the principle of angular momentum will be provided by writing down the symmetry relations of the 

true stress tensor expressed in terms of the nominal stress tensor:

According to the principle of angular momentum:

TR= J Tσ F-T ⇔ Tσ =
1
J

TR FT

Tσ= Tσ
T ⇒

1
J

TR FT=
1
J
(TR FT)T ⇒ TR FT= F TR

T

T ik

∂ x j

∂ X k

=
∂ xi

∂ X k

T jk
i , j=1,2 ,3

i≠ j
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EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
System of equations of motion in the material description:

Initial conditions:
● Initial position:
● Initial velocity:

Boundary conditions:
● Kinematic boundary conditions:     for
● Static boundary conditions:     for

{T ij , j + Bi =ρR üi i=1,2 ,3
 

T ik

∂ x j

∂ X k

=
∂ x i

∂ X k

T jk
i , j=1,2 ,3

i≠ j

u (X , t0)= u0(X)

u̇ (X , t0)= v0(X )

u (X , t) = û0(X , t) X∈Su

Q= TR N X∈S q
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EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
The number of unknowns in the equations of motion may be decreased by introducing a new measure of stress.

We're defining the Piola – Kirchhoff stress tensor of the 2nd kind (material stress tensor) as follows:

If we express the PK2 stress tensor in terms of the Cauchy (true) stress tensor, we will obtain:

The tensor is thus symmetric. If we express the PK1 stress tensor in terms of the PK2 stress tensor and 
substitute this relation in the relations derived from the principle of angular momentum, then:

We have obtained an identity. The relation is always true and the principle of angular momentum is satisfied.

TS = F−1 TR = J F−1Tσ F-T ⇔ S ij = f ik T kj = J f ik t kl f jl

(TS)
T= J (F−1 TσF-T)T = J [F−1(TσF-T)]T= J (TσF-T)T F-T=

= J (F-T)T Tσ
T F-T= J F-1TσF-T=TS

TR FT= F TR
T

TR= F TS

F TS FT= F(F TS)
T F TS FT= F TS

T FT F TS FT= F TS FT⇒ ⇒ ⇒
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EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
The relation between PK1 and PK2 stress tensor in an index notation is as follows:

Equations of motion may be now expressed in terms of the PK2 stress tensor:

● The equations are much more complicated (and nonlinear!)
● These are equations fo 3 unknown displacements and 6 unknown stress tensor components
● They need also initial and boundary conditions.
● Static boundary conditions:

Still, there is a tiny problem...

T ij= F ik S kj= xi , k S kj= (X i+ui), k S kj= (X i , k+ui , k)S kj= (δik+ui , k)S kj= S ij+ui , k S kj

T ij , j + Bi= ρR üi

[S ij+ui ,k S kj ] , j + Bi =ρR üi

S ij , j + ui ,kj S kj + ui , k S kj , j + Bi=ρR üi

Q= TR N= F TS N X∈Sqfor
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EQUATIONS OF MOTION IN THE MATERIAL DESCRIPTION
The PK2 stress tensor lacks a clear, direct physical interpretation.

Let's determine the material stress vector in a similar way as in cases of other stress vectors:

● We know that deformation gradient and its inverse relate infinitely small material fibres – deformed one and 
the  undeformed one – one with another.

● Stress is a vector measure – its direction and sense is interpreted as a directions and sense of a force referred 
to the surface areas, and its length is equal the ratio of the magnitude of force and considered area.

● Vectors t
R

 and t
S
 are referred to the same surface are. A map between them may be interpreted as a map 

between two forces.

● If we considered stress and force vectors as if they were material fibres, then the vector t
R 

would be a 
“deformed” vector t

S
 – or, alternatively – vector t

S
  would be the nominal stress vector which had been 

“pulled back” to the reference configuration. Such a stress is termed the material stress.

tS = TS⋅N= F−1 TR N= F−1 tR
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CONSTITUTIVE RELATIONS
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CONSTITUTIVE RELATIONS
In order to describe the continuum we use:

● 3 components of the displacement vector
● 6 components of the symmetric strain tensor
● 6 components (9 components)of the symmetric (non-symmetric) stress tensor

We have in total 15 (18) unknown functions. We have formulated the following relations which should enable us 
to determine those unknowns:

● 6 kinematic relations or 6 strain compatibility relations – relations between strain and displacement:
● If the kinematic relations are satisfied, then strain compatibility conditions are also identically satisfied. 
● If the strain compatibility relations are satisfied, then the kinematic relations are integrable and they 

have a unique solution.

● 3 equations of motion  derived from the principle of momentum – relation between stress and 
acceleration.

● Additional 3 relations biding components of a non-symmetric stress tensor, derived for the principle of 
angular momentum. Symmetric stress tensors (Cauchy, PK2) satisfy those relation identically.

We have 15 (18) unknowns and 9 (12) equations. We're lacking 6 relations between stress and strain 
components.
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CONSTITUTIVE RELATIONS
Relations between components of the stress tensor and of the strain tensor are termed constitutive relations.

The postulates are formulated – so called material postulated – that are required to be satisfied when 
formulating the constitutive relations:

● PRINCIPLE OF DETERMINISM

● PRINCIPLE OF LOCALITY

● PRINCIPLE OF MATERIAL OBJECTIVITY
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MATERIAL POSTULATES

PRINCIPLE OF DETERMINISM

The stress state in the given particle X and in the given instant of time t is determined by the choice 
of the particle and by a history of motion of all other particles belonging to the body.

It means that:

● If we know the process (history) of deformation of the body, then the constitutive relation must be such 
that this knowledge is enough to determine the stress state.

● We assume that the current stress state is not influenced by other factors than past deformation.

REMARK: T denotes a certain (chosen by us) measure of stress.

T(X ; t )= f (X , x(ξ , t−τ)) , ξ∈Bref , τ∈〈0 ; ∞)
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MATERIAL POSTULATES

PRINCIPLE OF LOCALITY

The stress state in the given particle X and in the given instant of time t depends on the history of 
motion of particles which are in an arbitrary small neighbourhood of that particle:

It means that:

● The stress state in the particle depend directly only on the motion of neighbouring particles – other 
particles influence it only indirectly (by a “chain” of such direct actions between neighbouring particles).

● Constitutive relation cannot relate the stress state in a given particle with the deformation of some other 
distant particles.

T(X ; t )= f (X , x(ξ , t−τ)) , ξ∈Bref , τ∈〈0 ; ∞)

∣ξ−X∣ < ε → 0

Presentation:© 2021 – Paweł Szeptyński – Creative Commons BY-SA 4.0
Figures: © 2021 – Paweł Szeptyński, Politechnika Krakowska – Creative Commons BY-NC-SA 4.0

THEORY OF ELASTICITY AND PLASTICITY
DYNAMICS (cont.), CONSTITUTIVE RELATIONS

Paweł Szeptyński PhD, Eng.



  

21/39

MATERIAL POSTULATES

PRINCIPLE OF MATERIAL OBJECTIVITY

Constitutive relations determining internal properties of a physical system and relations between 
parts of that system must be independent of the choice of the frame of reference.

It means that:

● Constitutive relation must be mathematically formulated in such a way, that a certain local history of 
deformation is always associated with the same state of stress, independently of what frame of reference 
we are using, namele independently of the choice of the point of reference, choice of measure of length 
and directions of distance measurements as well as of the choice of the time lapse rate.
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HOMOGENEITY AND ISOTROPY
Among typical constructional materials we may distinguish homogeneous and inhomogeneous materials as well 
as isotropic and anisotropic materials.

● HOMOGENEITY – a homogeneous material is such that its mechanical properties are the same in all points 
(e.g. metals, alloys, clay, polymers).

● INHOMOGENEITY – in inhomogeneous materials, mechanical properties of the material depend on the choice 
of the particle (they change within the configuration of a body). These are all composite materials (i.e. 
concrete) or those, which exhibit internal microstructure (i.e. timber).

● Inhomogeneous materials (e.g. timber, concrete, composites) may be still described with the model of  
homogeneous material if only the size of particles of various component materials are considerably 
smaller than the overall dimensions of a body.

● ISOTROPY – in isotropic materials mechanical properties of a body do not depend on the direction of testing 
them, e.g. stiffness or strength of the material is the same regardless th direction of the applied force (e.g. 
metals, alloys, concrete, clay, polymers).

● ANISOTROPY  – in anisotropic materials the response of the material on the loading factor depends on the 
mutual orientation of direction of action of that factor and of axes or planes of symmetry of internal 
structure of the material (e.g. crystals, timber, composites).
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FIRST GRADIENT THEORY
According to the locality principle, we can state that a function determining the stress state in particle X  will 
depend only on the history of deformation of neighbouring particles   

Position of such a neighbouring particle  x = x(X, t) can be approximated by expanding the deformation relation 
into the Taylor series. For the sake of readability we will neglect the notation of dependency on time:

Coefficients in the second term are the components of the material deformation gradient ∇x=F. Coefficients by 
further terms are the gradients of higher orders (e.g. the 2nd  deformation gradient if a gradient of the 
deformation gradient – a rank 3 tensor). Local constitutive relation could be then written in the general form:

ξ = X+ d X .

xi(X+d X )= x i(X )+
1
1!

∂ xi

∂ X k
∣X d X k +

1
2!

∂2 xi

∂ X k ∂ X l
∣

X

d X k d X l+
1
3!

∂3 x i

∂ X k ∂ X l∂ X m

d X k d X l d X m+ ...

T(X ; t )= f (X ; x(X+d X ; t−τ))

= f (X ; x(X ; t−τ) ; ∇ x (X ; t−τ) ; ∇2 x(X ; t−τ); ...)

x (X+d X )= x (X) +
1
1!
∇ x d X +

1
2!
∇ 2 x d X d X +

1
3!
∇ 3 x d X d X d X + ...
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FIRST GRADIENT THEORY
We have:

According to the material objectivity principle, function f cannot depend on x. If it was so, then in case of the a 
the same given deformations (determined by gradients) but different positions, the stress state could be 
different, namely, the stress state would depend on the choice of the frame of reference, on position of a body 
in the space or on its translation – this is against intuition and experimental results. We will assume that:

A wide class of elastic materials can be described with the use of functions depending only on position X, time 
and on the 1st deformation gradient:

Theories using such relations are termed the 1st gradient theories.

T(X ; t )= f (t−τ , X ; x ; ∇ x ; ∇ 2 x ; ...)

T(X ; t )= f (t−τ , X ; ∇ x ; ∇2 x ; ...)

T(X ; t )= f (t−τ , X , F(X ))
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FIRST GRADIENT THEORY
According to the polar decomposition theorem, deformation gradient 
may be expressed in terms of the stretch tensor:

Deformation gradient is also related with the deformation tensor:

Deformation gradient is related with the strain tensor:

● Fuction f  could account for any of those alternative measures of deformation.

● Similarly, various measures of the stress may be chosen for formulation of constitutive relations.

WHAT MEASURES OF STRESS AND STRAIN
SHOULD BE RELATED ONE TO ANOTHER
WITHIN THE CONSTITUTIVE RELATION?

C= FT F

F = R U= V R

E =
1
2
(C− 1 )
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FIRST GRADIENT THEORY
There exists a certain reason concerning a proper choice of such a pair of tensors. It emerges that certain pairs 
of stress and strain tensor have such a property, that their scalar product is equal the density of power of elastic 
strain. Such pair are termed energetic conjugates. These are i.e.:

                    Cauchy stress tensor           symmetric part
              spatial displacement gradient

Piola – Kirchhoff stress tensor of the 1st kind      material deformation gradient

Piola – Kirchhoff stress tensor of the 2nd kind          material strain tensor

Tσ

TR = J Tσ F−T

TS = J F−1 Tσ F−T

η= 1
2
[h+hT ]

F= ∂x
∂X

E= 1
2
(C−1)

Presentation:© 2021 – Paweł Szeptyński – Creative Commons BY-SA 4.0
Figures: © 2021 – Paweł Szeptyński, Politechnika Krakowska – Creative Commons BY-NC-SA 4.0

THEORY OF ELASTICITY AND PLASTICITY
DYNAMICS (cont.), CONSTITUTIVE RELATIONS

Paweł Szeptyński PhD, Eng.



  

27/39

FIRST GRADIENT THEORY
We will deal with the relation between Piola – Kirchhoff stress tensor of the 2nd kind and material strain tensor

● Both are appropriate for the material description
● Both are symmetric

REMARK:
● If the material is homogeneous, then the constitutive relation does not depend explicitly on the choice of 

the particle:

The dependency on the choice of the particle is indirect, via the dependency of the strain state on the 
choice of the particle.

TS (t , X)= f (t−τ , X ,E(X , t))

TS (t , X)= f (t−τ , E(X , t ))
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ELASTIC MATERIALS

A material is termed elastic (in the sense of Cauchy) if:

● Current stress state depends only on the current strain state  and it does not depend on the history of 
deformation (strain path):

● Constitutive relation is invertible:

TS (t , X)= f (X , E(X , t))

∃ f −1 : E(t , X) = f −1(X , TS (X , t))
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ELASTIC MATERIALS

An elastic material (in the sense of Cauchy) is termed hyperelastic (elastic in the sense of Green) if:

● There exists a scalar-valued function W of a tensorial argument, termed the elastic potential, such that:

TS =
∂W
∂E

⇔ S ij=
∂W
∂ Eij

i , j=1,2,3
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ELASTIC MATERIALS
Let's consider a hyperelastic material.  If the considered strain is small (strain tensor is close to a zero tensor 
E ≈ 0), then the elastic potential can be expanded into a Taylor series in the neighbourhood of 0:

Stress state is determined as a derivative of the elastic potential with respect to the strain state:

A non-zero value of the first term in that expansion would suggest that even in an undeformed body (                 ) 
there is always a non-zero stress state. This is against the experimental results. If we in turn neglect all terms of 
degree 3 or more, then the constitutive relation is of the following form:

W (E)≈ W (0) + 1
1!
∂W
∂ E ij

∣
0

E ij+
1
2!

∂2 W
∂E ij E kl

∣
0

E ij E kl +
1

3 !
∂3 W

∂ E ij E kl Emn
∣
0

E ij E kl Emn+ ...

S ij =
∂W
∂E ij

≈ ∂W
∂ E ij

∣0+ ∂2W
∂E ij E kl

∣0 E kl+ ...

E kl=0

Sijkl =
∂2W

∂E ij∂E kl
∣E=0

S ij≈ Sijkl E kl where
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ELASTIC MATERIALS

A hyperelastic material (elastic in the sense of Green) is termed a Hooke's material or a linear elastic material if:

● Elastic potential is a homogeneous quadratic function of the strain state, namely it is a combination of 
squares of components of the strain tensor and of products of two first powers of two different 
components of the strain tensor

REMARK: If the strain is sufficiently small, then all materials can be described in an approximate way with the 
use of the Hooke's material model.

TS =
∂W
∂E

= SE ⇔ S ij =
∂W
∂ E ij

= Sijkl E kl

W =
1
2
Sijkl E ij E kl=

=
1
2 [S1111 E 11 E 11 + S1112 E 11 E 12 + S1113 E11 E13 + S1121 E11 E 21 + ... + S3333 E 33 E 33]
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ELASTIC MATERIALS
The constitutive relation for linear elastic materials is termed the generalized Hooke's Law and it can be written 
explicitly as follows:

S11 = S1111 E11 +
1
2
(S1112+S1211)E12 +

1
2
(S1113+S1211)E13 +

Each component of the stress tensor is calculated as a linear combination of all components 
of the strain tensor – coefficients of such a combination are termed elastic constants.

+ 1
2
(S1121+S2111)E21 + S1122 E 22 +

1
2
(S1123+S2311)E 23 +

+ 1
2
(S1131+S3111)E 31 +

1
2
(S1132+S3211)E32 + S1133 E 33

...

S12= S1112 E11 + S1212 E12 +
1
2
(S1213+S1312)E13 +

+ 1
2
(S1221+S2112)E 21 + S1222 E 22 +

1
2
(S1223+S2312)E 23 +

+ 1
2
(S1231+S3112)E 31 +

1
2
(S1232+S3212)E32 + S1233 E33
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ELASTIC MATERIALS
● The matrix            is a matrix of a linear map between  two tensors – it is thus a representation matrix of a 4th 

rank tensor. Tensor S is termed the stiffness tensor.

● The stiffness tensor will be invertible if and only if its determinant is not equal 0.

● Inverse of the stiffness tensor is termed the compliance tensor and it is denoted with C:

● Stiffness tensors and compliance tensors are termed elasticity tensors  or Hooke's tensors. These are 3-
dimensional 4th rank tensors, so they have in general  34=81 component, which are termed elastic constants.

● Elastic constants are not truly constant...
● In inhomogeneous materials, each component of elasticity tensors (elastic constant) is in general a 

function of particle, namely

● Even in homogeneous materials any change of the coordinate system will in general lead to 
transformation of components of the tensor. Elastic constants are then not “constant” in the sense that 
they are not invariant.

TS = S⋅E ⇔ S ij=Sijkl Ekl

E= C⋅TS ⇔ E ij=Cijkl S kl

Sijkl=Sijkl(X )

Sijkl
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ELASTIC MATERIALS
● Not all components of the elasticity tensors are independent one of another:

● Due to symmetry of the stress tensor:

● Due to symmetry of the strain tensor:

● According to the definition of the components of the stress tensor being derivatives of the elastic 
potential and due to symmetry of differentiation:

● Elasticity tensors are characterized by the following internal symmetries:

S ij=Sijkl Ekl

S ij=S ji ⇒ Sijkl=S jikl

E kl=E lk ⇒ Sijkl=Sijlk

Sijkl =
∂
∂ E ij

∂W
∂E kl

∣0= ∂
∂E kl

∂W
∂E ij

∣0 = Sklij

Sijkl= S jikl = Sijlk = Sklij

Cijkl= C jikl= Cijlk= Cklij
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ELASTIC MATERIALS
● Finally, elasticity tensors of fully anisotropic material have 21 independent components.

● Among these 21 parameters we may distinguish:

● 6 invariants of physical dimension of stress (Pa) – these are eigenvalues of the stiffness tensor, and they 
are termed the Kelvin moduli. They are proportionality coefficients between stress states and strain 
states which are eigenvectors of the elasticity tensors. Eigenvalues of the compliance tensor are inverses 
of the Kelvin moduli.

● 12 non-dimensional invariants termed stiffness distributors, which determine the form of eigenvectors 
of elasticity tensors, namely: the form of the stress (strain) state being a response for a given strain 
(stress) state.

● 3 non-dimensional parameters, which determine in an unambiguous way the orientation of the internal 
structure of considered material with respect to the assumed frame of reference  (e.g. Euler angles, 
components of 3 mutually orthogonal versors).

● Only 18 parameters characterize the mechanical properties of the material without any reference to its 
orientation in space.

● If the internal structure of material is characterized by any planes of axes of symmetry (external symmetries) 
then the total number of independent components is decreased.
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ELASTIC MATERIALS
Making an account for internal symmetries, the generalized Hooke's Law may be written down in the following 
way:

S11= S1111 E11 + S1122 E 22 + S1133 E33 + 2S1123 E 23 + 2S1131 E31 + 2S1112 E12

S33= S3311 E 11 + S3322 E 22 + S3333 E 33 + 2S3323 E 23 + 2S3331 E31 + 2S3312 E 12

S 22= S2211 E11 + S2222 E 22 + S2233 E33 + 2S2223 E 23 + 2S2231 E31 + 2S2212 E12

S 23= S2311 E11 + S2322 E 22 + S2333 E33 + 2S2323 E 23 + 2S2331 E31 + 2S2312 E12

S12= S1211 E11 + S1222 E22 + S1233 E33 + 2S1223 E 23 + 2S1231 E31 + 2S1212 E12

S31= S3111 E 11 + S3122 E 22 + S3133 E 33 + 2S3123 E 23 + 2S3131 E31 + 2S3112 E 12
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ELASTIC MATERIALS
The generalized Hooke's Law may be written down in a matrix form:

[
S 11

S 22

S 33

S 23

S 31

S12

]= [
S1111 S1122 S1133 S1123 S1131 S1112

S2222 S2233 S2223 S2231 S2212

S3333 S3323 S3331 S3312

S2323 S2331 S2312

sym S3131 S3112

S1212

][
E11

E 22

E33

2 E 23

2 E31

2 E12

]
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ELASTIC MATERIALS
However, so called Mandel's notation in considered more appropriate now:

Such a notation is symmetric and after proper defining of the rotation operator, the norms of tensors as well as 
rotation of tensors are realized within the matrix calculus in the same way as calculating lengths of vectors and 
rotations of vectors in 3-dimensional space.

[
S 11

S 22

S 33

√2 S 23

√2 S 31

√2 S 12

] = [
S1111 S1122 S1133 √2S1123 √2S1131 √2S1112

S2222 S2233 √2S2223 √2S2231 √2S2212

S3333 √2S3323 √2S3331 √2S3312

2S2323 2S2331 2S2312

sym 2S3131 2S3112

2S1212

][
E 11

E 22

E 33

√2 E 23

√2 E 31

√2 E 12

]
[

E11

E 22

E33

√2 E23

√2 E31

√2 E12

]= [
C1111 C1122 C1133 √2C1123 √2C1131 √2C1112

C2222 C2233 √2C2223 √2C2231 √2C2212

C3333 √2C3323 √2C3331 √2C3312

2C2323 2C2331 2C2312

sym 2C3131 2C3112

2C1212

][
S11

S 22

S33

√2 S 23

√2 S 31

√2 S 12

]
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