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PRINCIPLE OF VIRTUAL FORCES

Let's consider an elastic solid which occupies a region V in space, which is bounded by a
surface S = §,US . The body is loaded on the boundary Sq with a system of surface tractions q(x) and

displacements g(x) are prescribed on the boundary S .

We define the set of statically admissible stress fields, namely such stress fields that satisfy static
boundary conditions and equilibrium equations:

Among them there is one, which is the true stress field (it is the solution of the problem of theory of
elasticity). Let's denote is with a hat:

ocX

o
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PRINCIPLE OF VIRTUAL FORCES

All other statically admissible stress fields may be expressed as follows:

Parameter a is a measure of deviation of a statically admissible stress field from the true one.

Let's define the virtual stress, as a stress field which is an infinitely small (but still not equal to zero)
increment of the true stress field:

60=g—6da=tda, da—0
o
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PRINCIPLE OF VIRTUAL FORCES

true stress field
true stress field +
virtual stress

I

A

reference actual
configuration configuration
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PRINCIPLE OF VIRTUAL FORCES

Let's write down the static boundary conditions on S : O, n;= ¢,

1

(Oij+60ij)nj =q,

(O,.jnj)+60ijnj=qi
=dq;

oo,n, =0

Virtual stress satisfies uniform static boundary conditions on Sq :

Let's define virtual surface tractions as:

g, = 600.72].

We have then:

0g, =0 na S,
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PRINCIPLE OF VIRTUAL FORCES

Let's write down equilibrium equations for statically admissible stress field:

(0,+00,) +b,=0

1

For true stress field equilibrium equations must be satisfied:
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PRINCIPLE OF VIRTUAL FORCES

Let's consider equilibrium equations for virtual stress: 0 O, ;= 0
Let's calculate a dot product with true displacement field: 0 oy, u; =0
Let's integrate it over configuration of the body: ff 0 O, U, dV =0
According to the product rule: J]T 0 Oy ul _6 O,U; dV =0

According to the Green — Gauss — Ostrogradski theorem: ff 6Gl] nu;dS— ﬂf oo, u, . dV =20

=i, j

According to the definition of virtual surface tractions: ﬂ Oq,u;dS— fff 0 O,;u; ; dV =20

Due to symmetry of the stress tensor: ff 0q;u,dS— fff 00, B RLIE dV =20
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PRINCIPLE OF VIRTUAL FORCES

Since we are considering the true displacement field, the kinematic relations must also be satisfied:

ff@qludS ”ff)() ’ JldV 0

-

We obtain:

ﬂéqludS = fﬂéﬁye v  Vdo,

y

This means:

Work of arbitrary chosen virtual stress along true strains is equal to the work of virtual
surface tractions (corresponding with considered virtual stress) along true displacements.

Equality of virtual works is a necessary condition which must be satisfied by true displacements and
corresponding strains for any virtual stress and corresponding virtual surface tractions.
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PRINCIPLE OF VIRTUAL FORCES

Let's check if it is also a sufficient condition:

We assume that for any 00, virtual works are the same: ff 0qu;dS = fff 60'y g, dV
According to the definition of virtual surface traction: ﬂ 6OU nudS = ﬂ 6(5,-1- g, dV

According to the Green — Gauss — Ostrogradski theorem: fff 0 ol] ”z AV = fff 00,¢,dV

According to the product rule: ff 601] u; Tt 601]”1 j dV = ff 60z‘j€ijd V
Virtual stress satisfies equilibrium equations: 600. I 0
We obtain:

fﬂé%u dV - fﬂéoye dV =0
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PRINCIPLE OF VIRTUAL FORCES

Due to symmetry of the stress tensor:

I o, = ay — [ff soye,av =0
v %

1
f.!fagzj E(ui,j+ uj,i)_eij dV =20

Expression at the left hand-side must be identically equal to 0. An integral over a region of positive
measure is identically equal to O if and only if the integrand is identically equal to 0. Since this relation
must be true for any virtual stress, we conclude that the above equation will be satisfied if and only if:

This means that Cauchy's geometric relation are satisfied — consequence of equality of virtual works is
satisfying the geometric relations.



THEORY OF ELASTICITY AND PLASTICITY
ENERGY PRINCIPLES, cont.

Pawet Szeptynski PhD, Eng.

PRINCIPLE OF VIRTUAL FORCES

Let's consider again equation:

ff@oynju dS = ff 00, u; ;dV
V

Virtual stress satisfies homogeneous static boundary conditions, 8o, #n, = 0 on boundary Sq . Integration

i J
over Sq gives us zero, so only integration over boundary Su - where displacements g(x) are prescribed - will

give us any non-zero value:

fff)(}y n,g;dsS = fffﬁﬁyu dV

Product rule is applied to the integral on the left hand-side:

fféay n,g,dS§ = fﬂ[ do,u,) ,—80, ju,|dV

We're accounting for the fact that virtual stress satisfies equilibrium equations:

ﬂéol] n,g,dS = ﬂ'f 60 u dV
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PRINCIPLE OF VIRTUAL FORCES

Accordin to the Green — Gauss — Ostrogradski theorem:

.”6011 n,g,dS = _”60 u;n;dV

In the integral at the right hand-side integration over Sq gives us zero due to homogeneous static
boundary conditions for virtual stress. Only integration over S gives us any non-zero value:

ﬂéoy n,g,dS = ﬂf)(j un;dV

HE)GU n,(g—u)dS =0

The above relation must hold true for any virtual stress — we may conclude that:

u; = g, ontheboundary S

namely, that static boundary conditions are satisfied.
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PRINCIPLE OF VIRTUAL FORCES

We may formulate following theorem:

PRINCIPLE OF VIRTUAL FORCES
A necessary and sufficient condition for a certain statically admissible stress field to be a true
stress field is that the work of virtual surface tractions along true displacements is equal to the

work of virtual stress along true strains for any virtual stress and corresponding virtual surface
tractions:

fsfé%uidS = f!fﬁﬁijeijdlf Voo
60Lq=60(1) Y oo
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PRINCIPLE OF VIRTUAL FORCES

ﬂaq,uds ﬂfﬁoya dv  Vdo

REMARKS:

* This theorem is sometimes termed a variant of Principle of Virtual Works.
* |t is true only for small strain theory.

* |tis true for any constitutive relations.
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CASTIGLIANO'S THEOREM

We define the total complementary energy as follows:

chb—Lq:%f{foyeijdV—fsfq,.u,.ds

This quantity may be considered a functional depending on the function of distribution of the stress
tensor (Castigliano's functional):

1
wiol= [[] 5 Cu0,0,dV = f! G,n,udS
14
Its first variation (with respect to the stress tensor distribution) is equal:

oWlo]= - W[o+adol = [ff 0,07 ~ [[ dg.uds
a= V S
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CASTIGLIANO'S THEOREM

According to the Principle of Virtual Forces:
f-[fégijeljdV_fféqiuidS:O = dW|o|=0
4 S

CONCLUSIONS:
* the first variation of the Castigliano's functional is equal to zero
* functional has a stationary value

* functional satisfies the necessary condition for a local extremum.

The second variation of the Castigliano's functional is equal:

SWlo]|=

2
dd -W[o+ado| = fﬂ Cu00,00,dV
0 a=0 |4

Its value must be positive (due to positive-definiteness of the compliance tensor, which is a consequence
of the 2™ Law of Thermodynamics), so the for the true stress tensor distribution the Castigliano's
functional has a minimum value.
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CASTIGLIANO'S THEOREM

We may formulate:

CASTIGLIANO'S THEOREM

Among all statically admissible stress fields in a linear-elastic body, the true one is the one
for which total complementary energy (Castigliano's functional) has a minimum value.

REMARKS:
* The theorem is true only within the linear theory of elasticity:
* geometric linearity — small strain theory

* physical linearity — linear constitutive relation of the generalized Hooke's Law.
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BETTI — MAXWELL RECIPROCAL WORK THEOREM

Let's consider an elastic solid occupying region V' in space, which is bounded by a surface S = S,US, .
Kinematic boundary conditions are prescribed on boundary S and static boundary conditions are

prescribed on boundary Sq (in particular it may be a free boundary).

We consider two systems of external loads and corresponding displacement fields:

1 SYSTEM OF LOADS: ¢\, &Y

reference configuration actual configuration reference configuration actual configuration
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BETTI — MAXWELL RECIPROCAL WORK THEOREM

Let's calculate a dot product of the equilibrium equation for the 1¥ system of loads with the displacement
field corresponding with the 2" system of loads and vice versa, and then let's integrate those expressions:

f{f (o) + bu)d v =0 fﬂ( 24 Py dy =0

Right hand-sides of both expressions are the same — we may write the following equation:

I (&) + Bl d v = [ff (o " + b7l d ¥
V V

According to the product rule:

ij ,

flf (o} u?) =0y u?) + 5w |d v = flf (oPu) —oul!) + p2Mdy
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BETTI — MAXWELL RECIPROCAL WORK THEOREM

According to the Green — Gauss — Ostrogradski theorem:

JF of'n as + JIF (o 46 lav = ff of s + fIf (ol o Jav

Due to symmetry of the stress tensor:

IF ol as + [ - M2 4 e
VL

S

(1)
= [ o nulas + [[f |-op et
S

%

Due to additivity of integration:

F (1) (2) (Ui
O, nu, dS—fu O

ij
14

(
' el ul . . .
fOE-jz)njuf-l)dS — | f()(-.z)’—’
S

P
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BETTI — MAXWELL RECIPROCAL WORK THEOREM

Stress fields satisfy static boundary conditions on S : 0¥y = q(K ) (K=1,2)
q y J
|
Displacement fields satisfy kinematic relations: eE.J.K == (ufK]>+u(]Kl)) (K=1,2)

We may write:
[ ¢V u?as - [[f e ar + [[[ s0uldv = [[ ¢ uVas — [[] oPeVay + [[f 62"
S V V S V V

REMARK:
e Quantity ¢

resulting from enforced displacements prescribed according to the kinematic boundary conditions —
those stresses may be to to some extent identified with support reactions.

%) — O(I.J.K)nj calculated on supported boundary Su is a system of near-surface stresses

The equation takes the following form:

([ u?as + [[[6d?dy + @ = [[¢Pu"ds + [[[ P ul"
s - )

S

® = fﬂ p —0 )a( Ndv

where:
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BETTI — MAXWELL RECIPROCAL WORK THEOREM

According to the generalized Hooke's Law and internal symmetries of elasticity tensors:

0 = ﬂf _0 8 )dv = ﬂf yklakz y ~ yklekl i )y =
= ﬂ] (Sklijggj) Sz('jl) - Szjklagcll)egjz))dV = f.” (Sijkl 55']2)82) — S 8kz ij )d V=20
v v

We may formulate:

BETTI — MAXWEL RECIPROCAL WORK THEOREM

When a linear-elastic body is independently subjected to two systems of external loads, then
work of forces of the 1* system along displacements caused by the 2" system is the same as
work of forces of the 2" system along displacements caused by the 1 system:

ff qg‘l)ug‘Z)dS + JI[ bgl)uiz)d V = ff ql(.z)ul(,l)dS + fff bl(z) (1)
S v s X
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BETTI — MAXWELL RECIPROCAL WORK THEOREM
REMARKS:

* The Betti-Maxwell reciprocal theorem is true only for linear elastic solids (Hooke's materials).

* This theorem is fundamental for the set of reciprocal theorems and computational methods which
are used in the structural mechanics:

* reciprocal work theorem

* reciprocal displacement theorem

* reciprocal reaction theorem

* reciprocal displacement and reaction theorem
* Maxwell = Mohr formula (with the use of PVD)

* Force method (flexibility method, method of consistent deformations)
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SOMIGLIANA'S FORMULA

A specific example of application of the Betti - Maxwell theorem is the application for three pairs of
systems of loads. In each on those pairs:

* The 1% system is the system of true external loads,

* The 2" system is a point force parallel to the k-th axis of the coordinate system, applied in point & and
the system of stresses resulting form the Kelvin solution and corresponding with the boundary of the

body.
1% SYSTEM OF LOADS 2" SYSTEM OF LOADS
(k=1,2,3)
q
q(k)
p O
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SOMIGLIANA'S FORMULA

According to the reciprocal work theorem:

[T gt wds + [T pudv = ff quas + ([ pu'ar
S % S )

After transformation:

ﬂfb udV—ﬂ —q u dS—I—ﬂfblul

Body forces in the component Kelvin solutions are prescribed with the use of the Dirac delta distribution,
which has the property, that when it is integrated with any other function, the result is the value of that
other function in the point in which the point force is applied:

I o (x=8)u(B)dV =, (x)

We obtain:

= [ (.= q"uw)ds + [[[ budr
s v
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It can be rewritten in the following form:
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[ 1 1 1-' ] [ 1 1 1- ] [ 1 1 1-'
“(1) u(z) u(3) b, “(1) U(z) ug) " q(l) qg) qg) ”
a= | e v wlfefar e | g fes - | a7 @ o |wlas
Wb W e 0 o gl
- r - = T, - - r, -
or equivalently:
= [[JT(x-&}b(E)dV + [ T.(x-E)a(E)ds - [I T, (x-E)u(g)ds
S

The above formula is termed the Somigliana's formula.
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SOMIGLIANA'S FORMULA

fff T'(x—E)b(E)dV + ﬂ T,(x—E)-q(E)dS - fo T,(x—E)u(E)dsS

REMARKS:

This is a system of integral equations for components of the true displacement field.

If only we know the fundamental (Kelvin) solution, then the solution of any other problem of linear
theory of elasticity will depend solely on static and kinematic boundary conditions and body forces.

Matrices I', I', I, are known — they are determined by the Kelvin solution.
Matrix I' is prescribed for V. Matrices I', and I', are prescribed for S.

Somigliana's formula is fundamental for a numerical method of solving the problems of linear theory
of elasticity, the Boundary Element Method. In this method only the boundary is discretized and only

boundary values are determined numerically — internal values are determined with the use of
fundamental solutions.
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RITZ METHODS

We will use the term of Ritz methods in the sense of methods in which a certain field, which is a solution
of linear theory of elasticity, is approximated with the use of assumed functions depending on a finite
number of parameters.

Regarding the energy principles we may speak of two methods:

* Lagrange — Ritz method
* we approximate a kinematically admissible displacement field:

N
~ Y au(x
i=1

* coefficients of this approximation are found according to the Lagrange theorem on the minimum
of the total potential energy:

IT]u fff Syk, u, +u, k)(u Fu; )dv — ”f b.u, dV—I—ﬂ q.u;dS — min

oIl _
8(11._0
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RITZ METHODS

We will use the term of Ritz methods in the sense of methods in which a certain field, which is a solution
of linear theory of elasticity, is approximated with the use of assumed functions depending on a finite

number of parameters.

Regarding the energy principles we may speak of two methods:

* Castigliano — Ritz method
* we approximate a statically admissible stress field:

o(x)~ ¥ 00,3

* coefficients of this approximation are found according to the Castigliano's theorem on the
minimum of the total complementary energy:

qj[o]:fffgcykl%%dv_ [[o,n,uds = min
V S

o _

i=12,..,N — oy, 0y, ..., Oy
oaQ,
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RITZ METHODS - EXAMPLE

With the use of the Lagrange — Ritz method find an approximate distribution of deflection of a thin elastic
rectangular plate, which is simply supported along the boundary and uniformly loaded.

Parameters: L
* plate's length L, =8m ) -
e plate's width L,=6m G | ‘
* plate's thickness h =30cm : |
* Young's modulus E =32GPa : : o
* Poisson's ratio: v =02 : :
e l0ad: g = 10kN/m e |
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RITZ METHODS - EXAMPLE

Approximation of the displacement:

. - Ll Ll i _ — Lz Lz |
U, = 7—x1 7—|—x1 Uy = 7—x2 7—|—x2

(L L, \I [ I
Uy = (jl—xl (71+x1 Uy = (7—x2 (7+x2
L, L (

_ 1 _
up=\{5—x || 5+tx Uy =

2

L, L,
Uy ==X || 5*+tx Uyy =

2

U= Oy Uty + Qg Uy + Oy Uy + Ol Uy, +
T Oy Uy Uy + Oyl Uy, + Oyl Uyy + Ol Uy Uy, +
T Oy U3Uy + O Uy Uy, + Oyl 3Uyy + Oyl 3l +
T Oy Uy Uy + Oy Uy, + Qg g Uyy + Oy Uy Uy,
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RITZ METHODS - EXAMPLE

Displacement (deflection):

W= O Uy Uy + Oy Uy + OgUy Uyy T Oy Uy Uy, + Oy Uy Uy + Oyl p Uy, + Oyl Uy + Ol UppUyy, +
T O Uy + Oy Uty T OggUsUyy + Oy U3 Uy, + Oy Uy Uy T Oyl Uy, + Ozl Uyy + Oyl Uy,

Strain:
€1 _szlz} 3 822__222} Xy, €3=0, £5;=0, &,;=0, g, _ajlzg}xz'x.%,
Stress:
On= 1_V2(811+va22) = 1fv2 f;;lzjnw f;:g X5 0,;,=0
0,, = . 5 (EntVE) = lfvz (szvng\/gzxM: X, 0, =0
012:%812:_ (lfv)(ézgxz)'xs 0y =0
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RITZ METHODS - EXAMPLE

Total potential energy:

Mu] = %fﬂ 0,¢,dV — ﬂf b.u,d V—l—ﬂ g udS|=

C— [

[011 €11 1708, 1T03; 833"’2(023 €317 03 €570, 823)](1 xpdx,dx; —

L L

2 2

-~
2 Ll L2
xlz——xzz——x

_k
2 2 2

3

Lo
2 2
— f f f 10-w]dx,dx,dx; —

_h
2

&
III
=
S
I
w
Il
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RITZ METHODS - EXAMPLE

According to the Lagrange theorem:

I — min = g—gzo i=12,...N

We obtain a system of linear algebraic equations for the coefficients o, (i ,j=1,2.3 ,4)

a11=5.801754686024868 1070 a31=-3.103672759106117 10~°
a12=-1.505170024636658 10~/ a32=3.269527853006765 1010
a13=-4.951668552290187 107 233=6.422700908763642 10"
ai4=-1.499627766133912 1010 a34=2.457188083111769 1012
a21=-8.021862334214811 107° a41=-4.453036506355453 107
222=5.066493675879956 10~ a42=7.815079494356788 10~ 12
223=2.598920163357196 10~ 19 a43=2.198636144944349 10~ 12
224=3618870844231519 10~ 12 a44=1.021412676869167 10~ 13

Maximum deflection in the middle of the plate

w(0,0) = 1,145 mm
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