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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
Quantities used for the description of elastic-plastic deformation:

● Displacement vector :

● Total strain tensor:

● Elastic strain tensor:

● Plastic strain tensor:

● Stress tensor:

● Tensor of increment of total strain:

● tensor of increment of elastic strain:

● tensor of increment of plastic strain:

● tensor of increment of stress:

u

ε = ε
el
+ ε

pl

ε
el

ε
pl

σ

d ε = dεel + dε pl

d εel

d ε pl

dσ
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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
Quantities used for the description of elastic-plastic deformation:

● Hydrostatic stress:

● Volumetric strain:

● Isotropic stress tensor:

● Isotropic total strain tensor:

● Stress deviator:

● Total strain deviator:

(isotropic and deviatoric parts of tensors of increment of elastic strain, plastic strain and stress are 
defined in an analogous way)

p=
1
3
(σ11+σ 22+σ 33) =

1
3
σ kk

θ = ε11+ ε22+ ε33= εkk

p1 ⇔
1
3
σ kk δ ij

s = σ − p1 ⇔ sij = σ ij−
1
3
σ kk δij

e = ε − θ
3
1 ⇔ eij = εij−

1
3
εkkδij

θ
3
1 ⇔

1
3
εkk δij

Presentation:© 2021 – Paweł Szeptyński – Creative Commons BY-SA 4.0
Figures: © 2021 – Paweł Szeptyński, Politechnika Krakowska – Creative Commons BY-NC-SA 4.0

THEORY OF ELASTICITY AND PLASTICITY
MODELS OF PLASTICITY

Paweł Szeptyński PhD, Eng.



  

5/47

GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
Governing equations of the problem of elastic-plastic deformation:
● Equilibrium equations:

● Kinematic relations:

● Yield condition:

● Constitutive relations in the region of elastic deformation:

● Constitutive relations in the region of elastic-plastic deformation:

Boundary conditions:

● Static boundary conditions:

● Kinematic boundary conditions:

● Equilibrium at the boundary of elastic and plastic region:

σ ij , j + bi = 0

εij =
1
2
(ui , j + u j , i)

f (σ) = 0

εij =
1
E [(1+ν)σ ij − νσ kk δij ]

σ ij= 2G εij + Λεkk δij

ε = g (σ )

σ ij n j = qi

ui = ̂ui

{σ n
(el)
= σn

(el− pl )

τ n
(el )
= τ n

(el−pl )
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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
In the configuration of a body we distinguish:
● Region of elastic deformation
● Region of elastic-plastic deformation
● Boundary between the above regions

In the region of elastic-plastic deformation as well as in the  points at the boundary separating this region 
from the region of purely elastic deformation the yield condition is satisfied.
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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
Equilibrium at the boundary of elastic and plastic region:

Right-sided and left-sided values of normal stress perpendicular to the boundary 
as well as of shear stress tangent to the boundary must be the same.

plastic region
plastic region

elastic region

boundary
between
regions

σn
(el-pl)

τn
(el-pl)

τn
(el)

σn
(el)

{σ n
(el )
= σ n

(el− pl )

τn
(el )
= τn

(el− pl )
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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
REMARKS:

● Equilibrium equations and kinematic relations are the same in both elastic and plastic region – they are 
the same as in the theory of elasticity, since they are derived from fundamental principles of Newtonian 
dynamics and kinematics of continua.

● Boundary conditions at the external surface of the body are prescribed in the same way as in theory of 
elasticity

● It is necessary to prescribe compatibility conditions at the boundary of elastic and plastic region:

● Displacement distribution must be continuous (one-sided values are the same)

● Distribution of stress vector components corresponding with a unit normal vector of the boundary 
between elastic and plastic region must be continuous (one-sided values are the same)

● Distribution of all other components of the stress tensor may be discontinuous – one-sided values 
corresponding with elastic region and plastic region may have different values.
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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
REMARKS:

● The most important difference concerns the constitutive relations.

● Due to plastic yielding the relation between stress and total strain changes.

● We assume that elastic properties of material do not change due to plastic deformation.  Relation 
between stress and elastic strain remains unchanged – it is the same as in the theory of elasticity.

● The fundamental problem in the statement of the theory of plasticity is a proper choice of relation 
between stress and plastic strain.
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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
In the theory of plasticity we distinguish two kinds of processes of deformation:

● active process – or the process of loading – this is an irreversible process – energy is dissipated due to 
occurrence and development of plastic strains. During an active process both elastic strain and plastic 
strain tensor changes. For active processes:

● Yield condition is satisfied

● AND increment of the left-hand side of the yield condition corresponding with an increment of 
stress is non-negative. (interpretation: increment of stress results with increment of plastic strain)

f (σ )= 0

∂ f
∂σ
⋅dσ ⩾ 0
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GOVERNING EQUATIONS OF THE THEORY OF PLASTICITY
In the theory of plasticity we distinguish two kinds of processes of deformation:

● Passive process – process during which energy is not dissipated. These are processes of elastic 
deformation  or processes of unloading. During a passive process  only elastic strain changes. For 
passive processes:

● Yield condition is not satisfied (material is in elastic state)

● OR yield condition is satisfied but increment of the left-hand side of the yield condition 
corresponding with an increment of stress is negative. (interpretation: increment of stress does not 
result with increment of plastic strain  – the material is in a  limit state  but it is the beginning of 
unloading process)

f (σ )< 0

f (σ )= 0 ∧
∂ f
∂σ
⋅d σ < 0
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MODELS OF ASYMPTOTIC PLASTICITY
In the case of simple mechanical states  (simple tension, simple shear) and when  loading process is 
monotonic, when it is sufficient to use only a single measure of stress and a single measure of total strain, 
one may use so called model of asymptotic plasticity  – one-to-one relations between stress and total 
strain.

These models may be considered the non-linear elastic models.

Example 1:

Prager's model

ε =
σ 0

E
arctgh( σσ0 )

ε

σσ ŻyczkowskiYlinen n → 0α → 1
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MODELS OF ASYMPTOTIC PLASTICITY
In the case of simple mechanical states  (simple tension, simple shear) and when  loading process is 
monotonic, when it is sufficient to use only a single measure of stress and a single measure of total strain, 
one may use so called model of asymptotic plasticity  – one-to-one relations between stress and total 
strain.

These models may be considered the non-linear elastic models.

Example 2:

Ylinen's model

ε

σ Życzkowskin → 0α → 1

14/47

ε =
1
E [ασ−(1−α)σ 0 ln(1− σσ0 )]

α∈〈0 ; 1〉
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MODELS OF ASYMPTOTIC PLASTICITY
In the case of simple mechanical states  (simple tension, simple shear) and when  loading process is 
monotonic, when it is sufficient to use only a single measure of stress and a single measure of total strain, 
one may use so called model of asymptotic plasticity  – one-to-one relations between stress and total 
strain.

These models may be considered the non-linear elastic models.

Example 3:

Życzkowski's model

ε

σYlinen n → 0α → 1

15/47

ε = σ
E (1−

σ
σ0 )

−n

n⩾0
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DEFORMATION THEORIES OF PLASTICITY
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DEFORMATION THEORIES OF PLASTICITY
Models of plasticity in which constitutive relations are unique relations between stress and strain tensor 
are termed the deformation theories of plasticity.

Perhaps the most popular and most commonly used theory of that kind is the Nádai - Hencky – Ilyushin 
deformation theory of plasticity.
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DEFORMATION THEORIES OF PLASTICITY
Assumptions of the Nádai - Hencky – Ilyushin theory

● Volumetric strain is proportional to the hydrostatic stress and bulk modulus is the same in both 
elastic and plastic state

● Hydrostatic stress is proportional to the norm of isotropic part of stress tensor
● Volumetric strain is proportional to the norm of isotropic part of strain tensor

● The above relation is a relation between isotropic tensors (Law of the volume change)

p=
1
3
(σ11+σ 22+ σ33)

θ = ε11+ ε22+ ε33

p = K θ

– hydrostatic stress

– volumetric strain

K =
E

3(1−2ν)
– bulk modulus (Helmholtz modulus) 
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DEFORMATION THEORIES OF PLASTICITY
Assumptions of the Nádai - Hencky – Ilyushin theory

● Stress intensity         is a function solely of strain intensity       , 

namely, stress intensity do not depend of volumetric strain, and strain intensity do not depend on 
hydrostatic stress.

● Stress intensity is proportional to the norm of the stress deviator.
● Strain intensity is proportional to the norm of the strain deviator.

σ i εi

σ i=
1

√2
√(σ 22−σ 33)

2
+(σ 33−σ11)

2
+(σ 11−σ 22)

2
+ 6(σ 23

2
+σ 31

2
+σ 12

2
)

εi =
1

√2
√(ε22−ε33)

2
+(ε33−ε11)

2
+ (ε11−ε22)

2
+ 6(ε23

2
+ε31

2
+ε12

2
)

εi= h (σ i)

– stress intensity

– strain intensity 
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DEFORMATION THEORIES OF PLASTICITY
Assumptions of the Nádai - Hencky – Ilyushin theory

● Eigenvectors of the stress tensor and strain tensor are the same ( those tensors are coaxial)

● Each tensor may be uniquely decompose into its isotropic and deviatoric part.

● Any axis is an eigenaxis of an isotropic tensor

● Coaxiality of stress tensors and strain tensors is thus equivalennt to the coaxiality of their 
deviatoric parts.

CONCLUSIONS:

● Since the stress and strain deviators are coaxial and their norms are related with a certain function, 
then this function constitutes a relation between the deviators themselves

● Function             determines a  constitutive relation between deviators (Law of the change of shape). 
This function may be decomposed into a part describing elastic deformation and a part describing 
plasit deformation.

h(σ i)
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DEFORMATION THEORIES OF PLASTICITY
Constitutive relation in the Nádai - Hencky – Ilyushin theory:

REMARKS:
● Total strain is decomposed into elastic strain  and plastic strain:
● Constitutive relation for elastic deformation is the generalized Hooke's Law.
● Constitutive relation for plastic deformation is the relation between deviators.
● Plastic volumetric strain is zero:
● Function         is equal:

{eij = (ϕ(si)+
1

2G )sij

p=K θ

{eij
e =

sij

2G
p=K θ

εij
pl
= e ij

pl
= ϕ(si) sij

elastic deformation:

plastic deformation:

3rd form of the Hooke's Law

(Law of the change of shape)

(Law of the volume change)

εij = εij
el
+ εij

pl

tr(εij
pl
) = 0 ⇒ εij

pl
= e ij

pl

ϕ

{ϕ(si) > 0 for active processes

ϕ(si) = 0 for passive processes
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DEFORMATION THEORIES OF PLASTICITY
REMARKS:
● In the case of unloading after yielding we determine the increment of stress and strain with respect 

to the state in which the unloading began. Those increments are calculated with the use of derived 
constitutive relation after substituting                  and then they are added to the state in which 
unloading began.

● It is impossible  to describe multiple loading-unloading processes with the use of deformation 
theories:
● Let's assume that the  body was deformed plastically.
● Then the material is unloaded in such a way that the yield condition is not satisfied ina ny point. 

Plastic strain remain present.
● Then the material is loaded again in such a way that the stress deviator in the limit state is different 

than when the material was yielding previously. According to the constitutive relation this new 
deviator determines new plastic strains – but they are different than those, which were obtained 
previously. Such a solution has no physical sense.

ϕ = 0
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DEFORMATION THEORIES OF PLASTICITY
REMARKS:
● Deformation theories may be used in the cases of monotonic processes of elastic-plastic deformation 

– these are processes in which all ratios of components of stress and strain tensors remain 
unchanged and only norm of those tensors varies.

● Deformation theories are simpler in analysis and less computationally complex than incremental 
models.
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INCREMENTAL THEORIES OF PLASTICITY
(FLOW THEORIES)
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INCREMENTAL THEORIES OF PLASTICITY
An alternative is to use incremental models. Any constitutive relation which has a general form:

may be rewritten in the incremental form:

In incremental models it is assumed that:

 Increment of plastic strain depend only on actual stress state
and it is independent of the increment of stress

● Magnitude of increment of plastic strain for a given load depend on the magnitude of stress and 
orientation of stress with respect to possible slip or twinning planes.

● It does not depend on the rate of stress (magnitude of stress increment in given instant of time)
● Plastic strains in next instant of time will depend again on new stress state (nad not on increments)

ε = F (σ )

d ε =
d F (σ )

dσ
dσ
⏟

G

= G (σ ,dσ )
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INCREMENTAL THEORIES OF PLASTICITY
General form of the constitutive relation in incremental theories of plasticity (flow theories) is as follows:

where:

– plastic potential

– scalar parameter, which depends on mechanical properties of the material
    as well as on the history of the process of deformation

● This is a relation between increment of plastic strain and stress.
● Plastic potential plays a similar role in constitutive relations in plasticity as elastic potential in 

elasticity.

d εij
pl = d λ ∂Ψ

∂σ ij

Ψ (σ )

d λ

{d λ > 0 for active processes
d λ = 0 for passive processes
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INCREMENTAL THEORIES OF PLASTICITY
General form of the constitutive relation in incremental theories of plasticity (flow theories) is as follows:

● If the plastic potential has the same mathematical form as the yield condition 

then we're speaking of the associated flow rule.

● For the case of an associated flow rule the following uniqueness theorem is true:

If the strain is sufficiently small, then for an incremental model with an associated flow 
rule for given static boundary conditions the distribution of stress in an elastic-plastic solid 
is unique.

d εij
pl
= d λ ∂Ψ

∂σ ij

Ψ(σ )= f (σ)

Presentation:© 2021 – Paweł Szeptyński – Creative Commons BY-SA 4.0
Figures: © 2021 – Paweł Szeptyński, Politechnika Krakowska – Creative Commons BY-NC-SA 4.0

THEORY OF ELASTICITY AND PLASTICITY
MODELS OF PLASTICITY

Paweł Szeptyński PhD, Eng.



  

28/47

INCREMENTAL THEORIES OF PLASTICITY
Most commonly used incremental model of plasticity is the  Prandtl – Reuss flow theory.

● we assume an associated flow rule:
● we assume the Huber – Mises yield condition:

Increment of plastic strain:

Increment of elastic strain:

Constitutive relation in the Prandtl – Reuss theory:

d εij
pl
= d ̃λ ∂Ψ

∂σ ij
= d λ sij

Ψ(σ )= f (σ)

f (σ) = σ eq−σ 0 = √ 3
2

sij sij−σ 0

d εkk
el
=

1
3 K

dσ kk

d e ij
el
=

1
2G

d sij

{dεij = d λ sij +
1

2G
d sij

dεkk =
1

3 K
dσ kk

increment of plastic strain

is proportional to the

stress deviator
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INCREMENTAL THEORIES OF PLASTICITY
A special case of the Prandtl – Reuss theory is an earlier Lévy – Mises flow theory. Constitutive relation for 
plastic strain is the same, however it concerns the rigid-plastic solid, in which elastic strain are zero.

This theory is simpler in analysis and it is often used in numerical simulation, especially in those cases in 
which elastic deformation is much smaller than plastic deformation (e.g. industrial plastic forming 
processes of metals)

d εij
pl
= d λ sij
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MODELS OF HARDENING
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MODELS OF HARDENING
The phenomenon of hardening is a situation in which  it is necessary to apply larger stress in order to 
continue plastic deformation. The reason is that dislocations of similar type block their motion when they 
are concentrated in a small region.

● After unloading of a material which has already undergone plastic deformation with hardening, when it 
is loaded again, plastic yielding occurs for the higher value of stress.

● In this sense, modelling of hardening may be done by the assumption that the yield condition is not 
constant, but that it varies depending on what was the history of deformation.

● Modelling of such kind may be graphically illustrated by the fact, that the yield surface moves and 
changes its shape in the space of principal stresses.

ε

σ

σ
0

σ
0
(ε(t-τ))
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MODELS OF HARDENING
Phenomenon of hardening may be modelled in simple load cases and for monotonic load with the use of 
empirical formulae:

● Ludwik model

● Ramberg – Osgood model:

σ = σ 0 + K (ε pl
)

n

ε = σ
E
+α σ

E (
σ
σ 0 )

n−1

σ

ε

σ 0

σ

ε

σ 0

σ 0

E
α
σ 0

E

tg ϕ = E
ϕ
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MODELS OF HARDENING
ISOTROPIC HARDENING:

● Yield surface changes its dimensions uniformly in all directions, but it preseves its shape. 

● Absolute values of a limit stress in opposite stress states increase equally.

f (σ )= 0 → f (σα )= 0 , α⩾1

σ 1

σ 3

f (σ )=0

f ( σα )= 0

σ

ε

σ 0

α σ 0

−α σ 0
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MODELS OF HARDENING
ISOTROPIC HARDENING:
Yield condition for a material exhibiting hardening may be expressed in the following form:

Parameter c takes into account the history of deformation. Following models are commonly discussed:

● Taylor – Quinney isotropic hardening model

● Hardening rate depends of the work of stresses along plastic strains

● Odquist – Hill isotropic hardening model

● Hardening rate depends of the total length of the plastic strain-path

c = c(W pl) W pl =∫σ ij d εij
pl

c = c (d pl) d pl =∫ √d εij
pl dεij

pl

f (σ) = c

where

where
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MODELS OF HARDENING
KINEMATIC HARDENING:

● Yield surface moves in the space of principal stresses but it preserves its shape and size. 

● If the absolute value of a limit stress in a certain state increases, then the absolute value of the 
limit stress in an opposite state decreases by the same magnitude.

f (σ )= 0 → f (σ−Δ σ) = 0

σ 1

σ 3

f (σ )=0

f (σ−Δ σ )= 0 σ

ε

σ 0

σ 0 + Δ σ

−(σ 0−Δ σ )
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MODELS OF HARDENING
KINEMATIC HARDENING:
Yield condition for a material exhibiting hardening may be expressed in the following form:

Quantity α  may take into account the history of deformation  and it may be determined according to 
various models, e.g.:

● Prager model of kinematic hardening

c is a constant, which is characteristic for the considered material

● Ziegler model of kinematic hardening

          is a function of plastic strain increment – it is characteristic for considered material.

dα = c d e pl c = const.

f (σ−α) = 0

where

wheredα = (σ−α)dμ dμ = dμ(d e pl )

dμ
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MODELS OF HARDENING
Bauschinger effect  – due to plastic deformation with unloading  residual stresses occur in the material – 
they correspond with a new state of equilibrium in the inhomogeneous transformed internal structure of 
material. Presence of residual stresses make the mechanisms of plastic deformation be initiated  for 
different values of limit stress than originally, before plastic deformation.

σ

ε

σ

ε

σ

ε

original
characteristics
of the material

plastic deformation
with hardening
and unloading

secondary (apparent)
characteristics
of the material

kinematic
hardening

σ
0,t

σ
0,t

σ
0,c

σ
0,c
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MODELS OF HARDENING
MIXED HARDENING – it is a composition of isotropic and kinematic hardening model

ANISOTROPIC HARDENING – yield surface changes its shape and position in the space of principal stresses.

f (σ )= 0 → f (σα−Δ σ )= 0
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MATERIAL STABILITY
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MATERIAL STABILITY
Drucker's stability postulate:

● If the considered interval of time is arbitrary (finitely) large, then we speak of “stability in large”

● If the considered interval of time is infinitely small, tj.                      ,  then we speak of “stability in small”

In a stable material the work performed by the increment of surface
tractions Δq and increment of body forces Δb along corresponding

increment of displacements Δu is non-negative.

W =∫
t0

t k

[∬S (Δ qΔ u̇)d S+∭
V

(Δ bΔ u̇)d V ]d t ⩾ 0

(t k−t 0)→0
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MATERIAL STABILITY
Let's consider a cycle of loading with unloading:

  . t 01) In instant      a stress state        is given. It corresponds with 
initial external loads. The process of loading with an 
additional load begins.

2) In instant         the yield condition is satisfied and new plastic 
strain occurs.

3) In instant         additional loading is stopped and unloading 
process begins.

4) Unloading process is continued until actual stress state is the 
same as the initial one           . An instant in which this state is 
reached is denoted with      

t1

t 2

t k

̃σ
 

̃σ
 

σ

ε

  d σ

 d ε
pl

W

A

B

C

D

σ(t 1)=σ0

σ(t 0)= ̃σ

σ (t 2)
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MATERIAL STABILITY
According to the Principle of Virtual Works it may be proven that:

● condition of ”stability in large” is satisfied when:

● condition of ”stability in small” is satisfied when:

if initially the material is in an elastic state

if initially the material is in an elastic - plastic state

W pl =∫
t1

t2

[(σ ij− ̃σ ij)ε̇ij
pl ]d t ⩾ 0

(σ ij− ̃σ ij)d εij
pl
⩾ 0

dσ ij dεij
pl
⩾ 0
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MATERIAL STABILITY
Condition of ”stability in small”  when the material is initially in the elastic – plastic state

REMARK: Occurrence of the lower yield stress is a manifestation of a local instability in the sense of 
Drucker.

dσ ij d εij
pl
⩾ 0

σ

ε

σ
(1)

σ
(2)

  d σ>0

 d ε> 0

W=dσ d ε> 0

σ

ε

σ
(1)

σ
(2)

  d σ<0

 d ε> 0

W=dσ d ε< 0

σ

ε

σ
(1)

σ
(2)

  d σ>0

 d ε< 0

W=dσ d ε< 0

instability instability

Presentation:© 2021 – Paweł Szeptyński – Creative Commons BY-SA 4.0
Figures: © 2021 – Paweł Szeptyński, Politechnika Krakowska – Creative Commons BY-NC-SA 4.0

THEORY OF ELASTICITY AND PLASTICITY
MODELS OF PLASTICITY

Paweł Szeptyński PhD, Eng.



  

44/47

MATERIAL STABILITY
Assuming that Drucker's stability postulate is satisfied, the inequality of the condition for the “stability in 
small” may be interpreted in a following way:

Norms of tensors are positive, so it must be:

namely, an angle in the space of stresses* between the increment of the stress tensor (from the initial 
elastic state        to the limit state          on the yield surface) and tensor of increment of plastic strain            
must be less or equal to the right angle.

* in order to represent the strain tensor as a vector in the space of stresses it must be multiplied by a certain constant reference magnitude of stress 
(e.g. 1 Pa) to provide it with an appropriate physical dimension.

(σ− ̃σ )⋅d ε pl =∣σ− ̃σ∣∣dε pl∣cos∢[(σ− ̃σ) ;dε pl ] ⩾ 0

∢[(σ− ̃σ ) ;d ε pl ] ∈ 〈− π2 ; π
2 〉

σ̃σ
 

d ε pl
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MATERIAL STABILITY
Such a condition will be satisfied if  following two conditions are satisfied simultaneously:

● yield surface must be convex

● plastic strain increment tensor must be perpendicular (orthogonal) to the yield surface, namely it 
must be parallel to the gradient of the yield condition (normality rule)

f (σ )=0

dε pl

σ

σ

σ-σ
~

~

f (σ )=0

dε pl

σ

σ
σ-σ

~
~

d εij
pl = d λ

∂ f
∂σ ij

material's instability (in the sense of Drucker)
for a concave yield surface

material's instability (in the sense of Drucker)
for the tensor of increment of plastic strain which 

is non-orthogonal to the yield surface
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MATERIAL STABILITY
REMARKS:

● If a flow theory of plasticity with an associated flow rule is used, then the normality rule is always 
satisfied

If additionally the yield surface is convex, then the material is stable in the sense of Drucker.

● If we assume the material to be stable in the sense of Drucker and we want to describe it with the 
use of a flow theory of plasticity, then it is necessary to use an associated flow rule and the yield 
surface must be convex.

d εij
pl
= d λ

∂ f
∂σ ij
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