EXERCISE 2

Find the eigenvelues and eigenvectors of the following tensor:

V2.0 -1
T=|0 V2 -1
-1 -1 42
SOLUTION: -
1% invariant: [ =Ty 4+Tp+Ts=vV2+V24+V2 =342
]I:Tll T12+T22 T23+T11 T13
an invariant: T21 T22 T32 T 31 T33
:‘m OH\E 1 ‘Jz |

Ty Ty Ty \/E 0 -1
3" invariant: =T, T, Ty =|0 V2 -1/=0
Ty Ty Ty -1 -1 V2

Secular equation: TP—IT*+IT-IT=0 = T -3J2T*+4T =0

T=0
V

3V2-(=3V2) 441 =

2 —~ T: :\/2
T(1*-3V27+4)=0 = 2
V
2

37244 (=3v2)—4-4-1

_324(=312) .

2

We have three distinct eigenvalues — three one-dimensional, mutually orthogonal eigensubspaces
correspond with them, namely we may find three mutually orthogonal eigenvectors u,v,w .

FINDING THEE EIGENVECTORS — METHOD |

Eigenvectors corresponding with 7',=0

V2-0 0 —1 ||« 0
(T-THu=0 = | 0 V20 -1 |lu,|=|0
-1 =1 V2-0||uy| |O

Since the corresponding eigensubspace is one-dimensional (considered eigenvalue is a single root
of the secular equation), one of the components of the eigenvector may be assumed to be a
parameter. Let it be u, . We chose now any two from the above equations, e.g. the 1* and the



2" one, and we determine the remaining components of the eigenvector with the use u,

u, = ——=
\Eul—u3zo - ! \/E = u= ﬁ;ﬁ’. Uy
\/Euz_u:),:o u :ﬁ \/E \/E
ap)

We calculate the length of this vector, and then we normalize the vector:

2
u:\/u2+u2+u2: +—3+u2:u\/2 = t:l: llL
1 2 3 3 3 1 2

2
Uy L
2 2 "2

Eigenvectors corresponding with TZZ\/E :

V2—42 _O -1 v, 0
(T-T,1)v=0 = | 0 V2-V2 -1 |[[n|=]0
-1 -1 V242 Vs 0

Since the corresponding eigensubspace is one-dimensional (considered eigenvalue is a single root
of the secular equation), one of the components of the eigenvector may be assumed to be a
parameter. Let it be v, . We chose now any two from the above equations, e.g. the 1* and the 3"
one (the 2" one is identical with the 1 one), and we determine the remaining components of the
eigenvector with the use v,

_V3:O = V3:0 = V:[V1 ;y TV ;0
—v,—v,=0

We calculate the length of this vector, and then we normalize the vector:

V= vt = Wit(—v P +0°= v V2 = t,= ﬁ = [L L 0]
\4

Eigenvectors corresponding with T3:2J§ :

The 3™ of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t, =t Xt, :it will be already normalized and its sense (orientation) will
be such that the sequence of vectors t,,t,, t; will constitute a right-handed coordinate system:

1 1 1 1 1 1 1 1
t :t Xt = _"_,'T >< T;—— "0 — _,-_’-__
oo lzzmum )2 ] [zz @]



FINDING THEE EIGENVECTORS — METHOD I

Eigenvectors corresponding with TZZ\/E T,=0

V2.0 —1||u, 0
(MT-T,u=0 & [0 V2 —1||u|=|0
-1 -1 2 U, 0

The above system of equations may be interpreted as a system of three dot products which are
equal to 0 — these are products of the vector u and three vectors, the components of which are
equal the coefficients from the three rows of the matrix of coefficients. Since all three dot products
are equal to 0, this means that u is perpendicular to those vectors — in particular, vector u
may be found as a cross-product of any two vectors composed from the rows of the matrix of
coefficients. Cross-product will be perpendicular to both of them. Since the determinant of the
matrix of coefficients is equal to O, it means that the triple product of three vectors represented by
rows of that matrix is also 0. A 0 triple product of three vectors means that those vectors are
coplanar, so a vector perpendicular to any two of them will be also perpendicular to the third one.
Let's chose e.g. first two rows:

u=[vV2;0;-1]x[0;v2;-1]=[V2;2 ;2]

Vector is then normalized: t, = ﬁ = % = l% , % ; %l

Eigenvectors corresponding with Tzzx/f :

0 0 —1|lv| |0
(T-T,0)v=0 |0 0 —1|v,|=]0
-1 =1 0]v,| [O

We chose the 1% and the 3™ row (the 1% and the 2™ row give us parallel vectors, and a cross-
product of parallel vectors is a zero vector which cannot be considered an eigenvector):

v=[0;0;,—1]x[=1;=1;0]=[-1,1;0]

Vector is then normalized: t, = |:—| = [T/ll—i-%:] = [— % ; % ; 0]

Eigenvectors corresponding with T3=2\/§

The 3™ of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t; =t Xt, :it will be already normalized and its sense (orientation) will



be such that the sequence of vectors t,,t,, t; will constitute a right-handed coordinate system:

1 1 1 1 1 1 1 1
t = t Xt ==, =, = X| — — s 0 =l-=,—=,;, —=
o l2 27 V2 ] l V2 2 ] l 27 272 ]

REMARK:

We can observe that eigenvectors obtained with the use of those two methods have different
orientation — it does not matter, since each vector which is parallel to an eigenvector (also an
opposite vector) is also an eigenvector and the choice of orientation is a matter of agreement.

TRANSITION MATRIX
Transition matrix is defined as follows: A: A4.= t,.-ej

Component ij of the transition matrix is the j-th component of the i-th eigenvector in the original
coordinate system. Let's use the results obtained with the use of the method I:

172 1/2 12
A=[1/V2 —=1/V2 0
/2 1/2  —=1/42

Transition matrix has the following properties:

e j-th row of a transition matrix is an j-th eigenvector represented in the basis of the original
coordinate system.

e J-th column of a transition matrix is an j-th basis vector of the original coordinate system
represented in the basis of eigenvectors

* sum of squares of entries in each column is equal to 1 (vectors of the original basis are
normalized)

* sum of squares of entries in each row is equal to 1 (eigenvectors are normalized)

* dot product of any two distinct columns is equal to 0O (vectors of the original basis are
mutually orthogonal)

* dot product of any two distinct rows is equal to O (eigenvectors are mutually orthogonal)

e determinant of the transition matrix is equal to 1 (it is an orthogonal matrix)

The transition matrix may be used in order to transform the representation matrix of a tensor from
the original coordinate system to the system of eigenaxes of the tensor:

T =AT-A"

12 2 a2 |[V2 oo <[z w2
ATA =112 -1V2 0 [0 V2 —1|| 1712 —-1W2 1/2 |=
12 12 —1N2f| -1 -1 V2f[iV2 0 —12

0 0 0f[1/2 1N2 12 0 0 0
=1 -1 0f1/2 —1/V2 1/2 |=|0 V2 0
V2 V2 =2f[1V2 0 —1N2f [0 0 242




EXERCISE 3

102 36 O
Find the eigenvalues and eigenvectors of the following tensor: T=|36 123 0
0 0 75
SOLUTION:
1 invariant: 1=102+1234+75=300
. . 102 36 102 O 123 0
2" t: 1 = + + = 2812
mvarian ‘36 123‘ | 0o 75 "0 75| 8125
102 36 O
3" invariant: III=|36 123 0|= 843750
0 0 75

Secular equations: T—IT*+IT-II =0 = T°=300T°+28125T—843750= 0

Roots of the secular equations may be found numerically or with the use of the Cardano's

formulae:
=150, 17,=75, T,=75

FINDING THEE EIGENVECTORS — METHOD |
Eigenvectors corresponding with 7,=150

102—150 36 0 u[ |0
(T-TI)u=0 < 36 123—150 0 u,| =10
0 0 75-150 ]| u,| |0

Since the corresponding eigensubspace is one-dimensional (considered eigenvalue is a single root
of the secular equation), one of the components of the eigenvector may be assumed to be a
parameter. We cannot chose u, , since the 3" equation gives us u,=0 . Let's chose u, to be
a parameter. We chose any two from the above equations and we solve them trying to express the
remaining components with the use of u, .Equations 1 and 2 are the same. We will chose the 1*
and the 3 equation:

{—48u1+36u2=0 . w =24y

3
—75u,=0 U, =0

4
= u=|u, ,—u ;0
l 3 ]
We calculate the length of this vector, and then we normalize the vector:
2 16 2

5 u 3 4
|u|:\/U?+u§+u32:\/ul+?ul+02=§ul = tlzm:l— ,-g; O]

Eigenvectors corresponding with 7,=T7,=75

102-75 36 0 ||vi| |0
(T-T,I)v=0 < 36 123-75 0 ||v,[=]|0
0 0 75-75]|v,| [O



Since for a double eigenvalue the corresponding eigensubspace is two-dimensional, so two
unknown components of the eigenvector are assumed to be independent parameters. We will
obtain a two-parameter family of eigenvectors, corresponding with 7,=T, - all of them will lie
in a plane which is perpendicular to t; . Among them we will chose any two, which are mutually
orthogonal and which constitute (together with t, ) a right-handed coordinate system. We will
do it is such a way, that one of those vectors will be determined by an arbitrary choice of the value
of parameters (they cannot be all equal to 0), the remaining one will be determined with the use
of th cross-product of the two already known.

The third equation suggests that one of the parameters should be v, , since this equation is
satisfied always, for any value of v, . Llet's choose v, asthe second parameter. We shall choose
any equation (except the third one). In fact equations 1 and 2 are equivalent one to another. We
have then:

27v+36v, =0 _ |, = —i—

v; — dowolne

Vi

3
= v=|v, ==V, ;v
v, — dowolne l Prog ! 3]

We may choose any eigenvector, corresponding to e.g. v,=0,v,=1 . Such an eigenvector is

already normalized.
t,=1[0,0,1]

The 3™ of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t, =t Xt, :it will be already normalized and its sense (orientation) will
be such that the sequence of vectors t,,t,, t; will constitute a right-handed coordinate system:

3& X[O"O"I}:li'_é"ol

t,=t,Xt,=|=,;,—=-,0 ,
3 12lss 55

FINDING THEE EIGENVECTORS — METHOD Il

Eigenvectors corresponding with 7,=150

—48 36 0 ||l 0
(T-T1)u=0 < |36 -27 0 [u|=]|0
0 0 —=75)uy| O

We choose the vectors corresponding with the 1% and the 3™ row of matrix (the 1% and the 2™
would give us parallel vectors). Their cross-product:

u=[—48,36,0]x[0,;0,—75]=[-2700,; —3600 ; 0]



Vector is then normalized:

t, =

u _ [-2700, 3600 ;2] _[ 2700 3600 ,O]Zl_g 4 0]
lul 2700+ 36002+ 0 4500~ 4500 5357

Eigenvectors corresponding with 7,=7,=75 :

27 36 Of[vi| |0
(T-T,1)v=0 < |36 48 0||v,|=]0
0 0 Offv,| (O

Vectors corresponding with the 1% and the 2™ row are parallel, and the 3™ row corresponds with a
zero vector. We will look for the eigenvector in another way — we can notice, that the vectors
corresponding with the first two rows have their third component equal to 0, so they both lie in
plane (xl,xz) . A vector which is perpendicular to them (and which is satisfying the above
system of equations) is the vector:

t,=1[0,0,1]

The 3" of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t, =t,Xt, :it will be already normalized and its sense (orientation) will
be such that the sequence of vectors t,,t,, t; will constitute a right-handed coordinate system:

3. 4

t3=t1><t2=l—§,—§;0

><[0;0,~1]=l——-—,-0]

TRANSITION MATRIX

Using the results obtained with the use of the method Il:

-3/5 —4/5 0
A= 0 0 1
-4/5 3/5 0

Check:

) [_3/5 —4/5 o][102 36 o[=3/5 0 —a/5
ATAT=| o 0 10136 123 0l{l=4/5 0 3/5|=
—4/5 3/5 ofl0o o 5]l 0 1 o0

(90 —120 o |[=3/5 0 —4/5] [150 0 o
=l o 0o 75/-4/5 0 3/5]|=l0 75 0
60 45 0]l 0 1 0 0 0 75




EXERCISE 4

Find the eigenvalues and eigenvectors of the following tensor:

34
~12

—12

T
41

|

SOLUTION:
Eigenvalues:
T +T2 T11_T22 ’ 2
| = 112 ! \/( 2 +T12 - 50
T11+T12 Tn_Tzz ’ 2
T, = > — > +717,

An angle between axis x, and the axis corresponding to the first (larger) eigenvalue:

¢ = arctg —

1 22

Eigenvectors:
t,=[cos¢ , singp|= l% ;=

t,=[—sin¢ ; cos¢| = lg

Transition matrix:

3
"5

= arctg(— ;) ~—53,13

4
5

|
|

A = | cosd sing | _|3/5 —4/5
—sin¢ cos ¢ 4/5  3/5
Check:
AT AT = |35 —4is|[ 34 —12|[ 35 45| _[30 —dof[ 3/5 4s5|_
415 3/5 [[—12 41 ||-—-4/5 3/5 20 15 || —4/5 3/5

|

50 0
0 25

|



EXERCISE 5

A simply-supported beam is given. Its length is L , it has a rectangular cross-section of
dimensions bXh and it is loaded with a uniformly distributed load of density ¢ . Find the
pricipal stresses and their orientation for any point of the beam.

PN NEREN]

A
\4

> - <
X y

\F

\

*  What is the direction of maximum principal stress near the edge of the cross-section in the

middle od the span of the beam?

*  What is the direction of maximum principal stress in the center of the cross-section above

supports?

SOLUTION:

Stress state in any cross-section is of the following form: o(x, Vv, z):[g

Normal stress:

Shear stress:

Bending moment distribution:

Shear force distribution:

2" moment of area of the cross-section:

Statical moment of a part of cross-section:

Stress state components distribution:

t(x,z) 0
o(x,z)= 2L
‘t(x,z) _ QZ()]CJ)[Sy(Z)




Principal stresses:

2
0,40 0,,—0 ——
o, = ”2 22+\/( ”2 22) +ol, = 1[0+\/02+412]

_ 3q _ 2 207 2 £_2h_2_22
= zx (L x)+\/zx(L x)’+4 > x)(4 Z)

min 2 2

3 L V(r_ .\
= b—hq3 zx(L—x)—\/z2x2(L—x)2+4(5—x) (——22)

2
0,,+t0 O0,;—0
o = 9Su 22_\/( 1 22) +0?2=%[0— /02_'_4_(2]

An angle between axis of maximum principal stress and the axis of the beam:

()5
——x||——z
O,, _ 21T _ 2 4

tg0=g —g,= =
0max C)‘22 O+\/02+4.[2 . 5 L 2 h2 5 2
ox(L—x)+4/2°x* (L—x)*+4 ST\ 77

Direction of maximum principal stress near the edge of the cross-section in the middle od the span
of the beam:
h

tgq)(x:% ,-ZZE):() = q):()0

Direction of maximum principal stress in the center of the cross-section above supports
tgdp(x=0,2z=0)=1 = (=45
In the picture below, the orientation of maximum (red) and minimum (blue) principal stress is

marked. Length of lines of that markings is proportional to the magnitude of corresponding stress.
Trajectories of the principal stress can be seen.

e o o o o — — — — — — e

e e e e e e e e o o e = e e

Fodo# # 3 N X XN XN M MM X N NN %oy
P fFFF R XN KX XX % % %%y
[ A N T T T |
J 1 #1772 #%=x%s%%%%%\\\0L|
[ 1 htssssnmxxnnnrvyi)|
IR R R R R R R
IV W\ A ssvwwonrrrf[]]
TVAANA NS nns 2 [ []]
LV v vy nxxxxxan s f i |
TV AN %% % X% x s s
T % % R oW M M MMM MM RS
AA N N X R KK KKKK KR KR b

]'I.".\\\\\-:p‘d’!;‘f

10



EXERCISE 8

Deformation is given in material description.

x, =X, —X,
x,=2X,
x, =X,

a) Check if these relation are invertible. If so, find deformation relations in spatial description.
b) Find displacement field in both spatial and material description.

¢) Make a sketch of an actual configuration.
d) What would be the shape of material fiber AG after deformation? What is its length?

e) What is an equation of BCGF surface after deformation?
f) What is the surface area of BCGF face before and after deformation?

SOLUTION:
Invertibility is checked by calculating the Jacobian determinant:

ox, O0Ox, Ox,
0X, 0X, 0X,
Oox, Ox ox 10—l
J =|==2 2 21=l0 2 o0|=2
0X, 0X, 0X, 00 1

Ox; Ox; Ox,
0X, 0X, 0X,

Determinant J>0 , so the relations are locally invertible. These are linear equations with
respect to material coordinates, so it can be solved, to obtain following result:

X, =x,+x,
1

X2:5x2

X3= x5

DISPLACEMENT FIELD
* material description:

u (X) = x ((X))= X, =-X,
uy(X) = x,((X)) - X, = X,
”3(X) = x3((X))—X3 =0

* spatial description:

”1(") = xl_Xl(x) =X
(%)= 5= X,(x) = 2x,

X~ X,
uy(x) = x,— X,(x) =0




DEFORMATION

Point A: X ,=[0,0,0]-x,=[0,0,0] Point B: X,=[1,0,0]—=x,=[1,0,0]
Point C: X.=[1;2;0|-x.=[1,4,0] Point D: X,=[0,2,0]—x,=[0,4,0
Point E: X,;=[0,0,1]-x,=[-1,0;1] PointF: X,=[1;0,1]-x,=[0,0,1]
Point G: X,=[1,2;1]-x,=[0,4,1] Point H: X,=10,2,1]-x,=[-1;4;
Reference configuration Actual configuration
AX; X3
1E E H
F /| F G
! = !
Al -
B // B // D X,
1 / c
X, X,

DEFORMATION OF LINE AG
Line containing A and G before deformation is given by parametric equations:

X, =A
AG: X, o(M) =X, +MXe—X,)=1X,=21 Are(0:1)

Fibre length before deformation:
1 2 2 2
dXx dX dXx
AGl= | dS= | JdX+d X +d X] = \/ = H = d=
|46] AJ; AfG\/ ! 2 3 ! dAa dAa dA

1 1
(VP22 +1%dn = V6 [dh =6
0 0

After deformation the line may be described as:
x=X,—X; |x,=0
AG: x, (M) ={x,=2X, =i{x,=4N A€(0 1)
X, = X, X; =\

Fibre length after deformation

4G|= [ ds = f\/dx2+dx2+dx2:fl\/ do | [dn ) (dofy,
e PR dr) "\dn) "\dn

AG 0

1 1
[Vo+a*+12dn=V17[ dn =17
0 0




The length of the AG fibre may be also calculated with the use of an integral over a reference
configuration. In order to do that, we need to determine the material deformation gradient F and
material deformation tensor C:

-1 1 I 0 -1
0| C=FF=|o =0 4 0
1 -1 1 -1 0 2

S o O
— o O
SO~
SN O

The relation between an infinitely small linear element before deformation dS =+d.X,d X,
and after deformation ds is as follows:

ds=C,dX,dX,

The length of the fibre is calculated with the use of an integral over a reference configuration (we
are using the parametrization of a curve before deformation):

4G = [ds= [ JC,dX,dX, = j dX'm%dx—
AG AG

1 2
dX dX

f\/ ll( 1) CZZ(d}\’Z

0

j\/1-(1)2+4-(2)2+2-(1)2+2-0-2-1+2-(—1)-1-1+0-1-2d7» = jmdx = mjdx =17

dX,dX, 4X, dX,
sgan 2San an TCeq o 90T

dx,\’. . dx,dx
+C33(M—3)2C 22




DEFORMATION OF BCGF FACE

Face BCGF before deformation is a face perpendicular to X, axis and containing point for which
X, =1 .Anequation of surface containing BCGF face is:

BCGF: X,-1=0

Surface area of face BCGF before deformation is calculated by a double definite integral:
2

1
dp= [[dd,= | [ dx,dx,=2

BCGF X,=0 X;=0

Surface containing BCGF face may be found by expressing material coordinates in the above
equation in terms of spatial ones, according to inverted relations X (x)
BCGF: X, —-1=0
X, +x;,—1=0

Integral in actual configuration may be calculated by expressing the area of infinitely small surface
element after deformation by the area of infinitely small surface element before deformation:

dA=dA, J(N-F)(N".F

Inverse of material deformation gradient (spatial deformation gradient):

. I 0 1
F =f=|0 05 0
0 0 1

1 1
N“F'=[1;0;0]{0 05 o|=[1,0;1]
0 1

1

(NVF)(NMF) =lo[{1,0,1]=2 = J(N'F)(N"F')=12
1

J=detF=2

Surface area of face BCGF after deformation is calculated by a double definite integral:

A= [ da= [[ JV(N"F')V(N"F')d4,= f j 2V2d X,d X, = 442

BCGF BCGF X,=0 X,=0




EXERCISE 9

A
Deformation is given in material description.
0,25 O c
X =X,
x,= X,+2X; A

0,5 VXI

a) Check if these relation are invertible. If so, find deformation relations in spatial description.
b) Find displacement field in both spatial and material description.

c) Make a sketch of an actual configuration.

d) What would be the shape of material fiber AC after deformation? What is its length?

SOLUTION:

Invertibility is checked by calculating the Jacobian determinant:

ox, Ox,

J:6X1 0X,| _ 120_1
ox, O0x, 6X] 1
0X, 0X,

Determinant J >0 , so the relations are locally invertible. It is easy to find inverse relations:

X, =x,
X2=x2—2x?

DEFORMATION

Point A: X ,=[0,0]-x,=[0,0] Point B: X,;=[0,5,0]—x,=[0,5,0,25]
Point C: X.=[0,5,0,25]—x,=[0,5,0,5] PointD: X ,=[0,0,25]-x,=[0,0,25]
Reference Actual
configuration configuration
Xy
A X, 0,5A C
D C D
0,25 = 025 B
A > A >
05 "y, 05 "y



DISPLACEMENT FIELD

* material description:

* spatial description:

DEFORMATION OF FIBER AC

Line containing A and C before deformation:

AC: X,o=X,+M(X.~X,) < [?Zgégx nelo 1)
2 ,

Length of AC before deformation:

|Ac|=fd5=fm :f\/(dX) (dX)dX fmdx_

di

Jsfdx ( ~ 0,560

Accounting for deformation relations:

x, =X, x, =05\
AC: x=]"" , © 3 3
x, = X,+2 X, x,=025A+2(0,51) =025A+0,25\

Length of AC after deformation:

1

2 2
4C) = [ds= [ Vdxi+dxl= f\/(dx2) (dx2) dh = [(0,57+(0,25+0,7502F d . ~ 0,723
AC AC

d )




The length of the AC fibre may be also calculated with the use of an integral over a reference
configuration. In order to do that, we need to determine the material deformation gradient F and
material deformation tensor C:

I I
6X: 1

The relation between an infinitely small linear element before deformation dS = \/Xm-dXi
and after deformation ds is as follows:

ds =C,dX,dX,

e |1 6xi|| 1 o _[36X1+1 6X]
C=F'F= , o= )
0 1 Jl6x? 1 6 X, 1

The length of the fibre is calculated with the use of an integral over a reference configuration (we
are using the parametrization of a curve before deformation):

1
———— dX, dX,
A = —_ .. . - ! )\‘_
|AC]| Afcds JCJCUdX,dXJ {\/ Cy

—j"\/c AV, o (40} . dX,dx,
o VM dA 2\dn 24N dA B

1
[VB6 X +1)(0.5] +1-(0.25) + 2-(6 X2)-0,5- 025—N9X + 1,5 X2+0,3125d A =
0

V9-(0,50)" + 1,5(0,50)+0,3125d A =

I
o —

1
[V0,56250" + 0,37502+0,3125d A = 0,723
0



EXERCISE 11

Deformation is given in material description:

x,=X—X;+2

X, = —2X,+X,~X,+4

X, =X +X,

a) Check if these relation are invertible. If so, find deformation relations in spatial description.
b) Find displacement field in both spatial and material description.

c) Make a sketch of an actual configuration.
d) What would be the shape of material fiber BC after deformation? What is its length?

e) What is an equation of ABC surface after deformation?
f) What is the volume of the body before and after deformation?

SOLUTION:

Invertibility is checked by calculating the Jacobian determinant:

Oox, Ox, Ox
0X, 0X, 0X;
J = ox, Ox, O0x,
oX, 0X, 0X;
Ox; Ox; Ox,
0X, 0X, 0X;

0 -1
=-2 1 —-1/=2
0 1

Determinant J>0 , so the relations are locally invertible. These are linear equations with
respect to material coordinates, so it can be solved, to obtain following result:

(

\

1

xX;—35

1 1
X 1= 2—x1+5x3—
1 3
X ) = 5x1+x2+5
1 1
X 3 = —2—x1+5x3+1



DISPLACEMENT FIELD
* material description:
u (X) = x,((X))=X, = —X,+2
1, (X) = x, (X)) =X, ==2X,— X, +4
u;(X) = x5,((X))- X5 = X,

* spatial description:

1 1
ul(x) = xl—Xl(x) = 5x1—5x3+1
_ _ 1 3
uz(x)—xz—)(z(x)——zxl 5x3+5

DEFORMATION

Point A: XA=[0;O;0]—>xA=[2;4;O]
Point B: XB=[2;4;0]—>xB:[4;4;2]
Point C: XC=[0;4;4]—>XC=[—2,4, 4]
Point D: X,=[0;4,0]-x,=[2,8,0]
Actual configuration
X5 ¢
=

DEFORMATION OF FIBER BC
Line containing B and C before deformation:

2
Xpo(AN) =X+ M X —X,) < X,=4+AN(4—4)=4 re(0,1)

Length of BC before deformation:

cofdx Yo (dXx,) [dXx,Y
IBC| = [ds=[Vdx]+dxi+dx:= | \/( 1) +( 2) +( 3) dh=
A=0

A A da dn da

j% +0+)%x=26fx=26



Curve containing B and C after deformation:

x, =X, —X,+2 x,=4-6A
x(M)={x,=2X+X,-X,+4 = {x,=4 re(0,1)
X, = X, +X, xX;=2+2A

Length of fiber BC after deformation may be calculated in two ways:
* integral along deformed BC curve in actual configuration
* integral along undeformed BC line in reference configuration with the use of deformation
tensor

Length of BC after deformation:

The 1* approach:

|BC|—fd —f\/d 2 dii+d z_j-\/dx1 2+ dx, 2+ dx, 2dX—
TS AT N TEA dn ) \an | T\aa N

A=0

= f V(=6)"+0+(2)d) = 2@} A =210

The 2" approach:

Deformation gradient: Deformation tensor:
ox, 0Ox, O0Ox,
oX, 0X, 00X,

1 0 —1 6 -2 2
F— 0x, Ox, O0x, N C=F"F=|_2 | _i
0X, 0X, 0X, 10 1 2 -1 3
Ox; Ox; 0x,
[
S — dX. dX,
BC|=[|ds=|JC,dX dX, = C.—1——idh=
| | { N }[\/ ii i j )\Jz‘o\/ idhn dh
1
dX,dX dX, dXx dX,dX
= |4/C L1 L_ 24 +C 33 =
{\/ Tdh dh 2 dh dAh Bdh dAa

VI6:(=2)-(=2)]+ 2[(=2)-(=2)-0] + 2[2(=2)-4] + [1-0-0] + 2[(—1)-0-4] + [3-4-4]d X =

Il
ot —

V24-32+48dN =210

S Sy —

In the sum with respect to ij indices (inside the square root) we've made us of symmetry of C :
dX. dX. dX. dX.
C.—- L =C. L -
Ydh dA dh dA

10



DEFORMATION OF FACE ABC

Equation of a surface perpendicualr to vector n=|a,b,c| is: aX ,+bX,+cX,+d =0

Normal vector of a surface may be found as a cross product of two vectors connecting three non-
collinear point on that surface:

AB=[2;4;0] AC=[0;4;4] = n=ABXxAC=[16,-8;8]

Any parallel vector may be chose, e.g.: n=[2,—1,1| . Equation of plane containing ABC face

before deformation is:
2X,—X,+X;+d =0

Parameter d is found with the use of condition that point A, B and C belong to that plane. Writing
down this condition for A gives us: 2:0—-0+0+d=0 = d=0 . It can be checked that this
equations is satisfied also by coordinates of B and C. Equation of plane ABC before deoformation:

ABC: 2X,—X,+X;=0
Equation of plane containing ABC face before deformation is obtained by substitution of
X = X(x)
ABC': 2-(%x,+lx3—l)—(lxl+x2+§x3—5)+(— l)cl-i-%)c3+1) =0

2 2 2 2
-x,t4=20

VOLUME CHANGE

Reference volume is equal the volume of a pyramid:
1 11 16

V==pPp H=—|=24|4=->
3 7 3 (2 ) 3

It can be calculated also by a triple integral:

2 4 X,-2X, 2 4
Ve=[l[dve= [ [ [ dxdx,dx,= [ [ [x,-2x]|dxdXx,=
Ve X,=0 X,=2X, X,=0 X,=0 X,=2X,
HEE 4 2 2 [ _ 16
= | [—2—2)(1)(2 Xm:H8—8X1+2Xﬂd)(l:[8X1—4xf+—xi =2
X,=0 2 X,=2X, 0 3 0 3
Actual volume: v=[[[dav={f[sdr,
4 Ve

Since the Jacobian determinant is constant (equal in each point) it can be put outside integral:

VZJIHdVR:J-VR:%:é—Z
Ve

11



EXERCISE 12

Elastic cube of side length 2 undergoes deformation according to equations:
Actual

configuration

Reference

x, =X, configuration
Xy Xy

X X
1

What will the change of length of material curve given by equations:

X, =2(1-2)
X,=2\ . Ak €(0,1)
X,=2N

SOLUTION:

Length of the curve before deformation is calculated as a line integral along reference

configuration of that curve:

L= fdszi\/(dd)il)2+(dX2)2+(dX3)2d7»= (V=20 +(2)* + (4r)dn =

da da
1
= [ V8+16A’d\ = arsinhv2 + /6 ~ 3,5957
0

In order to find its length after deformation we will need deformation gradient and deformation

tensor: ] ]
ox, 0Ox, O0Ox,
0X, 0X, 0X;
ox, 0Ox, O0x,
0X, 0X, 0X;
Oxy; O0xy; 0xy
0X, 0X, 0X;

S = O

S

I

I
S O ==
[\
= O
W

12



Deformation tensor:

Length of the curve after deformation is calculated as a line integral of deformed line elements
along reference configuration of that curve:

1
dXx dX,
L=[ds= f\/CU.dX,.de:{ Cy gt gt dh=
dX, dX, dX, dX, dX,dX,
= ————1li+c,—= ot Cpy—2 =
\/ Tdh dh o TP dh dA s qn an

(=27 + 12 + 1:(2)-(40) + 1-(41)(2) + (4 X5+1)-(4N)*d A =

v
VI(=2P + (2P + 1-(2)-(4%) + 1-(41)-(2) + (4(222)*+1)-(4X)d N =
V256 M+ 16 M+ 160 +8d A ~ 6,5666

In the above integral parametric equations of the curve were substituted in place of material
coordinates — values of these coordinates for points on the curve along which we are integrating
are given be those equations.

Curve length before deformation: L, ~3,5957

Curve length after deformation: L ~ 6,5666

13



EXERCISE 13

Cylinder of heigth 2m and diameter of base 2m undergoes deformation accordint to relations:

X, Actual
configuration

X
Reference A3

r)Cl =X, configuration [o,5m
[ =
.x2 = X2 + - X3

2m
Find the surface area of the top face of the cylinder before and after deformation and length of a

material fiber which has a shape of circular arc lying in the top face in distance 0,5m from the axis
of the cylinder and contained in the 1* octant of the assumed coordinate system.

SOLUTION:
CHANGE OF LENGTH OF A CURVE:

Length of a fiber before deformation is equal quater of circumference of a circle of radius 0,5m:

L,=2"R < 07854 m

In order to find its length after deformation we will need deformation gradient:

0x, 0Ox, O0Ox, 1
60X, 0X, 0X, 0 0
X3
ox, Ox, O0x, 1 B3
0X, 0X, 0X; 3, 1,
Ox; 0Ox; 0x, _ZXsz I_ZXz
0X, 0X, 0X; "
Jacobian determinant J=1+%X§X§—%X32 is positive in each point of reference

configuration.

14



Deformation tensor:

16 0 0
C:FT'F:% 0 16+9X'X  X,(8-12X2+3X))
0 X,(8—12X3+3X]) 16—8X +XS+4X;

The curve before deformation may be parametrized with the use of angular coordinate of a

cylindrical coordinate system:

. 2 2
X, =rcosp = X1+;2 r=0,57[
X2 = rsin¢ And q) = arctg)(—z = K q)e(olz_)
Xy=z 1 z=2
z=X;

Curve length after deformation:

“2 dXx. dXx.

L=[ds=[VC,dx,dx, = [ Craq ag 90

0

Non-zero terms in the sum inside the square root (accounting for symmetry):

“dd—)q()] ‘Z)q()' = (1)-(=rsing)’ = r’sin’¢

zz(ti_);zdd)qiz - %(Fsmq))‘lzz].(rcosq)y

LA 23 ng43(rsng st} -0
33dd—)§>3 dd)(j)3 B %[16_8(rsin¢)3+(rSin¢)6+4zz]'0 =0

The integral is calulated accounting for fixed values of » and z :

/2 /2
dX. dX,
L= f\/ — " id¢= f \/rzsin2q)+ 1-1——196(rsinq))422 r’cos’pd ¢ =

o | 7 do do 0

1+gl4sin4q>]coszq)dq) ~ 0,7888

/2

1.2 1
= =
{\/ sin“¢ +

Length of a fiber after deformation: L ~ (0,7888 m

15



CHANGE OF SURFACE AREA:

Surface area of top face before deformation is the area of a circe of radius 0,5m:
Ar=nR =3,1416 m’

Relation between differential surface elements is as follows:

dA=JJ(N"F")(N"F')d4,

3 .22 1

Jacobian determinant: J=1+ ngXs - ZX;
Unit normal vector for the face before deformation: N' = [0,0,1]
1 0 0
-X
| o Lo Hiday) =22
Spatial deformation gradient: F = J 4 2J
0 3X3X, 1
4J J
NTF =0 3X3X, 1
4J J
_ - 1 9
NUF)(NDFT) == | 1+= X, X3
(NFNTF ) = 1
\/ T -1 T —1\T _ 9 402
JV(NVF)(NVF)' = 1+EX2X3
We will again use cylindrical coordinates. The integral may be expressed as:
A= ffdA ﬂNN F)(N"F! f fJ\/N F)(NF) rdgdr =

r=0¢=0

f f \/1+— (rsing)*z’rdodr

r=0¢=0
We calculate the integral accounting for fixed value of z
R 2n 9—
A= [ [ \/r2+zrésin“¢dq>dm 3,5136 m”
r=0 ¢=0

Surface area of top face after deformation: 4 ~ 3,5136 m’




EXERCISE 15

Perform polar decomposition of deformation gradient for a deformation given by equations:
x,=12X,+0,8 X,
x,=0,6X,+1,5X,
x,=14X,+X,

How stretch tensors and rotation tensor deform a material fibre dX =[1,0,0] ?

SOLUTION:
,2 0,8 0
Deformation gradient: F=| 0 0,6 1,5
14 0 1

2 0 14)|1,2 08 O 340 096 14
Deformationtensor: C=F'F = 0,8 06 01 0 06 1,5/=[09 1 0,90
0 1,5 1|14 O 1 1,4 0,90 3,25

Eigenvalues are found numerically:
Cc,=0582 (C,=1923 (C,=5,145

Eigenvectors of C
Eigenvector corresponding with C, = 0,582

2,818 0,96 14 ||u 0
(C-C,I)})u=0 = |09 0418 0090 |[u,|=]0
1,4 090 2,668]u, 0

u=1[23818 ;0,96 1,4]x[0,96 ; 0,418 ; 0,90] = [0,279 ; —1,192 ; 0,256]

S =10,223; —0,953 ; 0,204]

“ T Tl

Eigenvector corresponding with C, = 1,923
1,477 0,96 1,4 (|v) 0
(C=C,I)v=0 = |09 -0923 0090 |[v,|=]0
1,4 0,90  1,327]| v, 0

v =[1,477 ; 0,96 ; 1,4]x[0,96 ; —0,923 ; 0,90] =[2,156 ; 0,0147 ; —2,284]

Y — 10,686 ; 0,00469 ; —0,727]

27|

Eigenvector corresponding with C, = 5,145
¢, =c¢,Xc, =[0,692, 0,303 ; 0,655]



Transformation matrix from original coordinate system to system of eigenvectors of C :
0,223 —0,953 0,204
A =10,686 0,00469 —0,727
0,692 0,303 0,655

Stretch tensor in eigenvector coordinate system:

V0,582 0 0 0,763 0 0
U'=C = Ugy=| 0 V1923 o0 |=| 0 1387 0
0 0 5,145 0 0 2,268

Inverse of stretch tensor in eigenvector coordinate system:

L |voges o 0 1311 0 0
Ug=| 0 11387 0o |=| 0 0721 0
0 0 1/2,268 0 0 0441

Right stretch tensor in original coordinate system:

] 1,778 0,317 0,371
U=A"U,A=[0317 0901 0,29
0,371 0,296 1,739

Inverse of right stretch tensor in original coordinate system:
) . 0,616 —0,184 —0,100
U =AU, A=[-0,184 1,231 -0,170
-0,100 -0,170 0,625

Rotation tensor will be foundas R = F-U™' ,yet U™ must be expressed in original cordinate
system. Rotation tensor in original coordinate system:
1,2 08 0 0,616 —0,184 —0,100 0,592 0,764 —0,257
R=FU"'=| ¢ 0,6 1,5[|-0,184 1,231 -0,170|=(-0,261 0,483 0,836
-14 0 1 |[[-0,100 —0,170 0,625 0,762 —-0,428 0,485

Left stretch tensor in original coordinate system:

. 1,322 0,072 0,571
V=R-UR =10,072 1,544 0,470
0,571 0,470 1,551

CHECK
0,592 0,764 —0,257111,778 0,317 0,371 1,2 08 O
* R-U=|-0,261 0,483 0,836 {10,317 0,901 0,296|=| 0 06 15|=F
0,762 —-0,428 0,485 [|0,371 0,296 1,739 14 0 1
. uU'=u = U is symmetric
. detR=1 = R isorthogonal



DEFORMATION OF MATERIAL FIBRE dX =[1,0,0] :

Stretch before rotation:

1,778 0,317 0,371 ][ 1 1,778
U-dX =10,317 0,901 0,296||0|=10,317
0,371 0,296 1,739/ 0 0,371
Rotation after stretch:
0,592 0,764 —0,257(|1,778 1,2
F-dX =R-(U-dX)={-0,261 0483 0,836 ||0317|=] 0
0,762 —0,428 0,485 |[0,371 1,4
Rotation before stretch:
0,592 0,764 —0,257]|1 0,592
R-dX =|-0,261 0,483 0,836 ||0|=]-0,261
0,762 —0,428 0,485 ||0 0,762
Stretch after rotation:
1,322 0,072 0,571 || 0,592 1,2
F-dX =V-(R:dX)=[0072 1,544 0,470 ||—0,261|=| 0
0,571 0,470 1,551 0,762 1,4

X

Stretch along
eigenaxes of U

‘_x X
3 1
X
2

X
1

Rotation with R

Stretch along

Rotation with R eigenaxes of V




EXERCISE 16

Perform polar decomposition of deformation gradient for a deformation given by equations:
x=2X,—-X,
x,=2X,+4X,

How stretch tensors and rotation tensor deform a material fibre which was initially parallel to the
first eigenvector of right stretch tensor?

ROZWIAZANIE:
Deformation gradient: F=|% I
2 4
Deformation tensor: C=F"F= 8 6
6 17
. . C11+C22 C11_C22 ’ 2
Eigenvalues of deformation tensor: C, = > + 2 +Cj, =20
C,= Cll‘;czz _\/( C11;C22)2+ C,=5
Angle between horizontal axis and first eigenaxis of C
C,, .
¢ =arctg = arctg?2 ~ 63,43
Cl _C22
Eigenvectors of deformation tensor: ¢, =[cos¢; sing|= €L ; 2z
V5 s
. 2 1
c,=|—sing ;cosp|=|— =, —

Transformation matrix: A= )
l—sm ¢ cos 2 —0,8944 0,4472

1 2
cos sinq)]: J5 5 Nlo,4472 0,8944]
1
V5

V5
Stretch tensor in the eigenvector coordinate system:

Uny = Ve, o0 |_[245 o N[4,472 0 ]
“ 1o VG| Lo Vs 0 2236
Inverse of stretch tensor in the eigenvector coordinage system:
L 0 ﬁ 0
Ui = - e 0 | l0,2236 0 ]
o L, ¥5 0 04472
VG, 5




Right stretch tensor in original coordinate system:

6 2
V5 V5| [2.683 08944
= AL A = ~| © ’
v Vsol 2 9| [08944 4,025
V5 5

Inverse of right stretch tensor in original coordinate system:

9V _ W5
50 25 | | 04025 —0,08944
J5 1545 N[—0,08944 1,342 ]
25 25

-1 T -1

Rotation tensor in original coordinate system:

ovs V5| |2 _ 1
R:F,U_lzlz —1]. 50 25|_|V5 5| _[cos(26,57) —sin(26,57)] _
2 4] V5 345 1 2 sin(26,57°)  cos(26,57°)
25 25 V5 W5
| 04472 0,8944]
—0,8944  0,4472 |
Left stretch tensor in original coordinate system:
V5 0 2236 0
V=R-UR"= | ~|”
[0 25 0 4472
CHECK
2 _ 1]l 2
. R-U:\/S ‘/5.‘66:2_1:}?
o2 (]2 9|2 4
V5 W5 |[V5 s

i U'=U = U issymmetric
. detR=1 = R isorthogonal

DEFORMATION OF MATERIAL FIBRE

Material fibre of unit length which is parallel to the first eigenaxis of right stretch tensor is given by
first eigenvector of deformation tensor:

) 2

dX =¢,=|[cos¢, sinp|= 5

1
— ; = |=[0,4472,0,8944]
V5 ]



Stretch before rotation:

6 2| L
Vs Vs||Vs| |2
R YR (Y ‘M

V5 V5|5

Rotation after stretch:
2 -1
F-dX =R-(U-dX) = f 25 Lﬂ:lzgsl

V5 Vs

Rotation before stretch:

2 a1

A5 FIEL T

RdX=17 o L_H
5 GV

Stretch after rotation:

rax=virax)-| %0 J[0]] 6]

Stretch along
eigenaxis of U

Rotation with R

Stretch along
eigenaxis of V

Rotation with R



EXERCISE 21

Deformation of a cube of unit side length is give as follows:

x,=12X, F

X
? 3
x, = 12X, 1L E
|
X, =06X,—02X,-02X, |
\
\

It is made of isotropic linear elastic material of Poisson
ratio v=0,3 and Young modulus E = 10 kPa (these

Na

constants correspond with relation Tg(E) ). Find current
configuration of cube and determine current load of EFGH

face in current configuration and referred to reference
configuration.

SOLUTION:

Invertibility of equations is checked:

dx. 1,2 0 0
Fg,’ = 6Xl = F=| 0 1,2 0 J =detF = 0,864
J -02 -02 0,6

Jacobian determinant J>0 in all points. Relations are invertible.

ACTUAL CONFIGURATION

Q& QA
V\ﬁ/\_/v
o
o
o
o -
—

T O W
e

Reference Current

configuration /\‘ configuration
X




DISPLACEMENT VECTOR

Displacement vector in material description:
u, = 02X,
u,=x,—X, = u,=02X,
u,=—04X,-02X,-02X,

STRAIN STATE

Green — de Saint-Venant strain tesnor is determined according to geometric relations:
_1(6ui+6uj ou, Ou,

== +
7o 2\0x, 0X, 0X,0X,
1({Ou, Ou, Ou, Oou, OJOu, Ou, Ou; Ou,
E == + + + + = 0,24
: 2(@)(1 0X, 0X,0X, 0X,0X, 0X,0X, ’
1({ Ou, Ou, Ou, Ou, Ou, Ou, Ouy Ou,
E,== + + + + = 0,02
= 2(6)(2 0X, 0X,0X, 0X,0X, 0X,0X, ’
024 0,02 —0,06
E=|002 024 -006| [-]
—-0,06 —0,06 —0,32
STRESS STATE

Piola—Kirchhoff stress tensor of the 2™ kind is found with the use of the Hooke's Law:

N
C2(14v)

Lame parameter: A= Lv = 5,769 kPa

(1+v)(1-2v)

Kirchhoff modulus:

= 3,846 kPa

S,=2GE,+\E, =
SW=2GE, + ME, +En+E;) =3,577 kPa
S,=2GE,= 0,154 kPa

2,769 0,154 —0,462
Tg=| 0,154 2,769 —0,462| [kPa]
—0,462 —0,462 —1,538

Piola — Kirchhoff stress tensor of the 1° kind:

1,2 0 0]l 2,769 0,154 —0,462 3,323 0,18 —0,554
r=FTg=| 0 1,2 0] 0,154 2,769 -0462(=] 0,18 3,323 —0,554
-0,2 -0,2 0,6]|—-0462 —-0,462 —1,538 -0,862 —-0,862 —0,738



Cauchy stress tensor:
1

ToijR-FTz
: 3323 0,185 —0,554|[1,2 0 —02 4,815 0,456 —0,598

= Oxez| ©185 3323 —0554110  12-02|=| 0456 4815 —0,598| [kPa]
00,862 —0,862 —0,738[|0 0 06| [-0598 —0,598 —0,513

LOAD ON EFGH FACE

Current load referred to reference configuration:

Equation of plane containing EFGH face before deformation: F: X,—1=0
VF
Unit normal vector of EFGH face before deformation: N = |VXF| 10,0,1]
X

Current load on face EFGH referred to reference configuration:

3,323 0,185 —0,554|]0 —0,554
Q=T,N=]|0185 3323 —0,554[|0|=]-0,554| [kPa]
-0,862 —0,862 —0,738]|1 —0,738

Current load referred to current configuration:

Equation of plane containing EFGH face after deformation are obtained in such a way that in the
equations of that plane before deformation we introduce inverted deformation relations:

X, =12X, X, =0,833x,
n=12X, o {X,=0833x,
X, =0,6X,-02X,-02X, X, =1,667x,40,278x,+0,278 x,

Equation of plane containing face EFGH after deformation:
[ X;—1=1,667x,+0,278x,+0,278 x,—1 =0

Vs
V. /]

Unit normal vector of EFGH face after deformation: n =10,162, ; 0,162 ; 0,973]

Current load on face EFGH referred to current configuration:

4815 0,456 —0,598](0,162 0,272
q=Tsn=| 0456 4815 —0,598]-|0,162|=| 0,272 | [kPa]
—0,598 —0,598 —0,513{]0,973 —0,693



EXERCISE 24

Deformation in material description is given by following equations

x, =X,
| R>0
X, =(R+X;)sin|=—X
2= 3) (2L 2) where | >0
x; =(R+X,)-cos lX2 H>0
2L
konfiguracja konfiguracja
odniesienia A 3 aktualna
A X3 A /‘E7 —
i S
1 Fi PN
£ H H | N D,
A A \\\ \\\
[ ‘ G ) ‘ \ \
P N <
\ 7 B S \ \
‘ N \ |
H A R ) Y
[E D ) D ;71 H
y > A+ — ’ >
C Xz C G X,
+ ¥ LV LV |
L A R /1 H A
X, Xy

Determine both strain and stress state as well as current load on EFGH face both in material and
spatial description. Assume linear constitutive relations of Hooke's Law between Piola-Kirchhoff
stress tensor of the 2" kind and Green — de Saint-Venant strain tensor.

SOLUTION:

DEFORMATION GRADIENT

1 0 0
n(R+X,) - e
Material deformation gradient: F = 2L COS(E Xz) Sm(ﬁXz)
t(R+X,) . [ -
—TSIH(ﬁXZ) COS(ﬁXz)
TR+ X
Jacobian determinant: J =detF = (Tﬁ dla X;>0 mamy J>0

Jacobian determinant is positive in considered region. Relations are invertible.
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SPATIAL DESCRIPTION
X, =x

2L
Inverted deformation relations: X, =5

Xy
arctg —
X3

X;= \/x§+x§—R

0 0
0 2L x4 B 2Lx,
spatial deformation gradient: f = H(x§+x§) Tt(x§+ xi)
0 X X3
[2 2 \/ 2 2
x5+ x5 X5+ X5
DEFORMATION TENSOR
Material deformation tensor:
1 0 0
2 2
C=F"F=|og " (R+X,)
41°
0 0 1
Spatial deformation tensor:
1 0 0
0 X (+x5)+42° L x,x [ (X +x3)—4 L7
c=f"f= Jtz(x§+x§)2 th(x§+x§)2
0 xox [T (X +x0)—4 L% mxi(xi+x)+4y° L’
(e ()
STRAIN TENSOR
Materialny strain tensor:
0 0 0
E=Lico1)=|o (R+X,)—4L
2 2
8L
0 0 0
Spatial strain tensor:
0 0 0
| 0 xi[T[Z(xi"'x?)_é‘Lz] _ x2x3[7[2(x§+x§)—4L2]
e= E(I—C) = 27[2(x§+x§)2 27[2(x§+x§)2
0 x2x3[n2(x§+x§)—4L2] x;[nz(x§+x§)—4L2]
27[2(x§+x32)2 27[2(x§+x§)2
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STRESS TENSOR

Piola-Kirchhoff stress tensor of the 2™ kind:
Ty=2GE+Mtr(E)1=

A 2 2 2
—— | (R+X,;)—4L 0 0
8L2[ ( 3) ]
A2G
= 0 vE [(R+X,)—4L] 0
A
0 0 @[KZ(R-FXQZ—‘I-LZ]

Piola-Kirchhoff stress tensor of the 1 kind:

T,=FTs=
#{J‘t2(R+X3)2—4L2] 0
(A +2G) 5 5 -
- 0 — [ (R+ X, —4L ](R+X3)cos(ﬁ)(2)
t(A+2G)[ , ) X e
0 W[n (R+X,P—4L ](R+X3)sm(ﬁX2)
0
A 2 2 2] . T
W[n (R+X,\—4L ]sm(ﬁXz)
A 1
e [T[2<R+X3)2—4L2]COS(EX2)

Cauchy stress tensor:

4L x§+x§

0,=0
0,;,=0

R 4L (A +26) K (3 )+ 4n xS 1
T l6m L (x4 x2) "
S xzxg[ﬂz(x§+x§)—4Lz]-an(K+2G)(x§+x§)—4kL2]

16mL(x5+x3)"
5 - |7 (4 x2) =4 L] (A +2 G) 3 (24 x2) +4 hxi L
33 7

167(L3(x§+ xi)s/2
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BOUNDARY TRACTIONS

Face EFGH before deformation lies in plane given by equation:
Unit normal of EFGH face before deformation:

Current load on EFGH referred to reference configuration:
0
A 2 2] [T
1 (R+X,)—4L |sin| =X
Q=T,N= ng[( ) ] (2L 2)
A
8L’

[(R+X3)2—4L2]cos(2—“L Xz)

Face EFGH before deformation lies in a surface given by equation: f: x§+x§—(R +H)=0

Unit normal of EFGH face after deformation: n

Vo
SV [0

Current load on EFGH_referred to current con_figuration:
0
?\y[nz(x§+x§)—4L2]

q=Tsn= 47(L(x§+x§)
}\.Z[TEZ(Xz-f' x?)—4L2]
4mL(xi+x3)

F: X,—H=0

V. F

N =
IVxF|

=[0:0,1]

X, X3

’ \/x§+x§ ’ \/x§+x§
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EXERCISE 25

Elastic deformation is given by equations:

X, konfiguracja X3 A konfiguracja
odniesienia . aktualna
AN
X =X—X, \
X, =2X,+X, ~ B
(0]
Xy = 2 X3 r— ——
X,

Current stress state is described by the Cauchy stress tensor:

x,+x, 0 0
To = 0 XZ—X3 2X3
0 2x, x§

Find the body forces as well as load vector on faces OAC and ABC referred both to current and
reference configuration.

SOLUTION:
1 -1 0
Material deformation gradienti: F=|0 2 1
0O 0 2
Jacobian determinant: J=detF=4

Since J>0 the deformation is locally invertible in all points. Deformation relations in spatial
description are as follows:

X X
X, xl—l—?2 13
X X
X 273
2 4
X
X -3
)
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BODY FORCES

Equilibrium equation is spatial description using the Cauchy stress tensor:

ox

J

00,
—L4+pb,=0 =123

According to the above relations we determine body forces vector in spatial description:

00,90, 004 +pb, = 1+pb, =0
ox, 0x, O0Ox4 : 1 b,
00, 00, 00,

+pby,= 1424pb,=0 = b
0x, O0x, O0x4 PO PO :
00, 00, 00,

+pby = 2x;+p by, =0 b
0x, Ox, 0Ox; Pos X3P Os ’

In order to find body forces in material description we need to find Piola-Kirchhoff stress tensor of

the 1 kind:

Te=JT,F =JT,f" =

0 0

2(2X,-3X,) 8X,

4(x,+x,) 0 0 4(X,+X,+X,)
=[2(x,—2x;) 2(x,—2x,) 4x,|=| 2(2X,-3X,)
x3(4_x3) x3(4_x3) 2x§ 4X3(2_X3)

4X,(2-X,)

8 X3

Equilibrium equation is material description using the Piola-Kirchhoff stress tensor of the 1* kind:

oT
0X,;

J

L +p.B,=0

i=1,23

According to the above relations we determine body forces vector in material description:

lor, T, oT,
X, 80X, 0X,
8T, T, 0T,
oX, 90X, 00X,
0T, 0Ty OT
0X, Tox, ox,

+pr B, =4+pB, =0
+ppB,=4+8+pB,=0

+prB;=16X,+p;B;=0

=

B, =
B,=

3=

4

P
12

~ Pr
16 X,

T P

Reference material density is found according to the principle of conservation of mass:
Pr=Jp=4p
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LOAD ON FACE OAC
Equation of OAC surface before deformation:

Unit normal to OAC before deformation:

Current load referred to reference configuration:

0
Q=T,N=|(2(3X,-2X,)
4X3(X3_2)

Equation of OAC surface after deformation:

Unit normal to OAC after deformation:

Current load referred to current configuration:

0
2
q=T,n= ﬁ(z X3=X,)
(o)
1
ﬁxa(x3_4)

LOAD ON FACE ABC
Equation of ABC surface before deformation:

Unit normal to ABC before deformation:

Current load referred to reference configuration:

4
T3(X|+X2+X3)
(2Xx,—-X,)

(=}
Il
=
=
Z
Il
Sle

16,

V3

Equation of ABC surface after deformation:
Unit normal to ABC after deformation:

Current load referrec_l to current configuration:
X, +x,
V2
q=T,n=|x,—x;
V2
Vax,

:X2:

V\F
Z—W:[O,—l,'()]
—x,=2-5-

f=X=ag
n__v"f: O—AL
V. /] BERERRE

F=X+X,+X;—-1=0
_ Vi F ll

AR
N‘W‘@’@’@]

f=X+X+X,~1=x+x,-1=0
_ VoS |1

"V TR R
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EXERCISE 27

Deformation is given by a displacement field:

u, = 0,002 x;—0,001 x, x,
u, = 0,004 x, x,
u; = —0,002 x3

Assuming that both displacements and strain are small and assuming constitutive elations
according to Hooke's Law for Young modulus E = 210 GPa Poisson ratio v=0,2 find:

e small strain tensor,

* stress tensor,

* body forces.

SOLUTION:

Strain tensor is found according to the geometric relations:

1[Ou, OJu, 0,004 x,— 0,001 x, —0,0005x, 0
& = E(a_x; a—;) = &=| —0,0005x, 0,004x;  0,002x,
0 0,002x, —0,004x,

Stress tensor is found according to Hooke's Law:

G=—2L _—375GPpa
2(14v)
h=—EV  _5833GPa
(1+v)(1-2v)
0, =2Ge;+Nhe, 0 =

i

0,933x,—0,233 x, —0,0875 x, 0
= —0,0875x,  0,7x;—0,0583x,+0,233x, 0,350 x, -10° [Pa]
0 0,350 x, —0,7x,—0,0583 x,+0,233 x,

Body forces are found according to the equilibrium equations:

%‘j#pb,: 0

i=1:  093310°+0+0+ph, =0 = b = _%-109

i=2:  —0,0875-10°-0,0583-10°+0+pb, =0 =  b,= %8409
i=3:  040350-10°—0,7-10°+pb,=0 = b, = _0,358'109
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EXERCISE 28

A cuboid of dimensions a, b, ¢ is made of isotropic linear elastic material. It is placed in an
undeformable (infinitely rigid) trough and compressed with uniform stress p. Find stress and strain
states (within linear theory), dimensions od cuboid after deformation, volumetric strain
(the 1*invariant of small strain tensor) and true volume change. Find extreme shear stress. Assume
no friction between faces of the cuboid and surface of trough.

b
a=10mm, b=15mm, c¢=6mm p
Ve / ‘
Young modulus E =70GPa % \
Poisson ratio v=0,35 /U
Load p =180 MPa S te
SOLUTION: < p >

Due to assumptions:

* No constraints on displacements along x, uniform compressive load on opposite faces
perpendiculartox: O,=—p, £.#0

* No load and free deformation along z direction: 0,_=0, ¢_#0

* No strain along y direction due to undeformable trough what results in compressive
reaction stress O, : eyy:O, Oyy;ﬁO

* No friction - no shear stress 0,=0_=0,=0 , so (according to Hooke's Law) no
distortion strains €,.=¢_ =¢ =0

We know stresses O, , O
Hooke's Law:

and strain €, - this allows us to find stress O, with the use of

zz

€y = %[OW_V(OZZ_FOXX)] = ny:[Esyy+V(Gzz+Gxx)] =—-Vvp=—63MPa

Stress tresor is completely determined:

O Oxy O, —p 0 0 —180 0 0
o= o, 0,/=[0 —vp 0= 0 —63 0| [MPa]
sym o., 0 0 0 0 0 0
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Stress tensor has a diagonal form if and only if it is described in the coordinate system of its
eigenaxes, what means that determined stress components are principal stresses. Extreme shear

stress may be found then as::

0,. =0 MPa
o,. =—180 MPa
|Gmax - O—min|
[Tl = 5% = 90 MPa

Unknown linear strain €_., €_ are found according to the Hooke's Law:

xx > Yzz

g = %[Oxx—v(oyy+ozz)] = %(Vz—l) = —2,256%o
£, = %[OZZ—V(OXX—FGW)] = %v(wl) = 1,215 %o
Strain tensor: )
P (2
8xx Xy Xz E (V 1) 0 0 _2,2561073 0 0
e= €, £.|= 0 0 0 = 0 0 0
sym €. 0 0 Ly(v+1) 0 0 1,215-107°
E
Dimensions of the cuboid after deformation:
a'=atag, = a(1+8yy) =a = 10 mm
b'=b+be_ = b(l—i—em) = 14,96616 mm
c'=c+ce_=c(l+¢_) = 6,00729 mm
Reference volume: V = abc = 900 mm®
Current volume: V'=a'b'c' =899,0606 mm’
A '—
True volume change: v = V' —r = —1,044 %o

V V

1% invariant of strain tensor:
0=¢ +e, +e.=—1,041%0

Comparison of two measures of volumetric strain:
AV _V'=V _a'b'c'—abc _ a(1+8xx)b(1+8yy)c(l+SZZ)—abc B

|14 V abc abc

=(1+e,)(1+e, )(1+e )—1=(e +e +e ) + & e +e e +e & +e € €

xx CyypCzz T

w2z 2z Y xx xx Zyy
-~

(]

—1,041%0—0,00274 %0 = —1,044 %o
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EXERCISE 29

Stress tensor in a certain plane system is determined as:

0:l70 -30

~30 140] [MPa]

What would be the spatial distribution of stress and strain assuming plane stress state, and what
would it be in case of plane strain state? Assume Hooke's Law with £ =70GPa , v=103

SOLUTION:

PLANE STRESS STATE (G ,;=0,,=03,=0)

70 =30 O
Stress tensor: o=|-30 140 0|[MPa]
0 0 0
Strain tensor: g, = %[(1+V)O[j—vokk6ij] =
4-107* —-5,571-10"* 0
e=|-5571-100* 1,7-107° 0 |[MPa]
0 0 -9-10°*

PLANE STRAIN STATE (g,;=£,,=€5,=0)

e3=0 = 813:%:0 = 0;3=0
2G

e, =0 = 812_&20 > 0,=0
2G

1
g, =0 = 833:E[(1+V)033_V<011+022+033)] =0 = 0, =v(0,+0,) =63 MPa

70 =30 O
Stress tensor: o=|-30 140 0 |[MPa]
0 0 63
Strain tensor: g; = %[(1 +v)o,—vo,d,] =

1,3-10°*  —=5,571-10* 0
g=[-5571-100* 1,43-10° 0|[MPa]
0 0 0
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EXERCISE 30

D c

A rectangular membrane of dimensions 2mX3m is given. Stress

state is given by a stress tensor:

3x,x,—1 —2x
o(x, ;x,)=|"""72 | [Pal
—2x, 2x,+3x, 1%

Find the body forces and surface tractions. ;CI

A B

SOLUTION:

BODY FORCES:
Body forces are found with the use of equilibrium equations:

0o 0o N
—axlll +—8x122+b1 =0 = 3x,40+5,=0 = b =-3x, l;]
900,99 1y g o a43tb=0 = b=-1 | N
ox, o0x, ° ? ? m’
Values in corners of the membrane: D

A=(0,0)

b(A4)=0, b(d)=-1 =  b(A)=1bj(4)+b5(4)=1

B=(2,0)

b(B)=0, b(B)=—-1 =  b(B)=1bj(B)+b(B)=1

C=(23) A

b1(C):_9’ bZ(C):—l = b(C): vbf(C)%—b;(C) = 9,055 body forces

SURFACE TRACTIONS :

For each boundary segment we find a relation between x; and x, as well as (external) unit normal
n. Surface tractions vector q is found according to relation q =0O-n . Sense (orientation) of the

determined load vector is respective to the assumed global coordinate system.
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Segment AB: x,€(0;2), x,=0 -unitnormal: n,=[0;—1]

on,=q - -1 -2x,/| 0 _ 2x, _ (IAB)
AB- S4B —2x, 2x, |- [—2x,] |44
* x; component of load vector is perpendicular to the unit normal

so it is a tangent component.

* Xx;component of load vector is parallel to the unit normal
so it is a normal component.

¢""(4) =0

4=(0,0): 4¢\"(4) =0,
4 ¢,"(B)=-4

B=(2,0): ¢\"(B)

Segment BC: x,=2, x,€(0;3) -unitnormal: n,.=[1;0]

0 —4 gt"c
* x; component of load vector is parallel to the unit normal
so it is a normal component.

6x,—1 -4
-4 443y,

O Nge =(pe = [

* Xx;component of load vector is perpendicular to the unit normal
so it is a tangent component.

(2

B=(2,
c=(23

0): ¢*)(B)=-1, ¢¥(B)=-4
) ¢*C)=17 ¢c)=-4

Segment CD: x1€(0;2), x,=3 -unitnormal: ng,=[0;1]

-

* x; component of load vector is perpendicular to the unit normal
so it is a tangent component.

9x,—1 —2x,
—2x, 2x,+9

—2x,
2x,+9

q(CD)
_ _|4
ONep =qep = { (cp)

q>

* Xx;component of load vector is parallel to the unit normal
so it is a normal component.

qCD)(C):—4, q(zCD)(C =13
P(D)=0 ¢;”(D)=9

69



Segment DA: x,=0, x,€(0;3) -unitnormal: n,,=[—1;0]

D C
(1) -
DA —
_ -1 0 ||—1|_(1]|_[4:
on,, =dqp, = [ 0 3x2“ 0 ]_lol_[q(zm)]
xZ
I
* x; component of load vector is parallel to the unit normal x,
so it is a normal component. A - B

* x;component of load vector is perpendicular to the unit normal
so it is a tangent component.
D=(03): ¢”(D)=1, ¢"(D)=0
4=(0,0): ¢\"(4)=1 ¢ (4)=0

Summary of the obtained results may be presented in the form of graph of normal and tangent
surface tractions:

13
A
9
4 4
D D C
| e 4-*
\
=
A A e S B
4
normal tangent
surface tractions surface tractions
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EXERCISE 31

A plane triangular membrane is given. Find the body forces and surface tractions knowing that the
stress tensor is as follows:

o(x,;x,) = 3x,—4x, 2x,x,+1 [Pal
2x,x,+1  4-2x
SOLUTION:
BODY FORCES:

Body forces are found with the use of equilibrium equations:

6011+6012
ox, O0x,
00, +6022
ox, O0x,

4h=0 = 3+2x4b=0 = b=-3-2x, [ﬂ}

+b,=0 = 2x,+b,=0 =  b,=—2x, [—]
m

Values in corners of the membrane:

B=(0;0) C=(4,0) A=(0,3)
b,(0;0) =—=3 b,(4;0)=-3 b5,(0;3)=—11
b,(0;0)=—6 b,(4;0)=0 5,(0;3)=0
SURFACE TRACTIONS: 38 1 c

Segment AB: x,=0, x,€(0;3) -unitnormal: n, ,=[—1;0]

(4B)
—4x, 1][-1 4x
on=q,, = l 12 4][012112]:[3(1/43)]
2

* x; component of load vector is parallel to the unit normal
so it is a normal component.

* x;component of load vector is perpendicular to the unit normal
so it is a tangent component.
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SegmentBC: x,€(0,4), x,=0 -unitnormal: n,.=[0;—1]

(BC)
3x 1 0 —1 9
0. = 1 —_— p—
Nge =dpc = [1 4—2x1“—1] lle_4] [q(ch)]

* x; component of load vector is perpendicular to the unit normal
so it is a tangent component.

* Xx;component of load vector is parallel to the unit normal
so it is a normal component.

G5 (0:0)=—1, g3 (4;0)=~1
qioe(0,0)=—4 g (4,0)=4

Segment CA: x,€(0,4), x2:3—%x1 - unit normal: nCA:[sina;cosa]:lé;i]

5°5
3 3
3x1—4(3—2x1) 2x1(3—2x1)+1 % %(—3x?+21x1—16) q<CA)
ONgy =(qes = 3 4|1 2 B <1CA)
2x1(3_2x1)+1 42z, S| [qg(-oxt+20x,+38)| 122

Normal component:

(positive values corresponding with the sense of unit normal)

¢ = qng, = %(—18x12+83x1—10)

End values: qdi(4;0)=272, ¢"(0;3)=-08 ® c
Zeros: ¢V=0 = x,=0,124 vV x,=4487 4487¢CA
Search for stationary points:

dq(nCA) )

T = 5s(736x483)=0 = x,=2306, ¢,"(2306)=6854
1

(c4) (c4) 21X?—276x1+370 —4
Tangent component: q.“=q.,—q¢"n, =
250 3
End | : (c4) 4’0 — 6,368 , (c4) _ 7,96
nd values q."(4,0) "a776 g\
' ' )y oy Y= |98 (ca) _
(sense according to global coordinate system) qoy(x 5y ,)= 14\ = 7.4

4,44 |
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Zeros:
V=0 o 21x’-276 x,+370=0 = x,=1,515 v x,=11,628 11,628¢C4

d quA)

Search for stationary points: =0 %(42 x,—276)=0 =  x,=6,571¢CA4

Xy
Summary of obtained results in form of graphs of normal and tangent tractions

12 A, 0,8

2,72
1| 0,124 c1
i
2,306
normal
surface traction
7,96
A
1
_+
\
\ |
\ |
+ } 7,40
L :
B

Y
-
6y}
N
(&)

- ;‘

tangent
surface traction
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EXAMPLE 32

An elastic plane is given. Dimensions: 6 m x 8 m. It is simply supported at circumference. Its
thickness is 30 cm. It is made of a material of Young modulus 32 GPa and Poisson's ratio 0,2. It is
loaded with a uniform surface load of density (accounting for dead load) 10 kN/m?.

*  Find maximum deflection with the use of:
* Finite difference Method
* trigonometric series expansion

* Compare obtained results

SOLUTION:
. _ ER
Flexural rigidity: D=———=75000 kNm
12(1-v%)

FINITE DIFFERENCE METHOD

* FMD meshsizelmx1m. s=Ax,=Ax,=1m.

* Boundary nodes has zero deflection.

* Fictious nodes are introduced outside the plate — they account for boundary conditions.
Simple support on an edge requires zero bending moment which corresponds with the
second derivative — deflection values in the fictious points must be opposite to the values
of corresponding points inside the plate.

* The system has two axes of symmetry — deflections in corresponding points must be the
same.

* As aresults we obtain 12 independent nodes.

0 0 0 0 0 0 0 0 0
r - ]
0 1 2 3 4 3 2 1 0
[ ] ‘ L] L] . L] . L] . ‘
ol 5 6 7 8 7 6 5 0
‘ . . . . . . . ‘
ol 9 10 M 12 M1 10 9 0
[ ] ‘ L] L] L] L] L ] L ] L ] ‘
0l 5 6 7 8 7 6 5 0
‘ . . L] . . . . ‘
ol 1 2 3 4 3 2 1 0
‘ L] . L] . . L] . ‘
o/ o o o0 O O O o0 O
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Governing equation is written down for each internal node:

+
dx) oxi0x:  0x; D

Vi = otw 49 o'w o'w Q(xl,xz) \va

4
20 W, —8-(0+0+ wy+ws)+2-(040+ 04 we )+ 1-(—w,— w, +ws +w,) = %

S4
20 wy—8-(0 4w+ wy+we ) +2-(0+0+wstw,) + 1-(—wyt 0+ wy +w o) = L2

20 w3 —8-(0+wy+wy+w;)+2:(0+ 0+ ws+wg )+ 1-(—wy+w, +wy+w,)

N
9%

20w, —8-(0+ ws+wy+wg )+ 2:(0+0+ws+w; )+ 1-(—wa+wy+ wy +w,) =

S|

4

20 W5_8'(W1+O+W6+W9)+2'(0+W2+O+W10)+1'<O_W5+W7+W5> == %

4
20 W6_8'(W2+ W5+ W7+W10)+ 2(W] +W3+W9+ W11)+1(0+0+W8+W6) %

S

S

)

20 W7_8'(W3+ W6+ W8+ W11)+2'<W2+ W4+W10+ W12)+1(0+W5+ W7+W7)

I
S|

~

20 wg—8-(w4+ w7+w7+w12)+2~(w3+w3+w11+w11)+1-(0+w6+w6+w8) =

ofs

4

N
©

20 W9_8'(W5+0+W10+W5)+2'<0 +W6+O+W6)+1'<W1_W9+ W11+W1) =

S|

4
20 W10_8'(W6+W9+ W11+W6)+2'(W5+W7+ W5+W7)+l'(W2+ O+W12+W2) - %

4
20 w“—8-(w7+w10+w12+w7)+2-(w6+w8+w6+w8)+1-(w3+w9+w“+w3) %
S4
20 w12—8‘(w8+w11+w11+w8)+2'(w7+w7+w7+w7)+1-(w4+w10+w10+w4) = %
n ||
18 =8 1 0 -8 2 0 0 1 0 0 0 ::1 1 1,851
-8 19 -8 1 2 -8 2 0 0 1 0 0 2 1 3,268
1 -8 20 -8 0 2 -8 2 0 0 1 o™ 1 4,130
0 2 —-16 19 0 0 4 -8 0 0 0 1| W 1 4,418
-8 2 0 0 20 -8 1 0 -8 2 0 01| Ws 1 3,115
2 -8 2 0 -8 21 -8 1 2 -8 2 0|w|l_gs'|1] o  _gs|5528
o 2 -8 2 1 -8 22 -8 0 2 =8 2| w, D |1 D | 7,007
0 0 4 -8 0 2 =16 21 0 0 4 -8 Wq 1 7,501
2 0 0 0 —-16 4 0 0 19 -8 1 0 W 1 3,5580
0o 2 0 0 4 —16 4 0 -8 20 -8 1 w 1 6,325
0 0 2 0 0 4 —16 4 1 -8 21 -8 10 1 8,025
0 0 0 2 0 0 8 —16 0 2 —16 20|"n 1 8,594
h | Wy, - 1 L
| B

4
Maximum deflection: w,,, = 8,594% = 1,146 mm



TRIGONOMETRIC SERIES EXPANSION

Deflection of a rectangular plate of dimensions L,XL, and flexural rigidity D , simply
supported at edges may be expressed with an infinite trigonometric series. For a plate loaded with
uniform surface load, the result is:

2m—17 (2n—17]"
16q(m2)+(n2)
Ly L; (2m—1)mx, . (2n—1)mx,

w(xl,xz):i i -sin I sin I

m=1 n=1 (2m_1)(2n_1)ﬂ:6D

Convergence of this series may be checked by summation up to a certain chosen maximum value
of indices m,n . Deflection will be determined in the points corresponding with nodes of the
FDM mesh:

nodes - - (UID(q/SA)
trigonometric series

FDM
N | X | X, n,m=1 n,m=1,...,3 n,m=1,...,5 n,m=1,...,,100
111 1,690 1,836 1,836 1,835 1,851
2 (2|1 3,124 3,251 3,249 3,249 3,268
313|1 4,081 4,110 4,111 4,111 4,13
4 1411 4,417 4,401 4,398 4,398 4,418
5112 2,928 3,096 3,097 3,097 3,115
6 [2]2 5,410 5,514 5,513 5,513 5,528
7 132 7,069 6,993 6,996 6,996 7,007
8 4|2 7,651 7,493 7,492 7,492 7,501
9113 3,381 3,540 3,540 3,540 3,558
10123 6,247 6,315 6,313 6,313 6,325
11133 8,162 8,018 8,020 8,020 8,025
121413 8,835 8,594 8,591 8,591 8,594

Assuming that an account for 10000 terms of the series gives us a solution which is sufficiently
close to the strict solution, we may notice that:

* FDM solution is close to the strict one — relative error is not greater than 1%

* An account for only 9 terms in trigonometric series (m,n=1,...,3) gives us an estimate
with a maximum relative error of 0,07%.
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EXAMPLE 33

There is an square elastic plate of dimensions LXL (L=2m) , clamped along two opposite
edges and simply supported along the othe two. It is loaded with a load of density given by
function

gl =L )£ sy
122 L2 2 1 2 2

where ¢, = 2kN/m® , and the beginning of

the assumed coordinate system is in the

centroid of the plate. Find the distribution of

deflection and bending moments
m., m,, m_ inthe plate with the use of Finite Difference Method. Assume the grid space
s=0,5m. Thickness of the plate #=1cm , elastic constants: Young's modulus E = 29 GPa

, Poisson's ratio v=20,2.

SOLUTION:
- ER
*  Flexural rigidity: D=——————=2517 Nm
12(1-v7)
* Grid line spacing: s=Ax,=Ax,=05m

*  We introduce fictious nodes outside the plate:
= nodal values in fictious points in case of clamped edge are the same as values in
corresponding point inside the plate.
= nodal values in fictious points in case of simply supported edge are opposite to the
values in corresponding point inside the plate.
* After accounting for the symmetry of the problem, the FDM mesh is as below:

KRRy ey, @
w
N
w
o

Load density values in nodes:
g,=¢(0,5m ; 0,5m) =500 N/m’ ¢>=¢q(0m ; 0,5m)= 1000 N/m’
¢;=¢(0,5m ; 0m) = 1000 N/m’ g,=¢q(0m ; 0m) =2000 N/m’
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DEFLECTION

Governing equation is written down for each internal node:

otw otw o'w q(x1 Xz)
Viw = +2 + ’ \VA
dx) ox;0x:  0x, D

a5

ﬂhﬁ—8(0+0+%@+wﬂ+2(0+0+0+WQ+1(—wam+Mq+wJ:=qg
4
20w,®(0+wfmm+wg+2(o+o+wﬁw%wq(—wfﬁ%+o+0%=qg
4
20w, —8+(w, +0+w,+w,)+2:(0+w,+0+w,)+1-(0+w,+w,+0) = q3DS
4
20w, —8(w, +w+w,+w,)+2-(w,+w,+w,+w,)+1:(0+0+0+0) = q;)s
We obtain a linear system of equations:
» -8 -8 2]llw| |12416107 7,082-107°
—16 20 4 —8||w,|_|24831-107 _|11,804-107°],
= 3 (M = W = -3
-16 4 22 —8||w,| [24,831-10 10,492-10
8 —16 —16 20]|y,| [49,662-107 17,487-10°°

Maximum deflection: w,, ~w,=17,487-10° m . Maximum deflection determined with the
use of FEM for a plate modeled with shell elements of maximum size of finite element equal 10 cm
(444 elements, 1171 equations) is equal 13,480-10_3 m

BENDING MOMENTS

Bending moments are found with the use of relations:

m _=-—D

»y

+v
ox’ oy’

+v
oy’ ox’

o' w 82w) (82w o*w

mm:—D( ), my,=—-D(1-v)

Second derivatives are approximated as follows:

45

P!

@
e 1 2 ). L G
GXTN.SZ 5X§N'S2 8x18x2~

@ (%F
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Bending moments in node 1:
m =—2[(0—2w1+w2)+v(w3—2w1+0)]=1,571kNm/m
S

xx,1

=——[ —2w,+0)+v(0—2w,+w,)] = 1,581 kNm/m
D
—m(l—v)[0—0+0—w4] = 0,035kNm/m

Bending moments in node 2:

mxx,Z = _2[(W1_2 W2+W1)+V(W4—2W2+O)] = _1,176 KNm/m
S

L _22[( _2W2+0)+V(W1_2W2+W1)] =—0,176kNm/m
S

m. = _43(1 - )[0—0+w3—w3] = 0kNm/m

Bending moments in node 3:

m 3=—2[(0—2w3+w4)+\/( 2w3+wl)] —0,208 kKNm/m

XX,

m,, 5 =—=(w,=2w,+w,)+v(0—2w,+w,)| = —1,208kNm/m

= 4D (1=v)[w,—0+0—w,| = 0kNm/m
S

Bending moments in node 4:
—2[(w3—2 w4+w3)+v(w2—2w4+w2)] = 0,164 kNm/m

= ——[ — 2w, w,)+Vv(w;—2w,+w,)] = 0,143kNm/m

= D (1— )[ w1+w1—w]]=0kNm/m

m
xy,1
4S
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EXAMPLE 34

There is a this square elastic plate of dimensions 1 mX1m and thickness Smm ,made of steel
of Young's modulus E = 210 GPa and Poisson's ratio v=0,2. It is clamped along a single
edge and simply supported along other edges. It is loaded with a uniform load of density

g =5 kN/m’ . Find the deflection as well as bending moments= m __, m,,, m inthe middle
of the plate with the use of Finite Difference Method. Assume the grid line spacing s=0,5m.

SOLUTION:
. _ ER
* Flexural rigidity: D=—F——-=2278,65 Nm
12(1-v*)
* Grid line spacing: s=Ax, =Ax,=05m

*  FDM mesh after accounting for boundary conditions:

00 0
7777777 |
|
|

/'O .W ‘00
2 |
|

0___0_ .o

Governing equation written down for internal node:

20 w—8(0+0+0+0)+2(0+0+0+0)+(—w+w—w—w) = L2

Deflection of a middle point:
4

4
18w =42 =45 =0007619
Sw=" = w=Ep =0 m

Bending moments:

m. =—%[(O—2w+0)+v(0—2w+0)] = w = 166,666 Nm/m
N S
m,, = —22[(0—2w+0)+v(0—2w+0)] = w = 166,666 Nm/m
S S
mxyz—%(l—v)[o+o+o+o] = 0Nm/m
S
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EXAMPLE 37

There is a square elastic membrane of thickness

h=10 cm, loaded as depicted in the figure. 5 kN/m’
Find the plane stress state in the middle of the l l l l i 1 1 l
mmebrane with the use od Finit Difference —_—— — — — — —>
Method assuming grid spacing - l 3 kN/m? T -
s=Ax=Ax,=1m l T
< N <t |-
[ 1z S IMEE
~ ) l T ] ~
- l T -
l 3 kN/m? T

N .
SOLUTION: LZ—mJ

Distribution of stresses in plane membrane is found with the use of Airy stress function, which is
defined as follows:

OF OF _ OF b b
a—xf—o'zz ﬁ—xi_on m—_ 1 X 0,X1—0,

In our case, there are no body forces, so b,=b,=0 . Airy stress function satisfies biharmonic
equation:
ViF=0

General outline of our approach is as follows:

* In any point on the boundary we chose fixed point Pq.

* We chose another point P —its location varies.

* In point P a local coordinate system (n,s) is introduced — its 1% axis (n) direction is
normal (perpendicular) to the boundary and oriented towards exterior of the membrane.
lts 2™ axis (s) is tangent to the boundary and it is oriented in the same way as oriented
curve starting in Py and ended in P.

* Consider all boundary load applied to the segment of boundary between point P, and P.
= Calculate sum of all forces in that load which are parallel to n axis defined in point P.
Let's denote it with Qn‘P (normal force).
= Calculate sum of all forces in that load which are parallel to s axis defined in point P.
Let's denote it with O |, (tangential force).

= Calculate total moment due to that load about point P. Let's denote it with M\P
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* Boundary conditions may be now written down as follows :

1 oF 1
_M - | ==
h |P aS » hQn

oF| _ 1

:__Qs

Fly = r on |p h

* Sign of Qs and Q, is determined according to the orientation of axes (n s) - contrary to
the methods used when finding cross-sectional forces in strength of materials, sign does
not depend on the orientation of ,imaginary cut surface”.

* Since boundary values of the Airy stress functions are known (calculated according to
moments), then also its directional derivatives along the direction tangent to boundary is
known and normal load makes no additional contribution in determining the values of F. As
a result we need to formulate the boundary conditions only for directional derivatives
along a direction normal to the boundary (corresponding with tangential forces). Assuming
that (n,s,z) is a right-handed system, positive moment corresponds with positive
orientation of z axis.

* We introduce a mesh of internal and boundary nodes as well as outside fictious nodes. We
consider a rectangular mesh of equal spacing in both directions.

* We write down the governing equation (biharmonic equation)
for internal nodes with the use of finite difference pattern as
shown to the right.

*  We write down the boundary conditions for normal derivative
with the use of finite difference patters for first derivatives as
below:

2

|

Il
=

LN@—@L 0 |l 0
0 x, 2s 0x, 25 on

* Equations which were written down constitute a linear system of algebraic equations for all
unknown nodal values of Airy stress function.

* In order to determine the stress components we make use of the definition of the Airy
stress function and of finite difference patterns for the second derivatives:

D
0’ ! o 1 R ]
Rl RO ORI e COR T i
O
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Initial point Po=A and local coordinate systems (n,s) are assumed as shown below:

| 5 kN/m? n
4
IRRRA T
 3kN/m? %, i

2m

2 kN/m?

- 2 kN/m?

2m
BOUNDARY AB: x,=0, x,€(0 ; 2) s, =2—x,,n,=—x,
Sum of tangent forces: 0,(s)) = h[3sl] [kN]
Sum of normal forces: 0,(s)= h[Zs1 [kN]
Moment of forces: M, (s))= h[sﬂ [kNm]
BOUNDARY BC: x,=6(0,:2), x,=0 S,=X,, 0, =—Xx,
Sum of tangent forces: O,(s,) = h[—2-2—3~s2] = h[—4—3 sz] [kN]
Sum of normal forces: 0,(s,)= h[3-2—5~s2] = h[6—5s2] [kN]
Moment of forces: M,(s,)=h 2-2-1+3-2-s2—%s§ =

= h|4+65,-2,552] [kN]

BOUNDARY CD: x,=2, x,€(0; 2) Sy =X, , ny =2+X,
Sum of tangent forces: 0.,(sy) = h[—3-2 +52 +3~s3] = h[4+3s3] [kN]
Sum of normal forces: 0,5(s55) = h[=2:2=3-242-5;| = h[-10+2355] [kN]
Moment of forces: M(s;) = h|2:2-(1=5,)43-2:2-5-2.1-3-2-5,+ 53| =

h[6-10s3+s2] [kNm]
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BOUNDARY BC: x,€0,2), x,=2 S, =2—x,,n,=2+x,

Sum of tangent forces: 0,(s,) = h|2:24+3-2-2:2-3-5,] = h|6-33,| [kN]
Sum of normal forces: 0,(s,) = h[—3-2+5-2+ 3-2—5-s4] = h[10—5s4] [kN]

Moment of forces:

M,(s,)= hl—z-z-l+3-2-(2—s4)—3.2-2—5-2-(1—s4)+3-2-s4+2-2-1—§s§

=h

—10+10s4—%si] [kNm]




EQUATION FOR INTERNAL NODES:
20Fy — 8(Fyu+Fy+Fyu+Fy) + 2 (Fy+Fis+Fy+Fy) + (FotFatFyutFy,) =0

EQUATIONS FOR BOUNDARY NODES:

BOUNDARY AB
1
FIIZZMH = F,, =0 [kN]
1
Fio =3 M > Fy=1 [kN]
1
Fia =5 M1 > Fo=4 [kN]
oF oF 1 1
on |, oxl|, & — —(Fp—F,) =—3 [kN
ony i, 0x, |, h Oslho = zs( 2 20) [kN/m]
BOUNDARY BC
1
FB:EMB = F,,=75 [kN]
1
Fu= ZM” =  Fy;3 =06 [kN]
oF oF 1 1
om b, ox,h & — = (Fp—=Fy)=—(=7) kN
0N,y 0X, b3 h Qibs - 2s ( 2 02) ( ) [kN/m]
BOUNDARY CD
1
F32:ﬁM32 = F,=-3 [kN]
1
F31=zM31 = F,=-10 [kN]
oF OF 1 1
an3 32 axl 32 h Qs 32 = ZS( 24 22) [ /m]
BOUNDARY DA
1
FZIZZMZI > F,,=-25 [kN]
oF oF 1 1
Ong,ly  0X,ly hQ”l = 2S( 42 22) [kN/m]
KNOWN BOUNDARY VALUES
F,, F, F, F,, F F., F,, F,
0 1 4 7,5 6 3 -10 25
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We obtain a linear system for unknown nodal values of the Airy stress function:

20F,, — 8(7,5+1-3=25) + 2(4+6+0—10) + (Fpy+F+Fyy+F,)=0

1
_ﬁ(Fzz_on) =-3
1
_ﬂ(Fzz_Foz) =7
1
ﬂ(Fm_Fzz) ==7

In a matrix form:

11 20 1 1)|Fe| [24] Fo, =155
01 —1 0 0 Fx -6 Fp=-45
1 0 -1 0 O||F,|=]| 14 = F,,=15

00 -1 1 OfF, —14 F,y=-125
00 —1 0 1_-F42 -6 Fo=—45

Stress state in the middle of the membrane:

O’F _ 1
011 = 2 = _2[F12_2F22+F32] = 2 [kPa]

ox, s

O’F _ 1
022: B :_2[F21_2F22+F23]:_5 [kPa]

X S
o’F 1

Op= = 2[F11_F13_F31+F33] =3 [kPa]

_5x16x2 45

For the above problem a strict solution may be found. Since there are no body forces, the load is
symmetric and uniform, then stress state distribution must be equal — it is given by a stress tensor:

o:lg _35] [kPa

It satisfies both equilibrium equations as well as boundary conditions. Such a stress state
corresponds with the Airy function of the form:

F(x,, x,)= —%x? + x5 —3x,x,

Biharmonic equation is an equation of the 4™ order. The above solution is determined with the use
of statical boundary conditions which are conditions for the 2" order derivatives — in order to get a

unique solution we would need also boundary conditions for the function itself or also for 1*
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derivatives. We should note that adding to the function F terms which depend at most on the 1%
powers of independent variables also satisfies the governing equation and result in the same stress
state. Those terms may be chosen in such, that the values of the Airy stress function were the
same as those determined by FDM. Finally we may write:

F(x,,x,)=— %x? +x;=3x,x,+6x, —4x,+4

Values of the strict solution are the same as those found by the use of FDM:

Fp=F(1;,-1)=155
F,=F(-1;1)=-45
F,=F(1;1)=1,5
F,,=F(3,1)=-125
Fo= F(1,3)=-4,5
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EXAMPLE 38

6 kN/m
1731 w!rsz \ wasiw w?;ziw b { 31 o
There is a rectangular elastic membrane of f wf
thickness /1 =20cm , loaded as shown in the g :f £
figure. Find the shear stress in node 22 with the 2 & o ¥ o7 ° z1§ g
use of Finite Difference Method and assumed ‘°f :f ©
mesh( Ax,=Ax,=05m ). tl} 12 113 112 ﬁn

SOLUTION:
Shear stress is determined by the Airy stress function according to relation:

O'F

Op ==
0x,0x,

Mixed derivative is approximated by a finite difference pattern as below:

o .
0x,0x, 45°

1
[012]22 N_4—S2 Fi+Fy—F,—Fs

According to the assumed mesh it can be noted that shear stress in node 22 may be determined
with the use of boundary values only, which in turn are determined by moments of external load
about chosen boundary points. Accounting for symmetry of the system we obtain:

n
33y ¥32 31 33 32 731

| S f
| € | j
\ = 2,25 kNm
JE= |22 21f < 23 "3 kNm 21
‘ s

|

13 2 11 13 12 11
J} — — e n

| >

n
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Boundary values of Airy stress function:

F, = Afl“ =0 [kN]
F,= A;” =0 [kN]
F, = Mh“ =0 [kN]
F,= Mh” =15 [kN]

Shear stress in node 22:

1

(0], ~ _4—S2 F+Fy,—F, —Fy|=15kPa
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EXAMPLE 39

There is a rectangular elastic membrane of
thickness 4 , loaded as shown in the figure.
Find the distribution of horizontal normal stress in
the middle cross-section of the membrane with
the use of Finite Difference Method assuming

s=Ax, =Ax,

SOLUTION:

FDM mesh accounting for the symmetry is as follows.

g [kN/m?]

YV VvV V V V¥

4s

151 152 53 54

o o ¢ .

‘41 142 143 144

L
Ta1

132 133 34

o« o e o |
(21 122 123 24

o——o—o
"1 12 13 14

o o o o |
01 '02 '03 04

15 |

Boundary values of the Airy stress function as well as of its derivatives are found assuming the
initial point in the middle of bottom edge of the membrane:

0 0 0
|

\

|

\

| QS _a_F
‘ h on
i} 0

4qs
4qs
4qs

4qs

e 0
Q” = a_F [ ] 0
h os
)] 0 0
-4qs

104



We may reduce the number of unknown nodal values by accounting for the condition of zero
normal derivatives:

0, OF 1

:_% :z_S(Fm_le):O = Fo=1y
1

h
0, OF 1

:_E :Z(Foz_Fzz):O = Fop=F,
12

0, OF 1

=5 :_(FGI_F4I):O = Fo=Fy

h onls, 2s

Simplified FDM mesh is as follows:

41 142 143 144

51 52 153 (54 |55
) ®
41 142 43 |44 |45 146
? { ] ® L L °
31 132 133 134 |35 136

) o
(21 22 (23 (24 |25 |26

11 112 [13 (14 115

21 22 23 '24

INTERNAL POINT:

20F ,—8(F |+ Fypt Fyt Fy

20 Fpp—
20 Fpy—
20 Fpy—
20 Fyy—
20 Fyy—
20 Fyy—
20 Fyy—
20F, —
20 F,,—
20 Fyy—
20 F,—

2({F 4 F o+ Fat Fy)+(Fy+ F o+ Fpu+Fy)
2(F\ +F 3+ Fy+ Fy) +(F oyt Fop+ F oy +F )
2(F\+ F iyt F ot Fyy)+(Fost Foy+ Fos+F )
2(F 3+ F 5t F iy Fg )4 (Foyt Fop+ Fog+ F )
2(F22+F22+F42+F42) (F +F33+F33+F51)
2(Fy+ Foy+ Fyyt Fug)+(F y+ Fypt Fy+Fs,)
2(Fypt Foyt Fopt Fo)+(F i3+ Fy + F ot Fy)
2(F )+(F )
2( )+( )
2( )+( )
2( )+ )
2( )+( )

)
F i+ Fy+Fyt Fy)
F 3+ F oyt Fout F)
1t F oyt Fos+Fyy )+
Fy+Fy+Fy+F,)
8(Fyp+ Fyt+ Fyy+F )
)

)

)

)

)

)

+
8( +
8( +
8(F
E
8(Fy+Fyt Fy+Fy
8(F
8
8(

8
8(F

+
+
+

ut FytFas+ Fuy)+
Fy+FyptFut+Fs)+
Fo+F +F;+Fg)+
Fy+Fp+F o+ Fg)+
ut FygtFust+Fsy)+

3t Fost Figt Fus) HF iyt Fpt+ Fyt+Fs,
FoptFyptFotFsg)H(Fyy+FatFgtFy,
Fy+Fu+Fg+Fs)+H Fypt+F o+ Fyu+Fy,
Fot+ Fy+Fo+Fo)t(Fput+Fagt+tFystFy
Fyut+ Fy+ Fo+ Fo)H Foyu+ Fpt+t Fy+Fay

Il
SCoocoococoococooo
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BOUNDARY POINTS:

oF| _OF| _
Onls 0X s
oF| _oF| _
onls  0Xss
oF| _ oF| _
8n45_8x145_

Governing system of linear equations:

21
-8
1
0

|
o0

S OO OO O~ OO

-16 2
22 =8
-8 21
1 -8
4 0
-8 2
2 -8
0 2
0 0
1 0
0 1
0 0
0 0
0 0
0 0

0
1
-8

SO P OO O OO oo O~ OO O

-8

4

S oo OoON

1

K

1

2s

1

K
0 o0
2 0
-8 2
2 -8
2 0
-8 1
20 -8
-8 20
0 0
2 0
-8 2
2 -8
0 0
0 -1
0 0

=l =N eleleleol SelaoNeoleleoRe e

1 0 0
0 1 0
0 0 1
0 0 0
-8 4 0
2 -8 2
0 2 =8
0 0 2
21 —-16 2
-8 22 -8
1 -8 21
0 1 -8
0 0 0
0 0 0
0 0 0

N el leleleoleBelaloReol=Ne o]

The results are depicted below (values of the Airy stress function are divided by gs?):

-6,628

-7,127

-7,660

]
1,318 3,446 4,648 5,040 4,648 3,446 1,318
®
-2,000 | 1,500 4,000 5,500 6,000 5,500 4,000 1,500
]
-2,000 | 1,318 3,446 4,648 5,040 4,648 3,446 1,318
-2,000 | 0,873 2,288 2,967 3,174 2,967 2,288 0,873
-2,000 | 0,340 0,938 1,122 1,170 1,122 0,938 0,340
-2,000 | 0000 0000 0000 0000 0000 0000 0000
0,340 0,938 1,122 1,170 1,122 0,938 0,340

-2,000

-2,000

-2,000

-2,000

-2,000

-6,628

-7,127

-7,660
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Stresses in the middle cross-section of the membrane:

O], = ;—2(F21—2F11—F21) =2,340¢g

O], = %(FH—ZFZI—FM) =0,834¢

(Ol = Sl—z(F21—2F3]—F41) =-0,138¢

Oyl = %(F31—2F41—F51) — —0,9064 o830
O], = ;—2(F41—2F51—F41) =-1,92g¢ 2,340 g € |

The results may be compared with FEM solution — a membrane of dimensions 8 m x 4 m, was
divided into 3200 square membrane elements of maximum element size equal 10 cm
(6639 equations). Obtained distribution of stresses in the middle cross-section of the membrane is
as follows:

| 2,308 g

1,042 q

2,604q €

|
One may also compare it with estimate provided by assumption that the membrane is a simply-

supported Bernoulli-Euler beam. Beam of length L and rectangular cross-section bXh , where
h = L/2 ,gives us a symmetric and linear distribution of stress:

bL* |
M,,=1
max 8
3q
b(LI2)
W =
6
Mmax
Gmax = W = 3q
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Better estimate may be obtained with the use of formulas known from course of strength of
materials by assuming different span length (e.g. Distance between resultants of the loads applied
to the bottom edge):

2 2
M
max Qb(78/8L) W = —b<L6/2) = Oax = V;ﬂx = 2,297q

Generally, the Bernoulli-Euler beam model is not recommended to be used for beams for which

L:h<10 . For beams for which 4<L:h<10 the Timoshenko beam model may be used. For
even higher beams one should use membrane models. However, it can be noticed that in some
cases even a beam model provides a sufficiently good estimate.

108



