
PODSTAWY TEORII SPRĘŻYSTOŚCI – ZADANIA

EXERCISE 2

Find the eigenvelues and eigenvectors of the following tensor:

T= [√2 0 −1
0 √2 −1
−1 −1 √2]

SOLUTION:
1st invariant: I = T 11+T 22+T 33= √2+√2+√2= 3√2

2nd invariant:
II=∣T 11 T 12

T 21 T 22∣+∣T 22 T 23
T 32 T 33∣+∣T 11 T 13

T 31 T 33∣=
=∣√2 0

0 √2∣+∣√2 −1
−1 √2∣+∣√2 −1

−1 √2∣= 2+1+1=4

3rd invariant: III=∣T 11 T 12 T 13
T 21 T 22 T 23
T 31 T 32 T 33

∣=∣√2 0 −1
0 √2 −1
−1 −1 √2∣= 0

Secular equation: T 3−I T 2+II T−III = 0 ⇒ T 3−3√2T 2+4T = 0

T (T 2−3√2T+4)= 0 ⇒

T=0
∨

T=
3√2−√(−3√2)2−4⋅4⋅1

2
= √2

∨

T=
3√2+√(−3√2)2−4⋅4⋅1

2
= 2√2

We have three distinct eigenvalues – three one-dimensional, mutually orthogonal eigensubspaces
correspond with them, namely we may find three mutually orthogonal eigenvectors u ,v ,w .

FINDING THEE EIGENVECTORS – METHOD I

Eigenvectors corresponding with T 1=0 :

   (T−T 1I )⋅u = 0 ⇔ [√2−0 0 −1
0 √2−0 −1
−1 −1 √2−0][u1u2u3]= [

0
0
0]

Since the corresponding eigensubspace is one-dimensional (considered eigenvalue is a single root
of  the secular  equation),  one of the components of the eigenvector may be assumed to be a
parameter. Let it be u3 . We chose now any two from the above equations, e.g. the 1st and the
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2nd one, and we determine the remaining components of the eigenvector with the use u3 :

{√2u1−u3 = 0√2u2−u3= 0
⇒ {u1= u3

√2

u2=
u3
√2

⇒ u=[ u3√2 ; u3√2 ; u3]

We calculate the length of this vector, and then we normalize the vector:

∣u∣= √u12+u22+u32 = √ u322 +u322 +u32 = u3√2 ⇒ t1=
u
∣u∣

= [12 ; 12 ; 1√2 ]
Eigenvectors corresponding with T 2=√2 :

(T−T 2 I)⋅v= 0 ⇔ [√2−√2 0 −1
0 √2−√2 −1
−1 −1 √2−√2][v1v2v3]= [

0
0
0]

Since the corresponding eigensubspace is one-dimensional (considered eigenvalue is a single root
of  the secular  equation),  one of the components of the eigenvector may be assumed to be a
parameter. Let it be v1 . We chose now any two from the above equations, e.g. the 1st and the 3rd

one (the 2nd one is identical with the 1st one), and we determine the remaining components of the
eigenvector with the use v1 :

{−v3 = 0−v1−v2= 0
⇒ {v3= 0v2=−v1

⇒ v=[v1 ;−v1 ; 0 ]

We calculate the length of this vector, and then we normalize the vector:

∣v∣= √v12+v22+v32= √v12+(−v1)2+02= v1√2 ⇒ t2 =
v
∣v∣

= [ 1√2 ;− 1

√2
; 0]

Eigenvectors corresponding with T 3=2√2 :
The 3rd of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t 3= t1×t2 : it will be already normalized and its sense (orientation) will
be such that the sequence of vectors t1 , t2 , t 3 will constitute a right-handed coordinate system:

t 3= t1×t2= [ 12 ; 12 ; 1√2 ]×[ 1√2 ;− 1

√2
; 0]= [ 12 ; 12 ;− 1

√2]
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FINDING THEE EIGENVECTORS – METHOD II

Eigenvectors corresponding with T 2=√2 T 1=0 :

   (T−T 1I )⋅u = 0 ⇔ [√2 0 −1
0 √2 −1
−1 −1 √2][u1u2u3]= [

0
0
0]

The above system of equations may be interpreted as a system of three dot products which are
equal to 0 – these are products of the vector u and three vectors, the components of which are
equal the coefficients from the three rows of the matrix of coefficients. Since all three dot products
are equal to 0, this means that u is perpendicular to those vectors – in particular, vector  u
may be found as a cross-product of any two vectors composed from the rows of the matrix of
coefficients. Cross-product will be perpendicular to both of them. Since the determinant of the
matrix of coefficients is equal to 0, it means that the triple product of three vectors represented by
rows of that matrix is also 0. A 0 triple product of three vectors means that those vectors are
coplanar, so a vector perpendicular to any two of them will be also perpendicular to the third one.
Let's chose e.g. first two rows:

u =[√2 ; 0 ;−1]×[0 ; √2 ;−1]= [√2 ; √2 ; 2 ]

Vector is then normalized: t1=
u
∣u∣

= [√2 ; √2 ; 2 ]
√2+2+4

= [ 12 ; 12 ; 1√2 ]
Eigenvectors corresponding with T 2=√2 :

(T−T 2 I)⋅v= 0 ⇔ [ 0 0 −1
0 0 −1
−1 −1 0 ][ v1v 2v3]= [

0
0
0]

We chose the 1st and the 3rd row (the 1st and the 2nd row give us parallel vectors, and a cross-
product of parallel vectors is a zero vector which cannot be considered an eigenvector):

v =[0 ; 0 ;−1]×[−1 ;−1 ; 0] = [−1 ; 1 ; 0 ]

Vector is then normalized: t2 =
v
∣v∣

= [−1 ; 1 ; 0 ]
√1+1+0

= [− 1

√2
;
1

√2
; 0]

Eigenvectors corresponding with T 3=2√2 :

The 3rd of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t 3= t1×t2 : it will be already normalized and its sense (orientation) will
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be such that the sequence of vectors t1 , t2 , t 3 will constitute a right-handed coordinate system:

t 3= t1×t2= [ 12 ; 12 ; 1√2 ]×[− 1

√2
;
1

√2
; 0]= [− 1

2
;− 1

2
;
1

√2]
REMARK:
We can observe that eigenvectors obtained with the use of those two methods have different
orientation – it  does not matter,  since each vector which is parallel to an eigenvector (also an
opposite vector) is also an eigenvector and the choice of orientation is a matter of agreement.

TRANSITION MATRIX
Transition matrix is defined as follows: A : Aij= ti⋅e j

Component ij of the transition matrix is the j-th component of the i-th eigenvector in the original
coordinate system. Let's use the results obtained with the use of the method I:

A = [ 1 /2 1/2 1/√2
1/√2 −1/√2 0
1 /2 1/2 −1/√2]

Transition matrix has the following properties:
• i-th row of a transition matrix is an i-th eigenvector represented in the basis of the original

coordinate system.
• J-th column of a transition matrix is an j-th basis vector of the original coordinate system

represented in the basis of eigenvectors
• sum of squares of entries in each column is equal to 1 (vectors of the original basis are

normalized)
• sum of squares of entries in each row is equal to 1 (eigenvectors are normalized)
• dot product of any two distinct columns is equal to 0 (vectors of the original  basis are

mutually orthogonal)
• dot product of any two distinct rows is equal to 0 (eigenvectors are mutually orthogonal)
• determinant of the transition matrix is equal to 1 (it is an orthogonal matrix)

The transition matrix may be used in order to transform the representation matrix of a tensor from
the original coordinate system to the system of eigenaxes of the tensor:

T ' = A⋅T⋅AT

A⋅T⋅AT= [ 1 /2 1/2 1 /√2
1/√2 −1/√2 0
1 /2 1/2 −1/√2]⋅[√

2 0 −1
0 √2 −1
−1 −1 √2]⋅[

1/2 1/√2 1 /2
1/2 −1/√2 1 /2
1/√2 0 −1 /√2]=

  = [ 0 0 0
1 −1 0
√2 √2 −2]⋅[ 1 /2 1/√2 1/ 2

1 /2 −1/√2 1/ 2
1/√2 0 −1/√2]= [

0 0 0
0 √2 0
0 0 2√2]
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EXERCISE 3

Find the eigenvalues and eigenvectors of the following tensor: T=[102 36 0
36 123 0
0 0 75]

SOLUTION:
1st invariant: I=102+123+75=300

2nd invariant: II =∣102 36
36 123∣+ ∣102 0

0 75∣+∣123 0
0 75∣= 28125

3rd invariant:  III =∣102 36 0
36 123 0
0 0 75∣= 843750

Secular equations: T 3−I T 2+II T−III = 0 ⇒ T 3−300T 2+28125T−843750= 0

Roots  of  the  secular  equations  may  be  found  numerically  or  with  the  use  of  the  Cardano's
formulae:

T 1=150 , T 2=75 , T 3=75

FINDING THEE EIGENVECTORS – METHOD I
Eigenvectors corresponding with T 1=150 :

   (T−T 1I )⋅u = 0 ⇔ [102−150 36 0
36 123−150 0
0 0 75−150][u1u2u3]= [

0
0
0]

Since the corresponding eigensubspace is one-dimensional (considered eigenvalue is a single root
of  the secular  equation),  one of the components of the eigenvector may be assumed to be a
parameter. We cannot chose u3 , since the 3rd equation gives us u3=0 . Let's chose u1 to be
a parameter. We chose any two from the above equations and we solve them trying to express the
remaining components with the use of u1 . Equations 1 and 2 are the same. We will chose the 1 st

and the 3rd equation:

{−48u1+36u2= 0
−75u3= 0

⇒ {u2 = 43 u1u3 = 0
⇒ u=[u1 ; 43 u1 ; 0]

We calculate the length of this vector, and then we normalize the vector:

∣u∣= √u12+u22+u32= √u12+169 u12+02= 5
3
u1 ⇒ t1=

u
∣u∣

= [35 ; 45 ; 0]
Eigenvectors corresponding with T 2=T 3=75 :

   (T−T 2 I)⋅v= 0 ⇔ [102−75 36 0
36 123−75 0
0 0 75−75][v1v2v3]= [

0
0
0]
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Since  for  a  double  eigenvalue  the  corresponding  eigensubspace  is  two-dimensional,  so  two
unknown components of the eigenvector are assumed to be independent parameters. We will
obtain a two-parameter family of eigenvectors, corresponding with T 2=T 3 - all of them will lie
in a plane which is perpendicular to t1 . Among them we will chose any two, which are mutually
orthogonal and which constitute (together with t1 ) a right-handed coordinate system. We will
do it is such a way, that one of those vectors will be determined by an arbitrary choice of the value
of parameters (they cannot be all equal to 0), the remaining one will be determined with the use
of th cross-product of the two already known.

The third equation suggests that one of the parameters should be v3 ,  since this equation is
satisfied always, for any value of v3 . Let's choose v1 as the second parameter. We shall choose
any equation (except the third one). In fact equations 1 and 2 are equivalent one to another. We
have then:

{27v1+36v2 = 0v3− dowolne
⇒ {v2 =−3

4
v1

v3− dowolne
⇒ v=[v1 ;−34 v1 ; v3]

We may choose any eigenvector,  corresponding to e.g. v1=0 , v3=1 .  Such an eigenvector  is
already normalized.

t1= [0 ;0 ;1]

The 3rd of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t 3= t1×t2 : it will be already normalized and its sense (orientation) will
be such that the sequence of vectors t1 , t2 , t 3 will constitute a right-handed coordinate system:

t 3= t1×t2= [ 35 ; 45 ; 0]×[0 ; 0 ; 1] = [45 ;−35 ; 0]

FINDING THEE EIGENVECTORS – METHOD II

Eigenvectors corresponding with T 1=150 :

   (T−T 1I )⋅u = 0 ⇔ [−48 36 0
36 −27 0
0 0 −75][u1u2u3]= [

0
0
0]

We choose the vectors corresponding with the 1st and the 3rd row of matrix (the 1st and the 2nd

would give us parallel vectors). Their cross-product:

u =[−48 ; 36 ; 0 ]×[0 ; 0 ;−75] = [−2700 ;−3600 ; 0 ]
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Vector is then normalized:

t1=
u
∣u∣

= [−2700 ;−3600 ; 2 ]

√27002+36002+0
= [− 2700

4500
;− 3600
4500

; 0]= [− 35 ;− 4
5
; 0]

Eigenvectors corresponding with T 2=T 3=75 :

   (T−T 2 I)⋅v= 0 ⇔ [27 36 0
36 48 0
0 0 0][v1v2v3]= [

0
0
0]

Vectors corresponding with the 1st and the 2nd row are parallel, and the 3rd row corresponds with a
zero vector. We will  look for the eigenvector in another way – we can notice, that the vectors
corresponding with the first two rows have their third component equal to 0, so they both lie in
plane (x1 , x2) .  A  vector  which  is  perpendicular  to  them (and  which  is  satisfying  the  above
system of equations) is the vector:

t2 =[0 ; 0 ;1]

The 3rd of the eigenvectors must be perpendicular to the other two, so it can be determined as a
cross product of them t 3= t1×t2 : it will be already normalized and its sense (orientation) will
be such that the sequence of vectors t1 , t2 , t 3 will constitute a right-handed coordinate system:

t 3= t1×t2= [− 3
5
;−4
5
; 0]×[0 ; 0 ; 1] = [− 4

5
;
3
5
; 0]

TRANSITION MATRIX

Using the results obtained with the use of the method II:

A = [−3/5 −4/5 0
0 0 1

−4/5 3/5 0]
Check:

A⋅T⋅AT= [−3/5 −4/5 0
0 0 1

−4/5 3/5 0]⋅[102 36 0
36 123 0
0 0 75]⋅[−3/5 0 −4 /5

−4/5 0 3 /5
0 1 0 ]=

  = [−90 −120 0
0 0 75

−60 45 0 ]⋅[−3/5 0 −4 /5
−4/5 0 3 /5
0 1 0 ]= [150 0 0

0 75 0
0 0 75]
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EXERCISE 4

Find the eigenvalues and eigenvectors of the following tensor: T= [ 34 −12
−12 41 ]

SOLUTION:

Eigenvalues:

T 1=
T 11+T 12
2

+√(T 11−T 222 )
2

+T 12
2 = 50

T 2 =
T 11+T 12
2

−√(T 11−T 222 )
2

+T 12
2 = 25

An angle between axis x1 and the axis corresponding to the first (larger) eigenvalue:

ϕ = arctg
T 12

T 1−T 22
= arctg(− 4

3 )≈−53,13∘

Eigenvectors:

t1= [cosϕ ; sinϕ]= [ 35 ;− 4
5 ]

t2 =[−sinϕ ; cosϕ] = [ 45 ; 35 ]

Transition matrix:

A = [ cosϕ sin ϕ
−sin ϕ cosϕ]= [3 /5 −4 /5

4 /5 3 /5 ]
Check:

A⋅T⋅AT= [3/5 −4/5
4 /5 3/5 ]⋅[ 34 −12

−12 41 ]⋅[ 3/5 4 /5
−4/5 3/5]= [30 −40

20 15 ]⋅[ 3/5 4 /5
−4 /5 3/5]=[50 0

0 25]
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EXERCISE 5

A  simply-supported  beam  is  given.  Its  length  is L ,  it  has  a  rectangular  cross-section  of
dimensions b×h and it  is  loaded with a  uniformly distributed load of  density q .  Find the
pricipal stresses and their orientation for any point of the beam. 

• What is the direction of maximum principal stress near the edge of the cross-section in the
middle od the span of the beam?

• What is the direction of maximum principal stress in the center of the cross-section above
supports?

SOLUTION:

Stress state in any cross-section is of the following form: σ( x , y , z )=[σ( x , z ) τ(x , z)
τ( x , z ) 0 ]

Normal stress: σ( x , z )=
M y( x )
I y

z

Shear stress: τ(x , z) =
Q z (x) S y (z )

b I y

Bending moment distribution: M y ( x) =
qL
2
x−
q
2
x 2=

qx
2
(L−x )

Shear force distribution: Q z( x ) =
qL
2
−q x = q( L2−x)

2nd moment of area of the cross-section: I = bh3

12

Statical moment of a part of cross-section: S y( z) = b( h2−z)(z+
h
2
−z

2 )= b
2[ h

2

4
−z 2]

Stress state components distribution: σ( x , z )=
M y( x )
I y

z = 6 q
b h3

z x (L−x )

τ(x , z) = 6q
b h3( L2− x)(h

2

4
−z2)
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Principal stresses:

σmax=
σ 11+σ22
2

+√(σ11−σ 22

2 )
2

+σ 12
2 = 1

2
[σ+√σ2+4τ2]

       = 3q
bh3 [ zx (L−x )+√z2 x 2(L− x)2+4( L2− x)2( h24 −z2)

2]
σmin =

σ11+σ22
2

−√(σ11−σ22
2 )

2

+σ12
2 = 1

2
[σ−√σ 2+4 τ2 ]

       = 3q
bh3 [ zx (L−x )−√z2 x 2(L− x)2+4( L2− x)2( h24 −z2)

2]
An angle between axis of maximum principal stress and the axis of the beam:

tg ϕ=
σ12

σmax−σ 22
= 2 τ

σ+√σ2+4 τ2
=

4(L2−x)( h
2

4
−z2)

zx(L−x )+√z2 x2(L−x )2+4( L2−x)2( h24 −z 2)2
 

Direction of maximum principal stress near the edge of the cross-section in the middle od the span
of the beam:

tgϕ(x=L2 ; z= h2)= 0 ⇒ ϕ=0∘

Direction of maximum principal stress in the center of the cross-section above supports

tgϕ (x=0 ; z=0)= 1 ⇒ ϕ=45∘

In the picture below, the orientation of maximum (red) and minimum (blue) principal  stress is
marked. Length of lines of that markings is proportional to the magnitude of corresponding stress.
Trajectories of the principal stress can be  seen.
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EXERCISE 8

Deformation is given in material description. 

{x1 = X 1−X 3

x2 = 2 X 2

x3 = X 3

a) Check if these relation are invertible. If so, find deformation relations in spatial description.
b) Find displacement field in both spatial and material description.
c) Make a sketch of an actual configuration.
d) What would be the shape of material fiber AG after deformation? What is its length?
e) What is an equation of BCGF surface after deformation?
f) What is the surface area of BCGF face before and after deformation?

SOLUTION:
Invertibility is checked by calculating the Jacobian determinant:

J =∣
∂ x1

∂ X 1

∂ x1

∂ X 2

∂ x 1

∂ X 3

∂ x2

∂ X 1

∂ x2

∂ X 2

∂ x 2

∂ X 3

∂ x3

∂ X 1

∂ x3

∂ X 2

∂ x 3

∂ X 3

∣=∣1 0 −1
0 2 0
0 0 1 ∣= 2

Determinant J>0 ,  so  the  relations  are  locally  invertible.  These  are  linear  equations  with
respect to material coordinates, so it can be solved, to obtain following result:

{X 1 = x1+x3

X 2 =
1
2
x2

X 3 = x3

DISPLACEMENT FIELD
• material description:

{u1(X) = x1 ((X))−X 1 =−X 3

u2(X) = x2((X))−X 2 = X 2

u3(X) = x 3((X))−X 3 = 0

• spatial description:

{u1(x) = x1−X 1(x) =−x3

u2(x )= x2−X 2 (x) =
1
2
x2

u3(x) = x3−X 3(x) = 0
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Theory of elasticity and plasticity

DEFORMATION

Point A: X A=[0 ;0 ; 0]→x A=[0 ;0 ;0] Point B:      XB=[1 ; 0 ;0]→xB=[1 ;0 ;0]
Point C: XC=[1 ;2 ;0 ]→xC=[1 ; 4 ;0 ] Point D:      X D=[0 ;2 ;0 ]→xD=[0 ; 4 ;0 ]
Point E: XE=[0 ;0 ;1]→xE=[−1 ; 0 ;1] Point F:       XF=[1 ;0 ;1]→xE=[0 ;0 ;1]
Point G: XG=[1 ;2 ;1]→xG=[0 ;4 ;1] Point H:      XH=[0 ;2 ;1]→xH=[−1 ; 4 ;1]

Reference configuration Actual configuration

⇒

DEFORMATION OF LINE AG
Line containing A and G before deformation is given by parametric equations:

AG : XAG (λ) =X A+λ(XG−XA)= {X 1 = λ
X 2 = 2λ
X 3 = λ

λ∈〈0 ; 1〉

Fibre length before deformation:

∣AG∣= ∫
AG

d S =∫
AG

√d X 1
2+d X 2

2+d X 3
2 =∫

0

1 √( d X 1

d λ )
2

+(d X 2

d λ )
2

+( d X 3

d λ )
2

d λ =

∫
0

1

√12+22+12 d λ = √6∫
0

1

d λ = √6

After deformation the line may be described as:

AG : xAG(λ)= {x1 = X 1−X 3

x2 = 2 X 2

x3 = X 3

= {x1 = 0
x2 = 4 λ
x3 =λ

λ∈〈0 ; 1〉

Fibre length after deformation

∣AG∣= ∫
AG

d s= ∫
AG

√d x1
2+d x2

2+d x3
2 =∫

0

1 √(d x1

d λ )
2

+(d x2

d λ )
2

+(d x3

d λ )
2

d λ =

∫
0

1

√0+42+12 d λ = √17∫
0

1

d λ = √17
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Theory of elasticity and plasticity

The length of the AG fibre may be also calculated with the use of an integral over a reference
configuration. In order to do that, we need to determine the material deformation gradient F and
material deformation tensor C:

F = [1 0 −1
0 2 0
0 0 1 ]  C= FTF = [ 1 0 0

0 2 0
−1 0 1][

1 0 −1
0 2 0
0 0 1 ]= [

1 0 −1
0 4 0
−1 0 2 ]

The relation between an infinitely small linear element before deformation  d S = √d X id X i

and after deformation d s is as follows:

d s= √C ij d X i d X j

The length of the fibre is calculated with the use of an integral over a reference configuration (we
are using the parametrization of a curve before deformation):

∣AG∣= ∫
AG

d s= ∫
AG

√C ij d X i d X j =∫
0

1

√C ij d X i

d λ
d X j

d λ
d λ =

=∫
0

1 √C11(d X 1

dλ )
2

+C22(d X 2

d λ )
2

+C33(d X 3

d λ )
2

2C 23

d X 2

d λ
d X 3

d λ
+2C31

d X 3

d λ
d X 1

d λ
+2C12

d X 1

d λ
d X 2

d λ
d λ =  

=∫
0

1

√1⋅(1)2+4⋅(2)2+2⋅(1)2+2⋅0⋅2⋅1+2⋅(−1)⋅1⋅1+0⋅1⋅2d λ =∫
0

1

√17d λ = √17∫
0

1

d λ = √17
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DEFORMATION OF BCGF FACE

Face BCGF before deformation is a face perpendicular to X 1 axis and containing point for which
X 1 = 1 . An equation of surface containing BCGF face is:

BCGF : X 1 − 1 = 0

Surface area of face BCGF before deformation is calculated by a double definite integral:

AR= ∬
BCGF

d AR= ∫
X 2=0

2

∫
X 3=0

1

d X 2 d X 3 = 2

Surface  containing  BCGF face may  be found by  expressing  material  coordinates  in  the  above
equation in terms of spatial ones, according to inverted relations X (x) :

BCGF : X 1 − 1 = 0
x1+x3 − 1 = 0

Integral in actual configuration may be calculated by expressing the area of infinitely small surface
element after deformation by the area  of infinitely small surface element before deformation:

d A= d AR⋅J⋅√(NT⋅F−1)T⋅(NT⋅F−1)

Inverse of material deformation gradient (spatial deformation gradient):

F−1 = f = [1 0 1
0 0,5 0
0 0 1]

Unit normal vector for BCGF face: N =[1 ; 0 ; 0 ]T

NT⋅F−1=[1 ; 0 ; 0 ]⋅[1 0 1
0 0,5 0
0 0 1]=[1 ; 0 ; 1]

(NT⋅F−1)T⋅(NT⋅F−1) = [101]⋅[1 ; 0 ; 1]= 2 ⇒ √(NT⋅F−1)T⋅(NT⋅F−1)= √2

J = det F= 2

Surface area of face BCGF after deformation is calculated by a double definite integral:

A = ∬
BCGF

d A= ∬
BCGF

J √(NT⋅F−1)T⋅(NT⋅F−1)d AR= ∫
X 2=0

2

∫
X 3=0

1

2√2d X 2d X 3 = 4√2
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Theory of elasticity and plasticity

EXERCISE 9

Deformation is given in material description. 

{x1 = X 1

x2 = X 2+2 X 1
3

a) Check if these relation are invertible. If so, find deformation relations in spatial description.
b) Find displacement field in both spatial and material description.
c) Make a sketch of an actual configuration.
d) What would be the shape of material fiber AC after deformation? What is its length?

SOLUTION:

Invertibility is checked by calculating the Jacobian determinant:

J =∣ ∂ x1

∂ X 1

∂ x1

∂ X 2

∂ x2

∂ X 1

∂ x2

∂ X 2

∣=∣ 1 0
6 X 1

2 1∣= 1

Determinant J>0 , so the relations are locally invertible. It is easy to find inverse relations:

{X 1 = x1

X 2 = x2−2 x1
3

DEFORMATION

Point A: X A=[0 ;0]→xA=[0 ;0] Point B:      XB=[0,5 ;0]→xB=[0,5 ;0,25]
Point C: XC=[0,5 ;0,25]→xC=[0,5 ;0,5] Point D:      X D=[0 ;0,25]→xD=[0 ;0,25]

Reference Actual
configuration configuration
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Theory of elasticity and plasticity

DISPLACEMENT FIELD

• material description:

{u1(X)= x1((X))−X 1 = 0

u2(X)= x2((X))−X 2 = 2 X 1
3

• spatial description:

{u1(x )= x1−X 1(x) = 0

u2(x)= x2−X 2(x) = 2 x1
3

DEFORMATION OF FIBER AC

Line containing A and C before deformation:

AC : XAC = XA+λ(XC−XA) ⇔ {X 1 = 0,5λ
X 2 = 0,25λ

λ∈〈0 ; 1〉

Length of AC before deformation:

∣AC∣=∫
AC

d S= ∫
AC

√d X 1
2+d X 2

2 = ∫
λ=0

1 √(d X 1

d λ )
2

+(d X 2

d λ )
2

d X 1 =∫
0

1

√(0,5)2+(0,25)2 d λ =

= √5
4
∫
0

1

d λ = √5
4

≈ 0,560

Accounting for deformation relations:

AC : x={x1 = X 1

x2 = X 2+2 X 1
3

⇔ {x1 = 0,5λ
x2 = 0,25λ+2(0,5λ)3 = 0,25λ+0,25λ3

Length of AC after deformation:

∣AC∣=∫
AC

d s=∫
AC

√d x1
2+d x 2

2 = ∫
λ=0

1 √(d x2

d λ )
2

+( d x 2

d λ )
2

dλ =∫
0

1

√(0,5)2+(0,25+0,75λ 2)2 d λ ≈ 0,723
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Theory of elasticity and plasticity

The length of the AC fibre may be also calculated with the use of an integral over a reference
configuration. In order to do that, we need to determine the material deformation gradient F and
material deformation tensor C:

F = [ 1 0
6 X 1

2 1]  C= FTF = [1 6 X 1
2

0 1 ][ 1 0
6 X 1

2 1]= [36 X 1
4+1 6 X 1

2

6 X 1
2 1 ]

The relation between an infinitely small linear element before deformation  d S = √d X id X i

and after deformation d s is as follows:

d s= √C ij d X i d X j

The length of the fibre is calculated with the use of an integral over a reference configuration (we
are using the parametrization of a curve before deformation):

∣AC∣=∫
AC

d s=∫
AC

√C ij d X i d X j=∫
0

1

√C ijd X id λ
d X j

dλ
d λ =

=∫
0

1 √C11(d X 1

d λ )
2

+ C22(d X 2

dλ )
2

+ 2C12

d X 1

d λ
d X 2

d λ
d λ =  

=∫
0

1

√(36 X 1
4+1)⋅(0,5)2 + 1⋅(0,25)2 + 2⋅(6 X 1

2)⋅0,5⋅0,25 =∫
0

1

√9 X 1
4 + 1,5 X 1

2+0,3125d λ =

=∫
0

1

√9⋅(0,5λ)4 + 1,5(0,5λ)2+0,3125d λ =

=∫
0

1

√0,5625λ4 + 0,375λ2+0,3125d λ = 0,723  
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Theory of elasticity and plasticity

EXERCISE 11

Deformation is given in material description: 

{x1 = X 1−X 3+2
x2 =−2 X 1+X 2−X 3+4
x3 = X 1+X 3

a) Check if these relation are invertible. If so, find deformation relations in spatial description.
b) Find displacement field in both spatial and material description.
c) Make a sketch of an actual configuration.
d) What would be the shape of material fiber BC after deformation? What is its length?
e) What is an equation of ABC surface after deformation?
f) What is the volume of the body before and after deformation?

SOLUTION:

Invertibility is checked by calculating the Jacobian determinant:

J =∣
∂ x1

∂ X 1

∂ x1

∂ X 2

∂ x1

∂ X 3

∂ x2

∂ X 1

∂ x2

∂ X 2

∂ x2

∂ X 3

∂ x3

∂ X 1

∂ x3

∂ X 2

∂ x3

∂ X 3

∣=∣ 1 0 −1
−2 1 −1
1 0 1 ∣= 2

Determinant J>0 ,  so  the  relations  are  locally  invertible.  These  are  linear  equations  with
respect to material coordinates, so it can be solved, to obtain following result:

{X 1 =
1
2
x1+

1
2
x3−1

X 2 =
1
2
x1+x2+

3
2
x3−5

X 3 =−1
2
x1+

1
2
x3+1
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Theory of elasticity and plasticity

DISPLACEMENT FIELD
• material description:

{u1(X)= x1((X))−X 1 =−X 3+2
u2(X)= x2((X))−X 2 =−2 X 1−X 3+4
u3(X)= x3((X))−X 3 = X 1

• spatial description:

{u1(x) = x1−X 1(x) =
1
2
x1−

1
2
x3+1

u2(x )= x2−X 2(x) =−1
2
x1−

3
2
x3+5

u3(x) = x3−X 3(x )=
1
2
x1+

1
2
x 3−1

DEFORMATION
  Point A: X A=[0 ;0 ; 0]→x A=[2 ; 4 ;0]
  Point B: XB=[2 ; 4 ;0]→xB=[4 ;4 ;2]
  Point C: XC=[0 ;4 ;4 ]→xC=[−2 ;4 ; 4]
  Point D: X D=[0 ;4 ; 0]→xD=[2 ;8 ;0]

Reference configuration Actual configuration

⇒

DEFORMATION OF FIBER BC
Line containing B and C before deformation:

XBC (λ) =XB+λ(XC−XB) ⇔ {X 1 = 2+λ(0−2)= 2−2 λ
X 2 = 4+λ(4−4)= 4
X 3 = 0+λ(4−0)= 4λ

λ∈〈0,1〉

Length of BC before deformation:

∣BC∣=∫
K

d S =∫
K
√d X 1

2+d X 2
2+d X 3

2 = ∫
λ=0

1 √(d X 1

d λ )
2

+(d X 2

d λ )
2

+( d X 3

d λ )
2

d λ =

=∫
0

1

√(−2)2+0+(4)2 d λ = 2√5∫
0

1

λ = 2√5
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Theory of elasticity and plasticity

Curve containing B and C after deformation:

x (λ)={x1 = X 1−X 3+2
x2 =−2 X 1+X 2−X 3+4
x3 = X 1+X 3

⇔ {x1 = 4−6 λ
x2 = 4
x3 = 2+2λ

λ∈〈0,1〉

Length of fiber BC after deformation may be calculated in two ways:
• integral along deformed BC curve in actual configuration
• integral along undeformed BC line in reference configuration with the use of deformation

tensor

Length of BC after deformation:

The 1st approach:

∣BC∣=∫
K

d s=∫
K
√d x1

2+d x2
2+d x3

2 = ∫
λ=0

1 √(d x1

dλ )
2

+(d x2

d λ )
2

+(d x3

d λ )
2

dλ =

=∫
0

1

√(−6)2+0+(2)2 d λ = 2√10∫
0

1

λ = 2√10

The 2nd approach:

Deformation gradient: Deformation tensor:

F = [
∂ x1

∂ X 1

∂ x1

∂ X 2

∂ x1

∂ X 3

∂ x2

∂ X 1

∂ x2

∂ X 2

∂ x2

∂ X 3

∂ x3

∂ X 1

∂ x3

∂ X 2

∂ x3

∂ X 3

]= [ 1 0 −1
−2 1 −1
1 0 1 ] C= FT⋅F= [ 6 −2 2

−2 1 −1
2 −1 3 ]

∣BC∣=∫
K

d s=∫
K
√C ij d X id X j= ∫

λ=0

1

√C ij d X i

d λ
d X j

d λ
d λ =

=∫
0

1

√C11

d X 1

d λ
d X 1

d λ
+C12

d X 1

d λ
d X 2

d λ
+ ... + C33

d X 3

d λ
d X 3

d λ
d λ =

=∫
0

1

√[6⋅(−2)⋅(−2)]+ 2[(−2)⋅(−2)⋅0 ] + 2[2⋅(−2)⋅4] + [1⋅0⋅0 ] + 2 [(−1)⋅0⋅4 ] + [3⋅4⋅4]d λ =

∫
0

1

√24−32+48d λ = 2√10

In the sum with respect to ij  indices (inside the square root) we've made us of symmetry of C :

C ij
d X i
dλ

d X j

d λ
= C ji

d X j

d λ
d X i
dλ
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Theory of elasticity and plasticity

DEFORMATION OF FACE ABC

Equation of a surface perpendicualr to vector n=[a , b , c] is: a X 1+b X 2+c X 3+d = 0

Normal vector of a surface may be found as a cross product of two vectors connecting three non-
collinear point on that surface:

A⃗B= [2 ;4 ;0] A⃗C = [0 ; 4 ; 4] ⇒ n= A⃗B× A⃗C = [16 ;−8 ;8]  

Any parallel  vector may be chose, e.g.: n=[2,−1,1] .  Equation of plane containing ABC face
before deformation is:

2 X 1−X 2+X 3+d = 0

Parameter d is found with the use of condition that point A, B and C belong to that plane. Writing
down this condition for A gives us: 2⋅0−0+0+d=0 ⇒ d=0 .  It  can be checked that this
equations is satisfied also by coordinates of B and C. Equation of plane ABC before deoformation:

ABC : 2 X 1−X 2+X 3 = 0

Equation  of  plane  containing  ABC  face  before  deformation is  obtained  by  substitution  of
X = X(x) :

ABC : 2⋅( 1
2
x1+

1
2
x3−1)−(1

2
x1+x2+

3
2
x3−5)+(− 1

2
x1+

1
2
x3+1)= 0

        −x2+4 = 0

VOLUME CHANGE

Reference volume  is equal the volume of a pyramid:

V = 1
3
⋅P p⋅H=1

3
⋅(1

2
⋅2⋅4)⋅4= 16

3

It can be calculated also by a triple integral:

V R=∭
V R

d V R= ∫
X 1=0

2

∫
X 2=2 X 1

4

∫
X 3=0

X 2−2 X 1

d X 1 d X 2 d X 3 = ∫
X 1=0

2

∫
X 2=2X 1

4

[ X 2−2 X 1 ]d X 1d X 2 =

= ∫
X 1=0

2 [ X 2
2

2
−2 X 1 X 2]

X 2=2 X 1

4

d X 1 =∫
0

2

[8−8 X 1+2 X 1
2]d X 1 = [8 X 1−4 X 1

2+2
3
X 1

3]
0

2

= 16
3

Actual volume: V=∭
V

d V =∭
V R

J d V R

Since the Jacobian determinant is constant (equal in each point) it can be put outside integral:

V = J∭
V R

d V R= J⋅V R =
2⋅16

3
= 32

3

© CC-BY-NC-SA 3.0 PL - Paweł Szeptyński 2020 11



Theory of elasticity and plasticity

EXERCISE 12

Elastic cube of side length 2 undergoes deformation according to equations:

{x1 = X 1

x2 = X 2+X 3

x3 = X 3
2

What will the change of length of material curve given by equations:

{X 1 = 2 (1−λ)
X 2 = 2λ
X 3 = 2λ2

, λ ∈(0,1)

SOLUTION:

Length  of  the  curve  before  deformation  is  calculated  as  a  line  integral  along  reference
configuration of that curve:

Lr=∫ d S =∫
0

1 √(d X 1

d λ )
2

+( d X 2

d λ )
2

+(d X 3

d λ )
2

d λ =∫
0

1

√(−2)2 +(2)2 + (4 λ)2 d λ =  

=∫
0

1

√8+16λ2 d λ = arsinh √2 + √6≈ 3,5957  

In order to find its length after deformation we will need deformation gradient and deformation
tensor:

F = [
∂ x1

∂ X 1

∂ x1

∂ X 2

∂ x1

∂ X 3

∂ x2

∂ X 1

∂ x2

∂ X 2

∂ x2

∂ X 3

∂ x3

∂ X 1

∂ x3

∂ X 2

∂ x3

∂ X 3

]= [1 0 0
0 1 1
0 0 2 X 3

]  
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Theory of elasticity and plasticity

Deformation tensor:

C= FT⋅F= [1 0 0
0 1 1
0 1 4 X 3

2+1]
Length of the curve after deformation is calculated as a line integral of deformed line elements
along reference configuration of that curve:

L =∫ d s=∫ √C ij d X id X j=∫
0

1

√C ij d X id λ
d X j

d λ
d λ =  

=∫
0

1

√C11

d X 1

d λ
d X 1

d λ
+C12

d X 1

d λ
d X 2

d λ
+ ... + C33

d X 3

d λ
d X 3

d λ
d λ =  

=∫
0

1

√1⋅(−2)2 + 1⋅(2)2 + 1⋅(2)⋅(4λ)+ 1⋅(4λ)⋅(2) + (4 X 3
2+1)⋅(4 λ)2d λ =  

=∫
0

1

√1⋅(−2)2 + 1⋅(2)2 + 1⋅(2)⋅(4 λ) + 1⋅(4λ)⋅(2)+ (4(2 λ2)2+1)⋅(4λ)2d λ =  

=∫
0

1

√256λ6+16 λ2+16λ+8d λ ≈ 6,5666

In the above integral  parametric  equations of  the curve were substituted in place of  material
coordinates – values of these coordinates for points on the curve along which we are integrating
are given be those equations.

Curve length before deformation: L r≈ 3,5957

Curve length after deformation: L ≈ 6,5666
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EXERCISE 13

Cylinder of heigth 2m and diameter of base 2m undergoes deformation accordint to relations:

{
x1 = X 1

x2 = X 2 +
1
4
X 3

2

x3 = X 3(1−1
4
X 2

3)
 

Find the surface area of the top face of the cylinder before and after deformation and length of a
material fiber which has a shape of circular arc lying in the top face in distance 0,5m from the axis
of the cylinder and contained in the 1st octant of the assumed coordinate  system.

SOLUTION:

CHANGE OF LENGTH OF A CURVE:

Length of a fiber before deformation is equal quater of circumference of a circle of radius 0,5m:

LR=
2π R

4
≈ 0,7854 m  

In order to find its length after deformation we will need deformation gradient:

F = [
∂ x1

∂ X 1

∂ x1

∂ X 2

∂ x1

∂ X 3

∂ x2

∂ X 1

∂ x2

∂ X 2

∂ x2

∂ X 3

∂ x3

∂ X 1

∂ x3

∂ X 2

∂ x3

∂ X 3

]= [1 0 0

0 1
X 3

2

0 − 3
4
X 2

2 X 3 1− 1
4
X 2

3]
Jacobian  determinant J = 1 + 3

8
X 2

2 X 3
2 − 1

4
X 2

3 is  positive  in  each  point  of  reference

configuration.
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Theory of elasticity and plasticity

Deformation tensor:

C= FT⋅F= 1
16[16 0 0

0 16 + 9 X 2
4 X 3

2 X 3(8−12 X 2
2+3 X 2

5)
0 X 3(8−12 X 2

2+3 X 2
5) 16−8 X 2

3+X 2
6+4 X 3

2]  

The  curve  before  deformation  may  be  parametrized  with  the  use  of  angular  coordinate  of  a
cylindrical coordinate system:

{X 1 = r cosϕ
X 2 = r sinϕ
X 3 = z

⇔ {r = √X 1
2+X 2

2

ϕ= arctg
X 2

X 1

z= X 3

⇒ K :{r=0,5
ϕ∈(0 ;π

2 )
z=2

 

Curve length after deformation:

L =∫ d s=∫√C ij d X i d X j= ∫
0

π/2

√C ij

d X i

d ϕ
d X j

d ϕ
dϕ  

Non-zero terms in the sum inside the square root (accounting for symmetry):

C11

d X 1

dϕ
d X 1

d ϕ
= (1)⋅(−r sinϕ)2 = r2 sin2ϕ  

C22

d X 2

d ϕ
d X 2

d ϕ
= [1 + 9

16
(r sinϕ)4 z2]⋅(r cosϕ)2  

2C23

d X 2

d ϕ
d X 3

d ϕ
= z

16
[8−12 (r sinϕ)2+3(r sin ϕ)5 ]⋅(r cosϕ)⋅0 = 0

C33

d X 3

d ϕ
d X 3

d ϕ
= 1

16
[16−8(r sinϕ)3+(r sinϕ)6+4 z2 ]⋅0 = 0  

The integral is calulated accounting for fixed values of r and z :

L = ∫
0

π/ 2

√C ij d X i

d ϕ
d X j

d ϕ
d ϕ= ∫

0

π /2

√r2 sin2ϕ + [1+ 9
16

(r sin ϕ)4 z2]r 2 cos2ϕd ϕ =

=∫
0

π/2

√ 1
4

sin 2ϕ+ 1
4[1+ 9

64
sin4ϕ]cos2ϕdϕ ≈ 0,7888  

Length of a fiber after deformation: L ≈ 0,7888 m  
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CHANGE OF SURFACE AREA:

Surface area of top face before deformation is the area of a circe of radius 0,5m:
AR= πR2 = 3,1416 m 2  

Relation between differential surface elements is as follows:

d A= J √(NT⋅F−1)⋅(NT⋅F−1)T d AR

Jacobian determinant: J = 1 + 3
8
X 2

2 X 3
2 − 1

4
X 2

3

Unit normal vector for the face before deformation: NT= [0 ;0 ;1]

Spatial deformation gradient: F−1 = [
1 0 0

0
1
J (1−

1
4
X 2

3) −X 3

2 J

0
3 X 2

2 X 3

4 J
1
J
]

NT⋅F−1= [0 3X 2
2 X 3

4 J
1
J ]  

(NT⋅F−1)⋅(NT⋅F−1)T = 1

J 2(1+ 9
16
X 2

4 X 3
2)  

J √(NT⋅F−1)⋅(NT⋅F−1)T = √1+ 9
16
X 2

4 X 3
2

We will again use cylindrical coordinates. The integral may be expressed as:

A =∬
A

d A=∬
AR

J √(NT⋅F−1)⋅(NT⋅F−1)T d AR= ∫
r=0

R

∫
ϕ=0

2π

J √(NT⋅F−1)⋅(NT⋅F−1)T r d ϕd r =  

= ∫
r=0

R

∫
ϕ=0

2π

√1+ 9
16

(r sin ϕ)4 z 2 r d ϕd r

We calculate the integral accounting for fixed value of z :

A = ∫
r=0

R

∫
ϕ=0

2π

√r 2+ 9
4
r 6sin4ϕd ϕd r≈ 3,5136 m 2

Surface area of top face after deformation: A ≈ 3,5136 m 2
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EXERCISE 15

Perform polar decomposition of deformation gradient for a deformation given by equations:

{x1 = 1,2 X 1+0,8 X 2

x2= 0,6 X 2+1,5 X 3

x3= 1,4 X 1+X 3

How stretch tensors and rotation tensor deform a material fibre dX =[1,0 ,0] ?

SOLUTION:

Deformation gradient: F = [1,2 0,8 0
0 0,6 1,5
1,4 0 1 ]

Deformation tensor: C= FTF = [1,2 0 1,4
0,8 0,6 0
0 1,5 1 ][1,2 0,8 0

0 0,6 1,5
1,4 0 1 ]=[3,40 0,96 1,4

0,96 1 0,90
1,4 0,90 3,25]

Eigenvalues are found numerically:
C1= 0,582 C2= 1,923 C3= 5,145

Eigenvectors of C
Eigenvector corresponding with C1= 0,582

(C−C 1 I)⋅u= 0 ⇒ [2,818 0,96 1,4
0,96 0,418 0,90
1,4 0,90 2,668][u1u2u3]= [

0
0
0]

u =[2,818 ; 0,96 ; 1,4]×[0,96 ; 0,418 ; 0,90] = [0,279 ;−1,192 ; 0,256]

c1=
u
∣u∣

= [0,223 ;−0,953 ; 0,204]

Eigenvector corresponding with C2= 1,923

(C−C2 I)⋅v= 0 ⇒ [1,477 0,96 1,4
0,96 −0,923 0,90
1,4 0,90 1,327][v1v2v3]= [

0
0
0]

v =[1,477 ; 0,96 ; 1,4]×[0,96 ;−0,923 ; 0,90 ]= [2,156 ; 0,0147 ;−2,284 ]

c2=
v
∣v∣

= [0,686 ; 0,00469 ;−0,727]

Eigenvector corresponding with C3= 5,145
c3= c1×c2= [0,692 ; 0,303 ; 0,655]
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Transformation matrix from original coordinate system to system of eigenvectors of C :

A = [0,223 −0,953 0,204
0,686 0,00469 −0,727
0,692 0,303 0,655 ]

Stretch tensor in eigenvector coordinate system:

U 2= C ⇒ U[ω] = [√0,582 0 0
0 √1,923 0
0 0 √5,145]= [0,763 0 0

0 1,387 0
0 0 2,268]

Inverse of stretch tensor in eigenvector coordinate system:

U[ω]
−1 = [1/0,763 0 0

0 1/1,387 0
0 0 1/2,268]= [1,311 0 0

0 0,721 0
0 0 0,441]

Right stretch tensor in original coordinate system:

U = AT⋅U[ω]⋅A = [1,778 0,317 0,371
0,317 0,901 0,296
0,371 0,296 1,739]

Inverse of right stretch tensor in original coordinate system:

U−1 =AT⋅U[ω]
−1⋅A = [ 0,616 −0,184 −0,100

−0,184 1,231 −0,170
−0,100 −0,170 0,625 ]

Rotation tensor will be found as R = F⋅U−1 , yet U−1 must be expressed in original cordinate
system. Rotation tensor in original coordinate system:

R = F⋅U−1 = [ 1,2 0,8 0
0 0,6 1,5

−1,4 0 1 ]⋅[
0,616 −0,184 −0,100
−0,184 1,231 −0,170
−0,100 −0,170 0,625 ]= [

0,592 0,764 −0,257
−0,261 0,483 0,836
0,762 −0,428 0,485 ]

Left stretch tensor in original coordinate system:

V = R⋅U⋅RT= [1,322 0,072 0,571
0,072 1,544 0,470
0,571 0,470 1,551]  

CHECK

• R⋅U = [ 0,592 0,764 −0,257
−0,261 0,483 0,836
0,762 −0,428 0,485 ]⋅[1,778 0,317 0,371

0,317 0,901 0,296
0,371 0,296 1,739]=[1,2 0,8 0

0 0,6 1,5
1,4 0 1 ]= F

• UT= U ⇒ U is symmetric
• detR = 1 ⇒ R is orthogonal
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DEFORMATION OF MATERIAL FIBRE dX =[1,0 ,0] :

Stretch before rotation:

U⋅dX = [1,778 0,317 0,371
0,317 0,901 0,296
0,371 0,296 1,739][100]= [1,7780,317

0,371]
Rotation after stretch:

F⋅dX =R⋅(U⋅dX) = [ 0,592 0,764 −0,257
−0,261 0,483 0,836
0,762 −0,428 0,485 ][1,7780,317

0,371]= [1,201,4]
Rotation before stretch:

R⋅dX = [ 0,592 0,764 −0,257
−0,261 0,483 0,836
0,762 −0,428 0,485 ][100]= [ 0,592−0,261

0,762 ]
Stretch after rotation:

F⋅dX =V⋅(R⋅d X)= [1,322 0,072 0,571
0,072 1,544 0,470
0,571 0,470 1,551][ 0,592−0,261

0,762 ]= [1,201,4]
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EXERCISE 16

Perform polar decomposition of deformation gradient for a deformation given by equations:

{x1 = 2 X 1−X 2

x2= 2 X 1+4 X 2

How stretch tensors and rotation tensor deform a material fibre which was initially parallel to the
first eigenvector of right stretch tensor?

ROZWIĄZANIE:

Deformation gradient: F = [2 −1
2 4 ]

Deformation tensor: C= FT⋅F= [8 6
6 17]

Eigenvalues of deformation tensor: C1=
C11+C22
2

+√(C11−C222 )
2

+C12
2 = 20

C2=
C11+C22

2
−√(C11−C 22

2 )
2

+C12
2 = 5

Angle between horizontal axis and first eigenaxis of C :

ϕ=arctg
C 12

C1−C22
= arctg2 ≈ 63,43∘

Eigenvectors of deformation tensor: c1=[cosϕ ; sin ϕ]= [ 1√5 ; 2√5 ]
c2= [−sinϕ ; cosϕ]= [− 2

√5
;
1

√5 ]

Transformation matrix: A = [ cosϕ sin ϕ
−sin ϕ cosϕ]= [ 1

√5
2
√5

−
2

√5
1

√5 ]≈ [ 0,4472 0,8944
−0,8944 0,4472]

Stretch tensor in the eigenvector coordinate system:

U[ω] = [√C1 0

0 √C2]= [2√5 0
0 √5]≈ [4,472 0

0 2,236]
Inverse of stretch tensor in the eigenvector coordinate system:

U[ω]
−1 = = [ 1√C1 0

0
1

√C2 ][
√5
10

0

0
√5
5
]≈ [0,2236 0

0 0,4472]
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Right stretch tensor in original coordinate system:

U =AT⋅U[ω]⋅A = [ 6√5 2
√5

2

√5
9

√5 ]≈ [ 2,683 0,8944
0,8944 4,025 ]

Inverse of right stretch tensor in original coordinate system:

U−1 = AT⋅U[ω]
−1⋅A = [ 9√550 − √5

25

− √5
25

15√5
25

]≈ [ 0,4025 −0,08944
−0,08944 1,342 ]

Rotation tensor in original coordinate system:

R = F⋅U−1 = [2 −1
2 4 ]⋅[ 9√550 − √5

25

− √5
25

3√5
25

]= [ 2√5 − 1
√5

1

√5
2

√5 ]= [cos(26,57∘) −sin(26,57∘)
sin(26,57∘) cos (26,57∘) ]≈

≈ [ 0,4472 0,8944
−0,8944 0,4472]

Left stretch tensor in original coordinate system:

V = R⋅U⋅RT= [√5 0
0 2√5]≈ [2,236 0

0 4,472]
CHECK

• R⋅U = [ 2√5 − 1
√5

1

√5
2

√5 ]⋅[
6
√5

2
√5

2

√5
9

√5]=[2 −1
2 4 ]= F

• UT= U ⇒ U is symmetric
• detR = 1 ⇒ R is orthogonal

 

DEFORMATION OF MATERIAL FIBRE
Material fibre of unit length which is parallel to the first eigenaxis of right stretch tensor is given by
first eigenvector of deformation tensor:

dX = c1= [cosϕ ; sin ϕ] = [ 1√5 ; 2√5]=[0,4472 ;0,8944]  
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Stretch before rotation:

U⋅dX = [ 6√5 2
√5

2

√5
9

√5][
1
√5
2

√5]= [24]
Rotation after stretch:

F⋅dX =R⋅(U⋅dX) = [ 2√5 −1
√5

1

√5
2

√5 ][24]= [ 02√5]
Rotation before stretch:

R⋅dX = [ 2√5 −1
√5

1

√5
2

√5 ][
1
√5
2

√5]= [01]
Stretch after rotation:

F⋅dX = V⋅(R⋅d X)= [√5 0
0 2√5][01]= [ 02√5]

© CC-BY-NC-SA 3.0 PL - Paweł Szeptyński 2020 6

x
1

x
2

Stretch along
eigenaxis of U

Stretch along
eigenaxis of V

Rotation with R

Rotation with R

x
1

x
2

x
1

x
2

x
1

x
2

26,57°

26,57°

1

2√
5

1

2√
5



Theory of elasticity and plasticity

EXERCISE 21

Deformation of a cube of unit side length is give as follows:

{x1 = 1,2 X 1

x2= 1,2 X 2

x3= 0,6 X 3−0,2 X 1−0,2 X 2

It  is  made  of  isotropic  linear  elastic  material  of  Poisson
ratio ν=0,3 and  Young  modulus E = 10 kPa (these
constants correspond with relation TS (E) ). Find current
configuration of cube and determine current load of EFGH
face  in  current  configuration  and  referred  to  reference
configuration.

SOLUTION:

Invertibility of equations is checked:

F ij =
∂ x i
∂ X j

⇒ F = [ 1,2 0 0
0 1,2 0

−0,2 −0,2 0,6] J = det F= 0,864

Jacobian determinant J>0 in all points. Relations are invertible.

ACTUAL CONFIGURATION

A : x(0 ;0 ; 0)=[0 ;0 ;0]T B : x(1 ;0 ;0)=[1,2 ;0 ;0]T

C : x (1 ;1 ;0)=[1,2 ;1,2 ;0]T D : x(0 ;1 ;0)=[0 ;1,2 ;0]T

E : x (0 ;0 ;1)=[0 ; 0 ;0,6]T F : x (1 ;0 ;1)=[1,2 ;0 ;0,4]T

G : x(1 ;1 ;1)=[1,2 ;1,2 ;0,2]T H : x (0 ;1 ;1)=[0 ;1,2 ;0,4 ]T
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DISPLACEMENT VECTOR

Displacement vector in material description:

u i= x i−X i ⇒ {u1= 0,2 X 1

u2 = 0,2 X 2

u3=−0,4 X 3−0,2 X 1−0,2 X 2

STRAIN STATE

Green – de Saint-Venant strain tesnor is determined according to geometric relations:

E ij=
1
2( ∂ ui∂ X j

+
∂u j
∂ X i

+
∂ uk
∂ X i

∂ uk
∂ X j
) ⇒

E1=
1
2( ∂ u1

∂ X 1

+
∂ u1

∂ X 1

+
∂ u1

∂ X 1

∂u1

∂ X 1

+
∂u2

∂ X 1

∂ u2

∂ X 1

+
∂u3

∂ X 1

∂ u3

∂ X 1
)= 0,24

E12=
1
2( ∂ u1

∂ X 2

+
∂ u2

∂ X 1

+
∂ u1

∂ X 1

∂u1

∂ X 2

+
∂ u2

∂ X 1

∂u2

∂ X 2

+
∂ u3

∂ X 1

∂u3

∂ X 2
)= 0,02

   ...

E= [ 0,24 0,02 −0,06
0,02 0,24 −0,06
−0,06 −0,06 −0,32] [-]

STRESS STATE

Piola–Kirchhoff stress tensor of the 2nd kind is found with the use of the Hooke's Law:

Kirchhoff modulus: G = E
2(1+ν)

= 3,846 kPa

Lame parameter: λ = E ν
(1+ν)(1−2 ν)

= 5,769 kPa

S ij= 2G E ij +λ Ekk ⇒  
S 11= 2G E11+ λ(E11+E22+E33) = 3,577 kPa
S 12= 2G E12= 0,154 kPa

   ...

TS= [ 2,769 0,154 −0,462
0,154 2,769 −0,462
−0,462 −0,462 −1,538] [kPa ]

Piola – Kirchhoff stress tensor of the 1st kind:

TR= F⋅TS = [ 1,2 0 0
0 1,2 0

−0,2 −0,2 0,6][ 2,769 0,154 −0,462
0,154 2,769 −0,462
−0,462 −0,462 −1,538]= [ 3,323 0,185 −0,554

0,185 3,323 −0,554
−0,862 −0,862 −0,738] [kPa ]
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Cauchy stress tensor:

Tσ=
1
J
TR⋅F

T=

=
1

0,864 [ 3,323 0,185 −0,554
0,185 3,323 −0,554

−0,862 −0,862 −0,738][
1,2 0 −0,2
0 1,2−0,2
0 0 0,6]=[

4,815 0,456 −0,598
0,456 4,815 −0,598

−0,598 −0,598 −0,513] [kPa]

LOAD ON EFGH FACE

Current load referred to reference configuration:

Equation of plane containing EFGH face before deformation: F : X 3−1= 0

Unit normal vector of EFGH face before deformation: N =
∇X F

∣∇X F∣
= [0,0 ,1]

Current load on face EFGH referred to reference configuration:

Q= TR⋅N = [ 3,323 0,185 −0,554
0,185 3,323 −0,554
−0,862 −0,862 −0,738]⋅[001] = [−0,554

−0,554
−0,738] [ kPa]

Current load referred to current configuration:

Equation of plane containing EFGH face after deformation are obtained in such a way that in the
equations of that plane before deformation we introduce inverted deformation relations:

{x1 = 1,2 X 1

x2= 1,2 X 2

x3= 0,6 X 3−0,2 X 1−0,2 X 2

⇔ {X 1= 0,833 x1

X 2= 0,833x 2

X 3= 1,667 x3+0,278 x1+0,278 x2

 
Equation of plane containing face EFGH after deformation:

          f : X 3−1= 1,667 x3+0,278 x2+0,278 x1−1= 0

Unit normal vector of EFGH face after deformation:    n =
∇ x f

∣∇ x f ∣
= [0,162 , ; 0,162 ; 0,973]

Current load on face EFGH referred to current configuration:

q = Tσ⋅n= [ 4,815 0,456 −0,598
0,456 4,815 −0,598
−0,598 −0,598 −0,513]⋅[0,162

0,162
0,973] = [ 0,272

0,272
−0,693] [ kPa]
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EXERCISE 24   

Deformation in material description is given by following equations

{x1 = X 1

x2=(R+X 3)⋅sin( π2 L X 2)
x3 =(R+X 3)⋅cos( π2 L X 2)

where {R>0
L>0
H>0

Determine both strain and stress state as well as current load on EFGH face both in material and
spatial description. Assume linear constitutive relations of Hooke's Law between Piola-Kirchhoff
stress tensor of the 2nd kind and Green – de Saint-Venant strain tensor.

SOLUTION:

DEFORMATION GRADIENT

Material deformation gradient: F = [
1 0 0

0
π(R+X 3)

2 L
cos( π2 L X 2) sin( π2 L X 2)

0 −
π(R+X 3)

2 L
sin( π2 L X 2) cos( π2 L X 2)]

Jacobian determinant: J = det F=
π(R+X 3)

2 L
 dla X 3>0 mamy J>0

Jacobian determinant is positive in considered region. Relations are invertible.
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SPATIAL DESCRIPTION

Inverted deformation relations: {X 1= x1

X 2=
2 L
π arctg

x2

x3

X 3= √ x2
2+ x3

2−R

spatial deformation gradient: f = [
1 0 0

0
2 L x3

π(x2
2+x3

2)
−

2 L x2

π(x2
2+ x3

2)

0
x2

√x2
2+x3

2

x3

√ x2
2+ x3

2
]

DEFORMATION TENSOR 

Material deformation tensor:

C= FT⋅F= [1 0 0

0
π2(R+X 3)

2

4 L2 0

0 0 1
]

Spatial deformation tensor:

c= f T⋅f = [
1 0 0

0
π2 x2

2(x2
2+ x3

2)+4 z2 L2

π2( x2
2+x3

2)2
x2 x3[π

2(x2
2+x3

2)−4 L2]
π2( x2

2+x3
2)2

0
x2 x3[π

2(x2
2+x3

2)−4 L2]

π2( x2
2+x3

2)2
π2 x3

2(x2
2+x3

2)+4 y2 L2

π2( x2
2+x3

2)2
]

STRAIN TENSOR

Materialny strain tensor:

E= 1
2
(C−1)= [0 0 0

0
π2(R+X 3)

2−4 L2

8 L2 0

0 0 0
]

Spatial strain tensor:

e= 1
2
(1−c) = [

0 0 0

0
x3

2[π2(x2
2+x3

2)−4 L2]
2π2( x2

2+x3
2)2

−
x2 x3[π

2(x2
2+x3

2)−4 L2]
2π2( x2

2+x3
2)2

0 −
x2 x3[π

2( x2
2+x3

2)−4 L2]

2π2(x2
2+ x3

2)2
x2

2[π2(x2
2+ x3

2)−4 L2]

2π2( x2
2+x3

2)2
]

© CC-BY-NC-SA 3.0 PL - Paweł Szeptyński 2020 58



Theory of elasticity and plasticity

STRESS TENSOR

Piola-Kirchhoff stress tensor of the 2nd kind:
TS= 2G E+λ⋅tr (E)⋅1=

= [
λ

8 L2 [π2(R+X 3)
2−4 L2] 0 0

0
λ+2G

8L2 [π2(R+X 3)
2−4 L2] 0

0 0 λ
8 L2 [π2(R+X 3)

2−4 L2]]
Piola-Kirchhoff stress tensor of the 1st kind:

TR= F⋅TS =

= [
λ

8 L2 [π2(R+X 3)
2−4 L2] 0 ...

0
π(λ+2G)

16 L3 [π2(R+X 3)
2−4 L2](R+X 3)cos( π2 L X 2) ...

0
π(λ+2G )

16 L3 [π2(R+X 3)
2−4 L2](R+X 3)sin( π2 L X 2) ...

 

... 0

... λ
8 L2 [π2(R+X 3)

2−4 L2]sin( π2 L X 2)
... λ

8 L2 [π2(R+X 3)
2−4 L2]cos( π2 L X 2)]

Cauchy stress tensor:

Tσ=
1
J
TR⋅F

T= [ σ11 σ12 σ13

σ22 σ 23

sym σ33
]

σ11=
λ[π2(x2

2+ x3
2)−4 L2]

4π L√x3
2+x2

2

σ12= 0
σ13= 0

σ22=
[π2(x2

2+x3
2)−4 L2]⋅[π2(λ+2G) x3

2(x2
2+ x3

2)+4λ x2
2 L2]

16π L3(x2
2+ x3

2)3 /2

σ23=−
x2 x3[π2( x2

2+x3
2)−4 L2]⋅[π2(λ+2G)( x2

2+x3
2)−4λ L2]

16π L3( x2
2+ x3

2)3 /2

σ33=
[π2(x2

2+ x3
2)−4 L2]⋅[π2(λ+2G) x2

2(x2
2+ x3

2)+4 λ x3
2L2]

16π L3(x2
2+ x3

2)3 /2
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BOUNDARY TRACTIONS

Face EFGH before deformation lies in plane given by equation: F : X 3− H = 0

Unit normal of EFGH face before deformation: N =
∇X F

∣∇X F∣
= [0 ; 0 ;1]

Current load on EFGH referred to reference configuration:

Q= TR⋅N = [ 0
λ

8 L2 [(R+X 3)
2−4 L2]sin( π2 L X 2)

λ
8 L2 [(R+X 3)

2−4 L2]cos( π2 L X 2)]
Face EFGH before deformation lies in a surface given by equation: f : √ x2

2+x3
2−(R+H ) = 0

Unit normal of EFGH face after deformation:    n =
∇ x f
∣∇ x f ∣

= [0 ; x2

√ x2
2+x3

2
;

x3

√ x2
2+x3

2 ]
Current load on EFGH referred to current configuration:

q = Tσ⋅n= [
0

λ y [π2(x2
2+ x3

2)−4 L2]
4π L( x2

2+x3
2)

λ z [π2(x2
2+ x3

2)−4 L2]
4π L( x2

2+x3
2)

]
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EXERCISE 25

Elastic deformation is given by equations:

{x1 = X 1−X 2

x2= 2 X 2+X 3

x3= 2 X 3

Current stress state is described by the Cauchy stress tensor:

Tσ= [ x1+x2 0 0
0 x2− x3 2 x3

0 2 x3 x3
2 ]

Find the body forces as well as load vector on faces OAC and ABC referred both to current and
reference configuration.

SOLUTION:

Material deformation gradienti: F = [1 −1 0
0 2 1
0 0 2]

Jacobian determinant: J = det F= 4

Since J>0 the deformation is  locally  invertible in all  points.  Deformation relations in spatial
description are as follows:

{X 1= x1+
x2

2
−
x3

4

X 2 =
x2

2
−
x3

4

X 3=
x3

2
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BODY FORCES
Equilibrium equation is spatial description using the Cauchy stress tensor:

∂σij
∂ x j

+ρ bi= 0 i=1,2 ,3

According to the above relations we determine body forces vector in spatial description:

{
∂σ11

∂ x 1

+
∂σ12

∂ x2

+
∂σ13

∂ x3

+ρb1= 1+ρb1 = 0

∂σ 21

∂ x 1

+
∂σ22

∂ x 2

+
∂σ23

∂ x3

+ρb2= 1+2+ρb2 = 0

∂σ31

∂ x 1

+
∂σ32

∂ x2

+
∂σ33

∂ x3

+ρb3 = 2 x3+ρ b3 = 0

⇒ {b1=−
1
ρ

b2=−
3
ρ

b3=−
2 x3
ρ

In order to find body forces in material description we need to find Piola-Kirchhoff stress tensor of
the 1st kind:

TR= J Tσ⋅F
−T= J Tσ⋅f

T=

= [ 4( x1+ x2) 0 0
2(x2−2 x3) 2( x2−2 x3) 4 x3

x3(4−x3) x3(4− x3) 2 x3
2]= [4(X 1+X 2+X 3) 0 0

2(2 X 2−3 X 3) 2(2 X 2−3 X 3) 8 X 3

4 X 3(2−X 3) 4 X 3(2−X 3) 8 X 3
2]

Equilibrium equation is material description using the Piola-Kirchhoff stress tensor of the 1st kind:
∂T ij
∂ X j

+ρR Bi = 0 i=1,2 ,3

According to the above relations we determine body forces vector in material description:

{
∂T 11

∂ X 1

+
∂T 12

∂ X 2

+
∂T 13

∂ X 3

+ρR B1= 4+ρR B1= 0

∂T 21

∂ X 1

+
∂T 22

∂ X 2

+
∂T 23

∂ X 3

+ρR B2= 4+8+ρRB2= 0

∂T 31

∂ X 1

+
∂T 32

∂ X 2

+
∂T 33

∂ X 3

+ρR B3 = 16 X 3+ρR B3= 0

⇒ {B1=−
4
ρR

B2=−
12
ρR

B3=−
16 X 3
ρR

Reference material density is found according to the principle of conservation of mass:
ρR= J ρ = 4ρ

© CC-BY-NC-SA 3.0 PL - Paweł Szeptyński 2020 62



Theory of elasticity and plasticity

LOAD ON FACE OAC
Equation of OAC surface before deformation: F = X 2= 0

Unit normal to OAC before deformation: N =−
∇X F

∣∇X F∣
= [0 ;−1 ; 0]

Current load referred to reference configuration:

Q=TR⋅N= [ 0
2 (3 X 3−2 X 2)
4 X 3( X 3−2) ]

Equation of OAC surface after deformation: f = X 2=
x2

2
−
x3

4
= 0

Unit normal to OAC after deformation: n=−
∇ x f

∣∇ x f ∣
= [0 ;− 2

√5
;

1
√5 ]

Current load referred to current configuration:

q =Tσ⋅n = [ 0
2

√5
(2 x3− x2)

1
√5
x3 ( x3−4)]

LOAD ON FACE ABC
Equation of ABC surface before deformation: F = X 1+X 2+X 3−1= 0

Unit normal to ABC before deformation: N =
∇X F

∣∇X F∣
= [ 1
√3

;
1
√3

;
1
√3]

Current load referred to reference configuration:

Q=TR⋅N= [
4
√3
(X 1+X 2+X 3)

4

√3
(2 X 2−X 3)

16

√3
X 3

]
Equation of ABC surface after deformation: f = X 1+X 2+X 3−1= x1+ x2−1= 0

Unit normal to ABC after deformation: n=
∇ x f

∣∇ x f ∣
= [ 1
√2

;
1
√2

; 0]
Current load referred to current configuration:

q =Tσ⋅n = [
x1+x2

√2
x 2−x 3

√2
√2 x3

]
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EXERCISE 27

Deformation is given by a displacement field:

{u1= 0,002 x1
2−0,001 x1 x2

u2 = 0,004 x2 x3

u3=−0,002 x3
2

Assuming  that  both  displacements  and  strain  are  small  and  assuming  constitutive  elations
according to Hooke's Law for Young modulus E = 210 GPa Poisson ratio ν=0,2 find:

• small strain tensor,
• stress tensor,
• body forces.

SOLUTION:

Strain tensor is found according to the geometric relations:

εij=
1
2( ∂u i∂ x j

+
∂u j
∂ x i ) ⇒ ε = [0,004 x1−0,001 x2 −0,0005 x1 0

−0,0005 x1 0,004 x3 0,002 x2

0 0,002 x2 −0,004 x3
]

Stress tensor is found according to Hooke's Law:

G = E
2(1+ν)

= 87,5 GPa

λ = E ν
(1+ν)(1−2 ν)

= 58,33 GPa

σij = 2G εij+λεkkδij ⇒

⇒ [0,933 x1−0,233 x2 −0,0875 x1 0
−0,0875 x1 0,7 x3−0,0583 x2+0,233 x1 0,350 x2

0 0,350 x 2 −0,7 x3−0,0583 x2+0,233 x1
]⋅109 [Pa ]

Body forces are found according to the equilibrium equations:

∂σij
∂ x j

+ρb i= 0

i=1 : 0,933⋅109+0+0+ρb1= 0 ⇒ b1=−
0,933⋅109

ρ

i=2 : −0,0875⋅109−0,0583⋅109+0+ρb2= 0 ⇒ b2=
0,1458⋅109

ρ

i=3 : 0+0,350⋅109−0,7⋅109+ρb3= 0 ⇒ b3 =
0,350⋅109

ρ
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EXERCISE 28

A cuboid  of  dimensions  a,  b,  c is  made  of  isotropic  linear  elastic  material.  It  is  placed in  an
undeformable (infinitely rigid) trough and compressed with uniform stress p. Find stress and strain
states  (within  linear  theory),  dimensions  od  cuboid  after  deformation,  volumetric  strain
(the 1st invariant of small strain tensor) and true volume change. Find extreme shear stress. Assume
no friction between faces of the cuboid and surface of trough.

a= 10 mm , b= 15 mm , c= 6 mm

Young modulus E=70GPa
Poisson ratio ν=0,35

Load p= 180 MPa

SOLUTION:

Due to assumptions:
• No  constraints  on  displacements  along  x,  uniform compressive  load  on  opposite  faces

perpendicular to x: σxx=−p , εxx≠0
• No load and free deformation along z direction: σzz=0, εzz≠0
• No  strain  along  y direction  due  to  undeformable  trough  what  results  in  compressive

reaction stress σ yy : εyy=0, σyy≠0
• No  friction  →  no  shear  stress σ yz=σzx=σxy=0 ,  so  (according  to  Hooke's  Law)  no

distortion strains εyz=εzx=εxy=0 .

We know stresses σ xx , σ zz and strain εyy  - this allows us to find stress σ yy with the use of
Hooke's Law:

εyy=
1
E
[σ yy−ν(σzz+σ xx)] ⇒ σyy=[E εyy+ν(σzz+σ xx)] =−ν p=−63 MPa

Stress tresor is completely determined:

σ=[ σxx σ xy σ xz

σ yy σ yz

sym σzz] = [
−p 0 0
0 −ν p 0
0 0 0]= [−180 0 0

0 −63 0
0 0 0] [MPa ]  
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Stress tensor has a diagonal  form if  and only if  it  is  described in the coordinate system of its
eigenaxes, what means that determined stress components are principal stresses. Extreme shear
stress may be found then as::

σmax=0 MPa
σmin=−180 MPa

∣τmax∣=
∣σmax −σmin∣

2
= 90 MPa

Unknown linear strain εxx , εzz are found according to the Hooke's Law:

εxx=
1
E
[σxx−ν(σ yy+σzz)]=

p
E
(ν2−1)=−2,256‰

εzz=
1
E
[σzz−ν(σxx+σyy)]=

p
E
ν(ν+1)= 1,215‰

Strain tensor:

ε=[ εxx εxy εxz
εyy εyz

sym εzz ]= [ pE (ν2−1) 0 0

0 0 0

0 0
p
E
ν(ν+1)]= [−2,256⋅10−3 0 0

0 0 0
0 0 1,215⋅10−3] [ − ]

Dimensions of the cuboid after deformation:
a '=a+aεyy = a (1+εyy)= a = 10 mm
b '=b+bεzz= b(1+εxx) = 14,96616 mm
c '=c+c εzz = c (1+εzz) = 6,00729 mm

Reference volume: V = abc= 900 mm3

Current volume: V ' = a ' b ' c ' = 899,0606 mm3

True volume change:
ΔV
V

= V '−V
V

=−1,044‰

1st invariant of strain tensor:
θ=εxx+εyy+εzz =−1,041‰

Comparison of two measures of volumetric strain:
ΔV
V
= V '−V

V
= a ' b ' c '−abc

abc
=
a (1+εxx)b (1+εyy)c(1+εzz)−abc

abc
=

=(1+εxx)(1+ε yy)(1+εzz)−1=(εxx+εyy+εzz)⏟
θ

+ ε yyεzz+εzzεxx+εxx εyy+εxx εyyεzz=

−1,041‰−0,00274‰ =−1,044‰
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EXERCISE 29

Stress tensor in a certain plane system is determined as:

σ = [ 70 −30
−30 140 ] [MPa ]

What would be the spatial distribution of stress and strain assuming plane stress state, and what
would it be in case of plane strain state? Assume  Hooke's Law with E = 70 GPa , ν= 0,3 .

SOLUTION:

PLANE STRESS STATE (σ13=σ23=σ33=0) :

Stress tensor: σ = [ 70 −30 0
−30 140 0

0 0 0] [MPa ]

Strain tensor: εij=
1
E
[(1+ν)σ ij−νσkk δij ] ⇒

ε = [ 4⋅10−4 −5,571⋅10−4 0
−5,571⋅10−4 1,7⋅10−3 0

0 0 −9⋅10−4] [MPa ]

PLANE STRAIN STATE (ε13=ε23=ε33=0) :

ε13= 0 ⇒ ε13=
σ13

2G
= 0 ⇒ σ 13= 0

ε12= 0 ⇒ ε12=
σ12

2G
= 0 ⇒ σ12= 0

ε33= 0 ⇒ ε33=
1
E
[(1+ν)σ33−ν(σ11+σ22+σ33)] = 0 ⇒ σ33= ν(σ11+σ22) = 63 MPa

Stress tensor: σ = [ 70 −30 0
−30 140 0

0 0 63] [MPa ]

Strain tensor: εij=
1
E
[(1+ν)σij−νσkk δij ] ⇒

ε = [ 1,3⋅10−4 −5,571⋅10−4 0
−5,571⋅10−4 1,43⋅10−3 0

0 0 0] [MPa ]
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EXERCISE 30

A rectangular membrane of dimensions 2 m×3m is given. Stress
state is given by a stress tensor:

σ( x1 ; x2)= [3 x1 x2−1 −2 x1

−2 x1 2 x1+3x 2
] [Pa]

Find the body forces and surface tractions.

SOLUTION:

BODY FORCES:
Body forces are found with the use of equilibrium equations:

∂σ11

∂ x1

+
∂σ12

∂ x2

+b1= 0 ⇒ 3 x2+0+b1= 0 ⇒ b1 =−3 x2 [ N

m 3 ]
∂σ21

∂ x1

+
∂σ22

∂ x2

+b2= 0 ⇒ −2+3+b2 = 0 ⇒ b2=−1 [ N

m3 ]
Values in corners of the membrane:

A=(0,0)
b1(A) = 0, b2(A) =−1 ⇒ b(A)= √b1

2(A)+b2
2(A)= 1

B=(2,0)
b1(B) = 0, b2(B) =−1 ⇒ b(B) = √b1

2(B)+b2
2(B)= 1

C=(2,3)
b1(C )=−9, b2(C )=−1 ⇒ b(C )= √b1

2(C)+b2
2(C ) = 9,055

D=(0,3)
b1(D) =−9, b2(D)=−1 ⇒ b (D)= √b1

2(D)+b2
2(D)= 9,055

SURFACE TRACTIONS :
For each boundary segment we find a relation between x1 and x2 as well as (external) unit normal
n. Surface tractions vector q is found according to relation q =σ⋅n . Sense (orientation) of the
determined load vector is respective to the assumed global coordinate system.
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Segment AB: x1∈(0 ; 2) , x2=0 - unit normal: nAB=[0 ;−1]

σ⋅nAB= q AB ⇒ [ −1 −2 x1

−2 x1 2 x1
][ 0
−1]=[ 2 x1

−2 x1
]=[q1

(AB)

q2
(AB)]

• x1 component of load vector is perpendicular to the unit normal
so it is a tangent component.

• x2 component of load vector is parallel to the unit normal
so it is a normal component.

A=(0,0): q1
(AB)(A)= 0, q2

(AB)(A)= 0

B=(2,0) : q1
(AB)(B) = 4 q2

( AB)(B) =−4

Segment BC: x1=2 , x2∈(0 ;3) - unit normal: nBC=[1 ;0]

σ⋅nBC = qBC ⇒ [6 x2−1 −4
−4 4+3 x2

][10]=[6 x2−1
−4 ]=[q1

(BC)

q2
(BC)]

• x1 component of load vector is parallel to the unit normal
so it is a normal component.

• x2 component of load vector is perpendicular to the unit normal
so it is a tangent component.

B=(2,0) : q1
(BC)(B) =−1, q2

(BC )(B)=−4

C=(2,3): q1
(BC )(C) = 17 q2

( BC)(C )=−4

Segment CD: x1∈(0 ;2) , x2=3 - unit normal: nCD=[0 ;1]

σ⋅nCD= qCD ⇒ [9 x1−1 −2 x1

−2 x1 2 x1+9][01]=[ −2 x1

2 x1+9]=[q1
(CD)

q2
(CD)]

• x1 component of load vector is perpendicular to the unit normal
so it is a tangent component.

• x2 component of load vector is parallel to the unit normal
so it is a normal component.

C=(2,3): q1
(CD)(C) =−4, q2

(CD)(C )= 13

D=(0,3): q1
(CD)(D)= 0 q2

(CD)(D)= 9
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Segment DA: x1=0 , x2∈(0; 3) - unit normal: nDA=[−1 ;0]

σ⋅nDA= qDA ⇒ [−1 0
0 3 x2][−1

0 ]=[10]=[q1
(DA )

q2
(DA )]

• x1 component of load vector is parallel to the unit normal
so it is a normal component.

• x2 component of load vector is perpendicular to the unit normal
so it is a tangent component.

D=(0,3): q1
(DA)(D) = 1, q2

(DA)(D)= 0

A=(0,0): q1
(DA)(A)= 1 q2

(DA)(A)= 0

Summary of the obtained results may be presented in the form of graph of normal and tangent
surface tractions:
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EXERCISE 31

A plane triangular membrane is given. Find the body forces and surface tractions knowing that the
stress tensor is as follows:

σ( x1 ; x2) = [3 x1−4 x2 2 x1x2+1
2 x1 x 2+1 4−2 x1

] [Pa]

SOLUTION:

BODY FORCES:

Body forces are found with the use of equilibrium equations:

∂σ11

∂ x1

+
∂σ12

∂ x2

+b1=0 ⇒ 3+2 x1+b1=0 ⇒ b1=−3−2 x1 [ N

m3 ]
∂σ21

∂ x1

+
∂σ22

∂ x2

+b2=0 ⇒ 2 x2+b2=0 ⇒ b2=−2 x2 [ N

m3 ]
Values in corners of the membrane:

B=(0 ; 0) C=(4 ;0) A=(0 ;3)
b1(0 ;0) =−3 b1(4 ; 0) =−3 b1(0 ;3) =−11
b2(0 ;0)=−6 b2(4 ;0)= 0 b2(0 ;3)= 0

SURFACE TRACTIONS:

Segment AB: x1=0 , x2∈〈0 ;3〉 - unit normal: nAB=[−1;0 ]

σ⋅nAB= q AB ⇒ [−4 x2 1
1 4][−1

0 ]=[4 x2

−1 ]=[q1
(AB )

q2
(AB )]

• x1 component of load vector is parallel to the unit normal
so it is a normal component.

• x2 component of load vector is perpendicular to the unit normal
so it is a tangent component.

q(AB)
( x) (0 ;3) = 12, q( AB)

( x) (0 ;0)= 0

q(AB)
( y) (0 ;3) =−1 q( AB)

( y) (0 ; 0) =−1
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Segment BC: x1∈〈0 ;4〉 , x2=0 - unit normal: nBC=[0;−1]

σ⋅nBC = qBC ⇒ [3 x1 1
1 4−2 x1

][ 0
−1]=[ −1

2 x1−4]=[q1
(BC )

q2
(BC )]

• x1 component of load vector is perpendicular to the unit normal
so it is a tangent component.

• x2 component of load vector is parallel to the unit normal
so it is a normal component.

q(BC)
( x) (0 ;0)=−1, q(BC )

( x) (4 ;0)=−1

q(BC)
( y) (0 ;0)=−4 q(BC )

( y) (4 ;0)= 4

Segment CA: x1∈〈0 ;4〉 , x2=3− 3
4
x1 - unit normal: nCA=[sinα;cosα] = [35 ;

4
5 ]

σ⋅nCA= qCA ⇒ [3 x1−4(3−3
4
x1) 2 x1(3−3

4
x1)+1

2 x1(3−3
4
x1)+1 4−2 x1 ][3545 ]=[

2
5
(−3 x1

2+21 x1−16)

1
10
(−9 x1

2+20 x1+38)]=[q1
(CA)

q2
(CA)]

Normal component:
(positive values corresponding with the sense of unit normal)

qn
(CA) = qCA⋅nCA =

2
25
(−18 x1

2+83 x1−10)

End values: qCA
(n) (4 ;0)= 2,72 , qCA

(n)(0 ;3)=−0,8

Zeros: qn
(CA)=0 ⇒ x1=0,124 ∨ x1=4,487 4,487∉CA

Search for stationary points:
d qn

(CA)

d x1

= 2
25
(−36 x1+83)=0 ⇒ x1=2,306 , qn

(CA)(2,306)=6,854

Tangent component: qs
(CA)= qCA−qn

(CA)nCA =
21 x1

2−276 x1+370
250 [−4

3 ]
End values: qs

(CA)(4 ;0)= [ 6,368
−4,776] , ∣qs

(CA)∣= 7,96

(sense according to global coordinate system) qCA
(s ) ( xA ; y A)= [−5,98

4,44 ] , ∣qs
(CA)∣= 7,4
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Zeros:
q s
(CA)=0 ⇔ 21 x1

2−276 x1+370=0 ⇒ x1=1,515 ∨ x1=11,628 11,628∉CA

Search for stationary points:
d qs

(CA)

d x1

= 0 ⇔ 2
25
(42 x1−276)=0 ⇒ x 1=6,571∉CA

Summary of obtained results in form of graphs of normal and tangent tractions
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EXAMPLE 32

An elastic  plane is  given.  Dimensions:  6 m x 8 m. It  is  simply  supported at  circumference.  Its
thickness is 30 cm. It is made of a material of Young modulus 32 GPa and Poisson's ratio 0,2. It is
loaded with a uniform surface load of density (accounting for dead load)  10 kN/m2. 

• Find maximum deflection with the use of:
▪ Finite difference Method
▪ trigonometric series expansion

• Compare obtained results

SOLUTION:

Flexural rigidity: D= Eh3

12(1−ν2)
= 75000 kNm

FINITE DIFFERENCE METHOD
• FMD mesh size 1m x 1m. s=Δ x1=Δ x2= 1 m.
• Boundary nodes has zero deflection.
• Fictious nodes are introduced outside the plate – they account for boundary conditions.

Simple support on an edge requires zero bending moment which corresponds with the
second derivative – deflection values in the fictious points must be opposite to the values
of corresponding points inside the plate.

• The system has two axes of symmetry – deflections in corresponding points must be the
same.

• As a results we obtain 12 independent nodes.
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Governing equation is written down for each internal node:

∇4w = ∂4w
∂ x1

4 + 2
∂4w

∂ x1
2∂ x2

2 +
∂4w
∂ x2

4 =
q (x1, x2)
D

     ∇4 ≈

20w1−8⋅(0+0+w2+w5)+2⋅(0+0+0+w6)+1⋅(−w1−w1+w3+w9)=
qs4

D
 

20w2−8⋅(0+w1+w3+w6)+2⋅(0+0+w5+w7)+1⋅(−w2+0+w4+w10)=
q s4

D

20w3−8⋅(0+w2+w4+w7)+2⋅(0+0+w6+w8)+1⋅(−w3+w1+w3+w11)=
q s4

D

20w4−8⋅(0+w3+w3+w8)+2⋅(0+0+w7+w7)+1⋅(−w4+w2+w2+w12)=
q s4

D

20w5−8⋅(w1+0+w6+w 9)+2⋅(0+w2+0+w10)+1⋅(0−w5+w7+w5)=
q s4

D

20w6−8⋅(w2+w5+w7+w10)+2⋅(w1+w3+w9+w11)+1⋅(0+0+w8+w6) =
q s4

D

20w7−8⋅(w3+w6+w8+w11)+2⋅(w2+w4+w10+w12)+1⋅(0+w5+w7+w7)=
q s4

D

20w8−8⋅(w4+w7+w7+w12)+2⋅(w3+w3+w11+w11)+1⋅(0+w6+w6+w8)=
q s4

D

20w9−8⋅(w5+0+w10+w5)+2⋅(0+w6+0+w6)+1⋅(w1−w9+w11+w1)=
q s4

D

20w10−8⋅(w6+w9+w11+w6)+2⋅(w5+w7+w5+w7)+1⋅(w2+0+w12+w2)=
q s4

D

20w11−8⋅(w7+w10+w12+w7)+2⋅(w6+w8+w6+w8)+1⋅(w3+w9+w11+w3) =
q s4

D

20w12−8⋅(w8+w11+w11+w8)+2⋅(w7+w7+w7+w7)+1⋅(w4+w10+w10+w4)=
q s4

D

[
18 −8 1 0 −8 2 0 0 1 0 0 0
−8 19 −8 1 2 −8 2 0 0 1 0 0
1 −8 20 −8 0 2 −8 2 0 0 1 0
0 2 −16 19 0 0 4 −8 0 0 0 1
−8 2 0 0 20 −8 1 0 −8 2 0 0
2 −8 2 0 −8 21 −8 1 2 −8 2 0
0 2 −8 2 1 −8 22 −8 0 2 −8 2
0 0 4 −8 0 2 −16 21 0 0 4 −8
2 0 0 0 −16 4 0 0 19 −8 1 0
0 2 0 0 4 −16 4 0 −8 20 −8 1
0 0 2 0 0 4 −16 4 1 −8 21 −8
0 0 0 2 0 0 8 −16 0 2 −16 20

][
w1
w 2
w3
w 4
w5
w 6
w7
w8
w 9
w10
w11
w12

]= q s4

D [
1
1
1
1
1
1
1
1
1
1
1
1

] ⇒ w = q s4

D [
1,851
3,268
4,130
4,418
3,115
5,528
7,007
7,501
3,5580
6,325
8,025
8,594

]  

Maximum deflection: wmax = 8,594
qs4

D
= 1,146 mm

© CC-BY-NC-SA 3.0 PL - Paweł Szeptyński 2020 89

20 -8

2

-8

-8

-8

2

2 2

11

1

1

⋅ 1
s4



Theory of elasticity and plasticity

TRIGONOMETRIC SERIES  EXPANSION

Deflection  of  a  rectangular  plate  of  dimensions L1×L2 and  flexural  rigidity D ,  simply
supported at edges may be expressed with an infinite trigonometric series. For a plate loaded with
uniform surface load, the result is:

w (x1 , x2)=∑
m=1

∞

∑
n=1

∞ {16q[ (2m−1)
2

L1
2 +

(2n−1)2

L2
2 ]

−2

(2m−1)(2n−1)π6D
⋅sin

(2m−1)π x1
L1

sin
(2n−1)π x2

L2
}  

Convergence of this series may be checked by summation up to a certain chosen maximum value
of indices m ,n . Deflection will be determined in the points corresponding with nodes of the
FDM mesh:

Assuming that an account for 10000 terms of the series gives us a solution which is sufficiently
close to the strict solution, we may notice that:

• FDM solution is close to the strict one – relative error is not greater than 1%

• An account for only 9 terms in trigonometric series (m,n=1,...,3) gives us an estimate
with a maximum relative error of 0,07%.
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FDM
N n,m=1 n,m=1,...,3 n,m=1,...,5 n,m=1,...,100
1 1 1 1,690 1,836 1,836 1,835 1,851
2 2 1 3,124 3,251 3,249 3,249 3,268
3 3 1 4,081 4,110 4,111 4,111 4,13
4 4 1 4,417 4,401 4,398 4,398 4,418
5 1 2 2,928 3,096 3,097 3,097 3,115
6 2 2 5,410 5,514 5,513 5,513 5,528
7 3 2 7,069 6,993 6,996 6,996 7,007
8 4 2 7,651 7,493 7,492 7,492 7,501
9 1 3 3,381 3,540 3,540 3,540 3,558

10 2 3 6,247 6,315 6,313 6,313 6,325
11 3 3 8,162 8,018 8,020 8,020 8,025
12 4 3 8,835 8,594 8,591 8,591 8,594

nodes
(u·D/q/s4)

trigonometric series
x

1
x

2
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EXAMPLE 33

There is  an square elastic  plate of  dimensions L×L (L=2m) ,  clamped along two opposite
edges  and simply  supported along the othe two.  It  is  loaded with a  load of  density  given by
function

q (x1 , x2)=
4q0
L2 ( L2−∣x1∣)( L2−∣x 2∣)

where q0= 2kN/m2 ,  and  the  beginning  of
the  assumed  coordinate  system  is  in  the
centroid of the plate.  Find the distribution of
deflection  and  bending  moments
m xx , m yy , m xy  in the plate with the use of Finite Difference Method. Assume the grid space
s=0,5m . Thickness of the plate h=1cm , elastic constants: Young's modulus E = 29 GPa

, Poisson's ratio ν= 0,2 .

SOLUTION:

• Flexural rigidity: D= Eh3

12(1−ν2)
= 2517 Nm

• Grid line spacing: s=Δ x1 =Δ x2 = 0,5 m
• We introduce fictious nodes outside the plate:

▪ nodal values in fictious points in case of clamped edge are the same as values in
corresponding point inside the plate.

▪ nodal values in fictious points in case of simply supported edge are opposite to the
values in corresponding point inside the plate.

• After accounting for the symmetry of the problem, the FDM mesh is as below:

Load density values in nodes:
q1= q (0,5m ; 0,5m )= 500 N /m2 q2= q(0 m ; 0,5m)= 1000 N /m2

q3= q (0,5m ; 0m) = 1000 N /m2 q4= q(0m ; 0m ) = 2000 N /m2
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Theory of elasticity and plasticity

DEFLECTION

Governing equation is written down for each internal node:

∇4w = ∂4w
∂ x1

4 + 2
∂4w

∂ x1
2∂ x2

2 +
∂4w
∂ x2

4 =
q (x1, x2)
D

    ∇4 ≈

20w1−8⋅(0+0+w2+w3)+2⋅(0+0+0+w4)+1⋅(−w1+w1+w1+w1) =
q1 s

4

D

20w2−8⋅(0+w1+w1+w4)+2⋅(0+0+w3+w3)+1⋅(−w2+w2+0+0)=
q2 s

4

D

20w3−8⋅(w1+0+w4+w1)+2⋅(0+w2+0+w2)+1⋅(0+w3+w3+0)=
q3 s

4

D

20w4−8⋅(w2+w3+w3+w2)+2⋅(w1+w1+w1+w1)+1⋅(0+0+0+0) =
q4 s

4

D

We obtain a linear system of equations:

[ 22 −8 −8 2
−16 20 4 −8
−16 4 22 −8
8 −16 −16 20

][w 1w 2w 3
w 4
]=[12,416⋅10

−3

24,831⋅10−3

24,831⋅10−3

49,662⋅10−3
]m ⇒ w =[ 7,082⋅10

−3

11,804⋅10−3

10,492⋅10−3

17,487⋅10−3
] ' m

Maximum deflection: wmax ≈ w 4= 17,487⋅10
−3 m .  Maximum deflection  determined with the

use of FEM for a plate modeled with shell elements of maximum size of finite element equal 10  cm
(444 elements, 1171 equations) is equal 13,480⋅10−3 m .

BENDING MOMENTS

Bending moments are found with the use of relations:

m xx=−D(∂2w∂ x2
+ν ∂2w

∂ y2 ) , m yy =−D(∂2w∂ y2
+ν ∂

2w
∂ x2 ) , m xy=−D (1−ν) ∂2w

∂ x ∂ y
,

Second derivatives are approximated as follows:
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Theory of elasticity and plasticity

Bending moments in node 1:

m xx ,1=−D
s2

[(0−2w1+w2)+ν(w3−2w1+0)]= 1,571kNm /m

m yy ,1 =−D
s2

[(w3−2w1+0)+ν(0−2w 1+w2)]= 1,581kNm /m

m xy ,1=− D

4 s2
(1−ν)[0−0+0−w4 ] = 0,035kNm /m

Bending moments in node 2:

m xx ,2=−D
s2

[(w1−2w2+w1)+ν(w4−2w 2+0)]=−1,176 kNm /m

m yy ,1=−D
s2

[(w4−2w2+0)+ν(w1−2w2+w1)]=−0,176kNm /m

m xy ,1=− D

4 s2
(1−ν) [0−0+w3−w3 ]= 0 kNm /m

Bending moments in node 3:

m xx ,3=−D
s2

[(0−2w3+w4)+ν(w1−2w3+w1)]=−0,208kNm /m

m yy ,3 =−D
s2

[(w1−2w3+w1)+ν(0−2w3+w4)]=−1,208kNm /m

m xy ,1=− D

4 s2
(1−ν) [w2−0+0−w2 ]= 0kNm /m

Bending moments in node 4:

m xx ,4=− D
s2

[(w3−2w4+w3)+ν(w2−2w4+w2)]= 0,164 kNm /m

m yy ,4 =−D
s2

[(w2−2w4+w2)+ν(w3−2w 4+w3)] = 0,143kNm /m

m xy ,1=− D

4 s2
(1−ν) [w1−w1+w1−w1 ]= 0kNm /m
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EXAMPLE 34

There is a this square elastic plate of dimensions 1 m×1m and thickness 5mm ,made of steel
of  Young's  modulus E = 210 GPa  and  Poisson's  ratio ν=0,2 . It  is  clamped along a  single
edge  and  simply  supported  along  other  edges.  It  is  loaded  with  a  uniform  load  of  density
q= 5 kN/m2 . Find the deflection as well as bending moments= m xx , m yy , m xy in the middle

of the plate with the use of Finite Difference Method. Assume the grid line spacing s=0,5m .

SOLUTION:

• Flexural rigidity: D= Eh3

12(1−ν2)
= 2278,65 Nm

• Grid line spacing: s=Δ x1 =Δ x2 = 0,5 m
• FDM mesh after accounting for boundary conditions:

Governing equation written down for internal node:

20w−8(0+0+0+0)+2 (0+0+0+0)+(−w+w−w−w)= q s4

D

Deflection of a middle point:

18w = q s4

D
⇒ w= q s4

18D
= 0,007619 m

Bending moments:

m xx=−D
s2

[(0−2w+0)+ν(0−2w+0) ]= 2D(1+ν)w
s2

= 166,666Nm /m

m yy =−D
s2

[(0−2w+0)+ν(0−2w+0)]= 2D(1+ν)w
s2

=166,666 Nm /m

m xy=− D

4 s2
(1−ν) [0+0+0+0] = 0Nm /m
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Theory of elasticity and plasticity

EXAMPLE 37

There is a square elastic membrane of thickness
h=10 cm, loaded as depicted in the figure.

Find the plane stress state in the middle of the
mmebrane  with  the  use  od  Finit  Difference
Method  assuming  grid  spacing
s=Δ x1=Δ x2= 1 m .

SOLUTION:

Distribution of stresses in plane membrane is found with the use of Airy stress function, which is
defined as follows:

∂2 F
∂ x1

2 =σ22
∂2 F
∂ x 2

2 = σ11
∂2F

∂ x1∂ x2
=−b1 x2−b2 x1−σ12

In our case, there are no body forces, so b1=b2=0 .  Airy stress function satisfies biharmonic
equation:

∇4 F=0

General outline of our approach is as follows:

• In any point on the boundary we chose fixed point P0.
• We chose another point P – its location varies.
• In point P a local coordinate system (n , s) is introduced – its 1st axis (n) direction is

normal (perpendicular) to the boundary and oriented towards exterior of the membrane.
Its 2nd axis (s) is tangent to the boundary and it is oriented in the same way as oriented
curve starting in P0 and ended in P.

• Consider all boundary load applied to the segment of boundary between point P0  and P.
▪ Calculate sum of all forces in that load which are parallel to n axis defined in point P.

Let's denote it with Qn∣P (normal force).
▪ Calculate sum of all forces in that load which are parallel to s axis defined in point P.

Let's denote it with Qs∣P (tangential force).
▪ Calculate total moment due to that load about point P. Let's denote it with M∣P .
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Theory of elasticity and plasticity

• Boundary conditions may be now written down as follows :

F∣P =
1
h
M∣P

∂F
∂ s ∣P = 1

h
Q n∣P

∂ F
∂ n ∣P=− 1

h
Qs∣P

• Sign of Qs and Qn is determined according to the orientation of axes (n , s)  - contrary to
the methods used when finding cross-sectional forces in strength of materials, sign does
not depend on the orientation of „imaginary cut surface”.

• Since  boundary  values  of  the  Airy  stress  functions  are  known (calculated  according  to
moments), then also its directional derivatives along the direction  tangent to boundary is
known and normal load makes no additional contribution in determining the values of F. As
a  result  we need to formulate  the boundary conditions  only  for  directional  derivatives
along a direction normal to the boundary (corresponding with tangential forces). Assuming
that (n , s , z) is  a  right-handed  system,  positive  moment  corresponds  with  positive
orientation of z axis.

• We  introduce a mesh of internal and boundary nodes as well as outside fictious nodes. We
consider a rectangular mesh of equal spacing in both directions.

• We write down the governing equation (biharmonic equation)
for internal nodes with the use of finite difference pattern as
shown to the right.

• We write down the boundary conditions for normal derivative
with the use of finite difference patters for first derivatives as
below:

• Equations which were written down constitute a linear system of algebraic equations for all
unknown nodal values of Airy stress function.

• In order to determine the stress components we make use of the definition of the Airy
stress function and of finite difference patterns for the second derivatives:
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Theory of elasticity and plasticity

Initial point P0=A and local coordinate systems (n , s) are assumed as shown below:

BOUNDARY AB: x1=0 , x2∈〈0 ; 2〉 s1 = 2−x2 , n1=−x1

Sum of tangent forces: Q s1(s1) = h [3 s1 ] [kN]
Sum of normal forces: Qn1(s1)= h[2 s1 ] [kN]

Moment of forces: M 1(s1)= h[s12] [kNm]

BOUNDARY BC: x1=¿ 〈0 ;2 〉 , x2= 0 s2= x1 , n2 =− x2

Sum of tangent forces: Q s2(s2)= h[−2⋅2−3⋅s2 ]= h [−4−3 s2 ] [kN]
Sum of normal forces: Qn2(s2)= h [3⋅2−5⋅s2 ]= h[6−5 s2 ] [kN]

Moment of forces: M 2(s2) = h[2⋅2⋅1+3⋅2⋅s2−52 s22]=
= h [4+6 s2−2,5 s22] [kN]

BOUNDARY CD: x1=2 , x2∈〈0 ; 2〉 s3 = x2 , n3 = 2+ x1

Sum of tangent forces: Q s3(s3) = h [−3⋅2+5⋅2+3⋅s3]= h [4+3 s3 ] [kN]
Sum of normal forces: Qn3(s3) = h [−2⋅2−3⋅2+2⋅s3]= h [−10+2 s3] [kN]

Moment of forces:                 M 3(s3)= h[2⋅2⋅(1−s3)+3⋅2⋅2−5⋅2⋅1−3⋅2⋅s3+s32]=
= h [6−10 s3+s32] [kNm]
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Theory of elasticity and plasticity

BOUNDARY BC: x1∈〈0 ; 2 〉 , x2=2 s4= 2−x1 , n4= 2+x2

Sum of tangent forces: Q s4(s4)= h[2⋅2+3⋅2−2⋅2−3⋅s4 ]= h[6−3 s4 ] [kN]
Sum of normal forces: Qn3(s3) = h [−3⋅2+5⋅2+3⋅2−5⋅s4 ]= h [10−5 s4 ] [kN]
Moment of forces:

M 4(s4)= h[−2⋅2⋅1+3⋅2⋅(2−s4)−3⋅2⋅2−5⋅2⋅(1−s4)+3⋅2⋅s4+2⋅2⋅1−52 s42]=
= h[−10+10 s4−52 s42] [kNm]

FDM mesh is assumed as shown below:
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EQUATION FOR INTERNAL NODES:

    20 F 22 − 8 (F12+F21+F 23+F 32) + 2 (F 11+F13+F 31+F 33) + (F 02+F 20+F 24+F 42)= 0

EQUATIONS FOR BOUNDARY NODES:

BOUNDARY AB

F11=
1
h
M 11 ⇒ F11= 0 [kN]

F12 =
1
h
M 12 ⇒ F 33= 1 [kN]

F13=
1
h
M 13 ⇒ F13= 4 [kN]

∂F
∂ n1∣12=−

∂F
∂ x1∣12=−

1
h
Q s∣12 ⇒ − 1

2 s
(F 22−F 20)=−3 [kN/m]

BOUNDARY BC

F 23=
1
h
M 23 ⇒ F 23= 7,5 [kN]

F 33=
1
h
M 33 ⇒ F 33= 6 [kN]

∂F
∂n2∣23=−

∂ F
∂ x2∣23=−

1
h
Q s∣23 ⇒ − 1

2 s
(F 22−F 02)=−(−7) [kN/m]

BOUNDARY CD

F 32=
1
h
M 32 ⇒ F 32=−3 [kN]

F 31=
1
h
M 31 ⇒ F 31=−10 [kN]

∂F
∂ n3∣32= ∂ F

∂ x1∣32=−
1
h
Q s∣32 ⇒

1
2 s

(F24−F22)=−7 [kN/m]

BOUNDARY DA

F 21=
1
h
M 21 ⇒ F 21=−2,5 [kN]

∂F
∂ n4∣21= ∂F

∂ x2∣21=−
1
h
Q s∣21 ⇒ 1

2 s
(F 42−F22)=−3 [kN/m]

KNOWN BOUNDARY VALUES
F11 F12 F13 F 23 F 33 F 32 F 31 F 21

0 1 4 7,5 6 -3 -10 -2,5
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We obtain a linear system for unknown nodal values of the Airy  stress function:

20 F 22 − 8 (7,5+1−3−2,5) + 2 (4+6+0−10) + (F 02+F 20+F24+F 42)= 0

− 1
2⋅1 (F 22−F 20)=−3

− 1
2⋅1 (F 22−F 02)= 7
1
2⋅1 (F24−F22)=−7

1
2⋅1 (F42−F22 )=−3

In a matrix form:

[1 1 20 1 1
0 1 −1 0 0
1 0 −1 0 0
0 0 −1 1 0
0 0 −1 0 1

][
F 02
F 20
F 22
F 24
F 42
] = [ 24−614−14

−6
] ⇒ {

F 02= 15,5
F 20=−4,5
F 22= 1,5
F 24=−12,5
F 42=−4,5

Stress state in the middle of the membrane:

σ11=
∂2F
∂ x2

2 = 1
s2

[F 12−2 F 22+F 32]= 2 [kPa]

σ22=
∂2 F
∂ x1

2 =
1
s2

[ F21−2 F22+F 23 ]=−5 [kPa]

σ12=− ∂2F
∂ x1∂ x2

= 1
4 s2

[F 11−F13−F 31+F 33]= 3 [kPa]

For the above problem a strict solution may be found. Since there are no body forces, the load is
symmetric and uniform, then stress state distribution must be equal – it is given by a stress tensor:

σ=[2 3
3 −5] [kPa]

It  satisfies  both  equilibrium  equations  as  well  as  boundary  conditions.  Such  a  stress  state
corresponds with the Airy function of the form:

F ( x1 , x2)=−5
2
x1
2 + x2

2 − 3 x1 x2

Biharmonic equation is an equation of the 4th order. The above solution is determined with the use
of statical boundary conditions which are conditions for the 2nd order derivatives – in order to get a
unique solution we would need also boundary conditions for the  function itself or also for 1st
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derivatives. We should note that adding to the function F terms which depend at most on the 1 st

powers of independent variables also satisfies the governing equation and result in the same stress
state. Those terms may be chosen in such, that the values of the Airy stress function were the
same as those determined by FDM. Finally we may write:

F ( x1 , x2)= − 5
2
x1
2 + x2

2 − 3 x1 x2+ 6 x1 − 4 x2+ 4

Values of the strict solution are the same as those found by the use of FDM:

{
F 02= F (1 ;−1) = 15,5
F 20= F (−1 ;1) =−4,5
F 22= F (1 ;1)= 1,5
F 24= F (3,1)=−12,5
F 42= F (1,3)=−4,5
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EXAMPLE 38

There  is  a  rectangular  elastic  membrane  of
thickness h= 20cm ,  loaded as  shown in  the
figure. Find the shear stress in node 22 with the
use  of  Finite  Difference  Method  and  assumed
mesh ( Δ x1=Δ x2= 0,5 m ).

SOLUTION:

Shear stress is determined by the Airy stress function according to relation:

σ12=− ∂2F
∂ x1∂ x2

Mixed derivative is approximated by a finite difference pattern as below:

[σ 12]22≈− 1

4 s2
[F13+F 31−F 11−F33 ]

According to the assumed mesh it can be noted that shear stress in node 22 may be determined
with the use of boundary values only, which in turn are determined by moments of external load
about chosen boundary points. Accounting for symmetry of the system we obtain:
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Boundary values of Airy stress function:

F11=
M 11

h
= 0 [kN ]

F13=
M 13

h
= 0 [kN ]

F 31=
M 31

h
= 0 [kN ]

F 33=
M 33

h
= 15 [kN ]

Shear stress in node 22:

[σ 12]22≈− 1

4 s2
[F13+F 31−F 11−F33 ]= 15 kPa
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EXAMPLE 39

There  is  a  rectangular  elastic  membrane  of
thickness h ,  loaded  as  shown  in  the  figure.
Find the distribution of horizontal normal stress in
the middle cross-section of the membrane with
the  use  of  Finite  Difference  Method  assuming
s=Δ x1 =Δ x2 .

SOLUTION:
FDM mesh accounting for the symmetry is as follows.

Boundary values of the Airy stress function as well as of its derivatives are found assuming the
initial point in the middle of bottom edge of the membrane:
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We may reduce the number of unknown nodal values by accounting for the condition of zero
normal derivatives:

Q s

h
=−∂ F

∂ n ∣11= 1
2 s

(F 01−F21)= 0 ⇒ F 01= F 21

Q s

h
=−∂ F

∂ n ∣12= 1
2 s

(F 02−F 22)= 0 ⇒ F 02= F 22

...
Q s

h
=−∂ F

∂ n ∣51= 1
2 s

(F 61−F41 )= 0 ⇒ F 61= F 41

Simplified FDM mesh is as follows:

INTERNAL POINT:
20 F 21−8(F 11+F 22+F22+F31)+2(F12+F 12+F 32+F32)+(F21+F 23+F 23+F 41)= 0
20 F 22−8(F 12+F 21+F 23+F32)+2(F11+F 13+F31+F33)+(F 22+F 22+F 24+F 42) = 0
20 F 23−8(F 13+F 22+F24+F33)+2(F12+F 14+F 32+F34)+(F23+F21+F 25+F 43) = 0
20 F 24−8(F 14+F 23+F 25+F34)+2 (F13+F 15+F 33+F35)+(F24+F 22+F 26+F 44)= 0
20 F 31−8(F 21+F32+F32+F 41)+2(F22+F 22+F 42+F 42)+(F 11+F 33+F33+F 51)= 0
20 F 32−8(F 22+F 31+F33+F 42)+2(F21+F 23+F 41+F 43)+(F 12+F32+F34+F 52) = 0
20 F 33−8(F 23+F32+F34+F 43)+2(F22+F24+F42+F44)+(F13+F 31+F 35+F53) = 0
20 F 34−8(F 24+F 33+F35+F44)+2 (F 23+F25+F43+F 45)+(F 14+F 32+F 36+F54)= 0
20 F 41−8(F 31+F 42+F 42+F51)+2 (F32+F32+F 52+F 52)+(F21+F43+F 43+F 41) = 0
20 F 42−8(F 32+F 41+F 43+F52)+2 (F31+F33+F 51+F53)+(F22+F 42+F 44+F 42)= 0
20 F 43−8(F 33+F 42+F 44+F 53)+2 (F32+F34+F 52+F 54)+(F 23+F 41+F 45+F43)= 0
20 F 44−8(F 34+F 43+F 45+F 54)+2(F 33+F35+F 53+F 55)+(F24+F 42+F 46+F 44)= 0
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BOUNDARY POINTS:
∂ F
∂ n ∣25= ∂F

∂ x1∣25=−
Q s∣25
h

⇒ 1
2 s

(F 26−F 24)=−4 qs

∂ F
∂ n ∣35= ∂ F

∂ x1∣35=−
Q s∣35
h

⇒ 1
2 s

(F36−F 34)=−4qs

∂ F
∂ n ∣45= ∂F

∂ x1∣45=−
Q s∣45
h

⇒ 1
2 s

(F 46−F 44 )=−4qs

Governing system of linear equations:

[
21 −16 2 0 0 −8 4 0 0 0 1 0 0 0 0
−8 22 −8 1 0 2 −8 2 0 0 0 1 0 0 0
1 −8 21 −8 0 0 2 −8 2 0 0 0 1 0 0
0 1 −8 21 1 0 0 2 −8 0 0 0 0 1 0
−8 4 0 0 0 20 −16 2 0 0 −8 4 0 0 0
2 −8 2 0 0 −8 21 −8 1 0 2 −8 2 0 0
0 2 −8 2 0 1 −8 20 −8 0 0 2 −8 2 0
0 0 2 −8 0 0 1 −8 20 1 0 0 2 −8 0
1 0 0 0 0 −8 4 0 0 0 21 −16 2 0 0
0 1 0 0 0 2 −8 2 0 0 −8 22 -8 1 0
0 0 1 0 0 0 2 −8 2 0 1 −8 21 −8 0
0 0 0 1 0 0 0 2 −8 0 0 1 −8 21 1
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1

]⋅[
F 21
F 22
F 23
F 24
F 26
F 31
F 32
F 33
F 34
F 36
F 41
F 42
F 43
F 44
F 46

]= qs2[
0
0
2
−8
−6
−5,5
−2
−9,5
26
24
20
−4
−8
−8
−8

]
The results are depicted below (values of the Airy stress function are divided by qs2):
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Stresses in the middle cross-section of the membrane:

[σ11 ]11=
1

s2
(F 21−2F 11−F 21)= 2,340 q

[σ11 ]21=
1

s2
(F11−2F 21−F 31)= 0,834q

[σ11 ]31=
1

s2
(F21−2 F31−F 41)=−0,138q

[σ11 ]41=
1

s2
(F31−2 F41−F51)=−0,906q

[σ11 ]51=
1

s2
(F 41−2 F51−F 41)=−1,92q

The results may be compared with FEM solution – a membrane of dimensions 8 m x 4 m, was
divided  into  3200  square  membrane  elements  of  maximum  element  size  equal  10  cm
(6639 equations). Obtained distribution of stresses in the middle cross-section of the membrane is
as follows:

One may also compare it with estimate provided by assumption that the membrane is a simply-
supported Bernoulli-Euler beam. Beam of length L and rectangular cross-section b×h , where
h= L /2 , gives us a symmetric and linear distribution of stress:

M max =
qb L2

8

W =
b( L/2)2

6

σmax =
M max

W
= 3q
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Better  estimate may be obtained with the use of  formulas  known from course of  strength of
materials by assuming different span length (e.g. Distance between resultants of the loads applied
to the bottom edge):

M max =
qb(7/8 L)2

8
W =

b(L/2)2

6
⇒ σmax =

M max

W
= 2,297q

Generally, the Bernoulli-Euler beam model is not recommended to be used for beams for which
L :h<10 . For beams for which 4<L :h<10 the Timoshenko beam model may be used. For

even higher beams one should use membrane models. However, it can be noticed that in some
cases even a beam model provides a sufficiently good estimate.
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