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NOTATION

a , b ,c , ...  - scalars
α ,β ,γ , ...  - scalars
a ,b ,c , ... - vectors, tensors
α ,β ,γ , ... - vectors, tensors

σ0 - limit stress (yield stress) in uniaxial stress state
τ0 - limit stress (yield stress) in pure shear state
σeq - equivalent stress
k t - limit stress at tension
k c - limit stress at compression
k s - limit stress at shear

σ1 ,σ2 ,σ3 - principal stresses
I 1 - 1st invariant of a tensor
I 2 - 2nd invariant of a tensor
I 3 - 3rd invariant of a tensor
J 2 - 2nd invariant of a deviator of a tensor
J 3 - 3rd invariant o  a deviator of a  tensor

p - hydrostatic stress
q - deviatoric stress
θ - Lode angle

ϕ - strain energy density
ϕv - volumetric strain energy density
ϕ f - distortional strain energy density

Ψ - plastic potential
f (σ) = 0 - limit state condition (yield condition)

E - Young modulus (longitudinal stiffness modulus)
G - Kirchhoff rigidity modulus (transverse stiffness modulus)
ν - Poisson's ratio
λ - 1st Lame parameter

n - strain hardening exponent
d λ - strain path parameter
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σ - stress tensor
s - deviator of a stress tensor
ε - total strain tensor
εe - elastic strain tensor
εpl - plastic strain tensor
e - deviator of a total strain tensor
ee - deviator of an elastic strain tensor
e pl - deviator of a plastic strain tensor
dε - total strain increment tensor
dε e - elastic strain increment tensor
dε pl - plastic strain increment tensor
dσ - stress increment tensor

If in an expression bottom index is repeated, it  means summation with respect to that
index for all its possible values, e.g.:

σijn j=∑
j=1

3

σ ijn j , εkk =∑
k=1

3

εkk , σij εij =∑
i=1

3

∑
j=1

3

σijεij etc.

Vector addition v+w vi+wi

Tensor addition α+β αij+βij
Action of a tensor on a vector σ n σijn j

Dot product of vectors v⋅w viw i

Dot product of tensors α⋅β αijβij
Trace of a tensor tr (α) αii
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A SHORT INTRODUCTION TO THE THEORY OF PLASTICITY

1. CHARACTER OF PLASTIC DEFORMATION

Contrary  to  the  elastic deformation,  which  is  reversible,  plastic deformation  is
permanent:

Notions of permanent strain and plastic strain are to some extent equivalent. The fact that
strain is permanent means that new configuration of a body is in fact a new state of equilibrium of
internal forces. In general it can be stated that plastic strain occurs when particles of a body (in
particular: atoms in a crystal lattice) due to applied load create such a spatial configuration, that
interaction forces between all those particles are in equilibrium.

Some permanent strain occur even when applied stress or strain is very small – it is due to
complex  and  non0uniform  structure  of  material  in  microscopic  scale  (granular  structure  of
material) as well as in atomic scale – those deformations are of similar order of magnitude, co
macroscopically the deformation is considered elastic. It is important to be aware of the fact that
plastic  deformation  occurs  always  simultaneously  with  elastic  deformation even  when
magnitude of reversible strain is much smaller than magnitude of permanent strain or when elastic
strain is unnoticeable or – due to character of considered problem – negligible.

In  general  both  elastic  strain  and  plastic  strain  will  be  present  and  they  should  be
distinguished is we want to describe arbitrary deformation processes accounting for plastic strain.
In  case  of  unloading elastic  strains  decrease while  plastic  strain  remain permanent.  For  these
reasons  the  total  strain  tensor ε is  written  down as  a  sum of  elastic  strain  tensor εe and
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plastic strain tensor εpl :
ε = εe + εpl

however,  relation  of  each  of  those  components  with  the  stress  tensor  (constitutive  law)  is
different.

Observable plastic deformation occur only after  limit state condition is satisfied, what in
some cases (simple load cases) is equivalent to the statement that  magnitude of stress exceed
certain limit value which is termed yield stress and denoted with σ0 . In more general cases of
complex stress state the condition of initiation of plastic deformation – so called yield condition –
is written down in the following form: 

f (σ) = 0

where f (σ) is a certain function of a stress state.

Let's  consider  a  simple  stress  state,  in  which  yield  condition  is  equivalent  to  relation
σ = σ0 . It must be noted that this limit value is not „sharp” in the sense that there is always

some transient state in which increment of plastic strain becomes gradually larger till it is finally
observable and measurable. For this reason various definitions of yield stress are used. 

Let  these  consideration  be  illustrated  with  simple  graphs  of  axial  stress  –  linear  strain
relation in case of quasistatic tensile test. We will consider two such graphs, characteristic for two
types of materials.
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The first graph – shown below – is typical for ductile materials with quite a distinct border
between elastic strain domain and plastic strain domain (e.g. Low-carbon steel).

At first we can observe a domain of approximately linear elastic  deformation and then a
region in which a large increment of strain is observed while stress varies in a very small extent
(so  called  “plastic  flow”).  An  important  mathematical  aspect  of  that  phenomenon  should  be
emphasized here – it is clear that relation σ(ε) is not a one-to-one relation within this “plastic
plateau”. It means that a single value of tress corresponds with many possible values of strain,
what  results  in  that  some  problems  of  theory  of  plasticity  cannot  be  solved  for  only  static
boundary conditions given. In particular, uniaxial tensile test of a material exhibiting plastic plateau
cannot be performed by a force-controlled machine because increasing the value of stress above
the value corresponding with the plateau would require an immediate large increase in strain. In
fact the process is  displacement-controlled – it  is  the elongation of  a  sample  which increases
gradually while the force which is needed to produce such an elongation is measured. In particular
a drop in the value of that required force may be sometimes observed.

Lack of one-to-one correspondence of constitutive relations of material exhibiting plastic
plateau was the reason for which so called incremental theories of plasticity (sometimes called
also plastic flow theories) were formulated – these are i.e. Levy-Mises and Prandtl-Reuss models,
which will be described later. In those models the stress tensor σ determines uniquely not a
strain  tensor ε ,  but  tensor  of  increment  of  strain  –  total  one dε  or  plastic  one dε pl

depending on chosen model.

After  the  region  of  plastic  plateau  larger  load  is  required  in  order  to  produce  further
elongation – it is called the hardening. In most of cases hardening is exhibited until the material
looses its cohesion, namely when it cracks, however, it is not a general rule.
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Among most commonly used definitions of a yield stress for ductile elastic-plastic materials
one should mention:

• lower yield stress σ0
L – it is defined in a number of ways, however, these definitions often

correspond with the same value. It may defined as:

▪ lowest value of stress which is necessary for further increase of plastic strain after
initiation of plastic deformation (after satisfying yield condition),

▪ lowest value of stress within the plastic deformation domain, excluding first local
minimum after initiation of plastic deformation,

▪ last  minimum  value  of  stress  within  the  plastic  deformation  domain  before
hardening.

• Upper yield stress σ0
U – it  is defined in a number of ways, however, these definitions

often correspond with the same value. It may defined as:

▪ the first  local  maximum of  value of  stress  after  initiation of  plastic  deformation
(satisfying yield condition),

▪ maximum value of stress within the plastic deformation domain.

It often happens that yield stress is not „sharp” as it is shown in the figure below. This
graph is typical for ductile materials of non-linear material characteristics (e.g. high-carbon steel).
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In such situations alternative definition of a yield stress is used:

• offset yield point (proof stress) – it is the value of stress which corresponds with a chosen
value of permanent strain which is determined with an assumption that unloading process
is a totally elastic one and that elastic properties of material do not change due to plastic
deformation. A common choice for ductile elastic-plastic materials is εpl = 0,2 % .

In the graph above we may observe a domain of  elastic deformation  (AB),  after which
plastic strain starts to increase gradually. Simultaneously we may observe material hardening all
the time. Specific character of plastic deformation may be noticed in case of non-monotonic load
process. If we unload the sample, it will emerge, that  unloading process  (CD)  is elastic  – what's
more, elastic properties are almost exactly the same as in the first region of elastic deformation,
even before any considerable plastic strain occurred. In fact, a slight non-linearity of that process is
observed,  which  is  due  to  presence  of  residual  stresses  (which  in  turn  are  caused  by  non-
uniformity  of  material's  structure),  which  may  lead  to  some  new  slips  when  external  load  is
reduced. Reloading process has an analogous character as the one in elastic deformation domain
– at first approximately linear elastic deformation occurs and then plastic strain slowly increases so
that curve EF becomes to some extent a continuation of BC curve.  CDE loop is a hysteresis loop
and its size is a measure of energy dissipated in the processes of unloading and reloading. It is
worth  to  notice  that  hardening  results  in  amplification  of  current  yield  stress,  namely  in
strengthening. Indeed, plastic deformation of materials exhibiting hardening is one of the ways of
amplifying its elastic deformation domain – this treatment is limited by the strength of material
(hardening finally ends with cracking) and by residual stresses, which may result in some undesired
mechanical properties of a material after unloading.

The above example has one more feature which distinguishes it from the previous one –
there  is  no  plastic  plateau.  In  such  a  situation  the  stress-strain  relation  is  a  one-to-one
correspondence,  unless  unloading  occurs.  In  such  situation  a  common  –  yet,  from  the
mathematical point of view, incorrect – approach is the use of so called deformation theories of
plasticity or – what is perhaps a better name – total strain theories, e.g. Hencky-Ilyushin equation,
in which stress state determines uniquely total strain state – they will be described later.
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2. MECHANISMS OF PLASTIC DEFORMATION

Mechanism of creation and increase of permanent plastic deformation may be discussed in
the most easily understandable way in case of a  monocrystalline  solid – a material in which  all
atoms form a regular lattice the geometry of which is repeated in space. In an ideal crystal lattice
there  are  many  possible  equilibrium  positions  of  atoms  –  these  are  positions  which  locally
minimize potential energy of inter-atomic bonds.  If  it happened that due to external load the
atoms were moved from one equilibrium position to another one, then these new positions will
constitute  also  an  equilibrium  configuration,  what  –  macroscopically  –  results  in  permanent
(plastic) strain.

Two fundamental  mechnisms of  plastic  deformation in a  monocrystalline material  are
distinguished:

• slip
• twinning

Slip in a close-pack plane of atoms – it occurs within a single crystal, this is in a region in
which spatial  distribution of  atoms is  regular  and repeated. In a structure of  that kind such a
motion is possible in which – speaking in a simplified way – one part of that structure is translated
as a whole (like a rigid body) with respect to the second one in such a way that particles of that
moving part takes position which originally were occupied by their neighbors. This process may
go on further. Such a deformation is termed slip. A magnitude of load which is required in order
to enforce such a motion is the greater the larger are distances between atoms  interchanging
their position – for this reason slip occurs in a plane which is most densely packed with atoms, so-
called close-pack plane.

It must be noted that energy which is needed in order to enforce slip in an ideal crystal
lattice – this is,  translation of a whole plane of atoms – is very large, so also force needed to
enforce permanent deformation would be very large – in fact,  observed magnitudes of  forces
resulting in plastic strain are much smaller. This is due to imperfection of a crystal lattice, namely
existence of some flaws of defects in its structure.  Presence of such an imperfection makes the
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energy required to initiate a slip much smaller than in case of a perfect lattice.

We distinguish three types of crystallographic defects:

• point defects
▪ vacancy – lack of an atom in a position predicted by a perfect lattice
▪ interstitial defect – presence of an additional atom in a place which is unoccupied

in a  perfect  lattice.  This  additional  atom may be a  native  atom (proper  for  the
lattice) or a foreign one (e.g. In alloys).

▪ substitutional  defect –  presence of  a  foreign atom in a  position predicted by a
perfect lattice (e.g. In alloys).

• line defects or dislocations
▪ edge dislocation – a presence of an additional half-plane of atoms in a lattice.
▪ screw dislocation – deformed structure is of a shape of screw curve.
▪ mixed disloaction – composition of edge and screw dislocation.

• Planar defects
▪ boundaries –  these  are  surfaces  dividing  the  regions  in  a  lattice,  in  which

orientation of  crystallographic structure are different. Depending on the magnitude
of this misorientation, we distinguish low-angle and high-angle boundaries. Each of
them has its specific structure. An important kind of high-angle boundary is a twin-
boundary – plane between twin crystals.

▪ stacking faults – disturbance in normally repeated sequence of atoms
▪ anti-phase domain boundaries  – they occur in lattices composed of at least two

types of atoms, in which there are some regions (domains), in which a place in a
perfect lattice is occupied by an improper type of atom..

The  defects  which  are  crucial  in  description  of  mechanisms  of  plastic  deformation  are
dislocations. It was already mentioned that a slip of a whole plane of atoms would require a great
amount of energy, and translation of only a pert of a lattice needs much more energy.  If  in a
structure dislocations are present, then a slip of even a large part of a plane may be performed by
a multiple translation of only small parts of it. We speak of motion of dislocations – it should not
be understood literally. We speak of motion of a certain geometric disturbance of geometry of a
system, not of a motion of a certain material object. It is the motion of dislocation that is a basic
mechanism of plastic deformation. Th figures below depict how motion of dislocations may result
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with a permanent deformation.

It  is  clear  that  the  magnitude  of  plastic  strain  as  well  as  the  resistance  against  plastic
deformation  (stiffness  in  plastic  deformation  domain,  hardness)  depends  on  the  number  of
dislocations in a structure – the more dislocations, the greater permanent deformation may be
enforced by a given load.
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The  second  mechanism  of  plastic  deformation  that  was  mention  is  twinning  –  it  is  a
phenomenon in which crystallographic structure is changes due to external load in such a way,
that  part  of  this  structure  is  transformed  with  respect  to  the  second  part  by  a  symmetry
transformation – it may be inversion (point reflection) or reflection about a line or about a plane.
In  the latter  case new grain becomes a symmetric  reflection of  the undeformed part  about a
certain  plane,  which  is  termed  twin  plane.  As  a  result  we  obtain  two  crystals  of  the  same
composition and of the same lattice structure, yet orientation of those structures are different –
we term them twins. Twin plane is inclined at the same angle to corresponding crystallographic
plane in both crystals. Displacements of atoms is proportional to the distance of the atom from the
twin plane.

Everything what has been already told concerned in fact only monocrystalline structures of
a single orintation of the lattice. Additional phenomena at the boundary of grains must be also
accounted for – these concern grains of the same type but of different orientation or grains of
different  crystals.  One  should  mention  two phenomenta.  The first  one is  twinning  which  was
already mentiond. The second thing is that the motion of dislocations described above concerned
the motion within a lattice of a single type of a crystal of fixed orientation. Motion of dislocations
in not possible at grain boundaries – different phenomena occur there.

One should also notice, that basic mechanisms of plastic deformation allow us to make
some  conclusions  concerning  the  magnitude  of  stress  which  is  required  to  initiate  plastic
deformation but corresponding only to certain slip planes. In real bodies, which are composed of
multiple  crystal  lattices  of  different  orientation  –  polycrystalline  bodies  –  the  same
macroscopically  determined  shear  stress  act  on  multiple  planes  of  different  orientation.
Depending on relative orientation of a certain plane with respect to the directioin of load, the
same load mey produce slip or not.
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Atoms in a close neighborhood of the grain boundary occupy positions which are to some
extent „intermediate”, between positions predicted by perfect structure of one crystal and of the
second one. As a result,  atoms which are close to the grain boundaries have higher potential
energy and enforcing their motion requires much lower stress. Such a slip at the grain boundary
is another mechanism of plastic deformation.

Despite fact that plastic strain measured macroscopically as an averaged (along a certain
gauge length) permanent strain seems to be distributed uniformly in a sample, in fact distribution
of plastic strain is characterized by the presence of multiple localizations, regions of much higher
intensity of plastic strain. Regions of that kind are e.g.  slip bands –  narrow regions created by
multiple dislocations passing along slip planes which are close one to another – many of those
dislocations are then locked or they block each other. Orientation of slip bands is strictly connected
with slip planes determined by crystallographic structure of a grain.

Shear bands are different in their nature – these are narrow regions of large distortional
strains that occur only in case of very large plastic strain. Contrary to the slip bands, shear bands
are not contained within a single grain, but they range through multiple grains and pass through
the boundaries. Orientation of shear bands is dependent not on internal structure of material but
rather on orientation of external load – they are oriented in an oblique way to the axis of the
greatest plastic deformation.

© Paweł Szeptyński 2020 – CC-BY-SA 4.0 PL 14
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3. YIELD CONDITION

It was mentioned that plastic deformation occurs only when the eternal load is sufficiently
large to initiate processes of motion of dislocations. In simple load cases – e.g. uniaxial tension,
pure  shear,  pure  bending,  pure  torsion  –  this  condition  is  equivalent  to  the  statement  that
appropriate stress – normal stress in case of tension and bending, shear stress in case of shear and
torsion – exceeds certain limit value. In case of a complex stress state yield condition is written
down in the following general form:

f (σ) = 0 (3.1)

A function of  a  tensorial  argument is  of  course  a  function of  all  its  components  of  its
argument in an assumed coordinate system. 

f (σ11 ,σ22 ,σ 33 ,σ23 ,σ31 ,σ12)= 0 (3.2)

Function f is  determined in  such  a  way  that  for  processes,  during  which  no  plastic
deformation occurs f (σ)<0 . This means that 0 is maximum value of the yield condition.

We make no additional constraints on the form the yield condition so far. The fact, that
yield condition may be expressed in terms of components of a stress tensor, is only an assumption
– in fact,  yield condition may be (and in some cases it  is  indeed) formulated as a  function of
components of a strain tensor or even as a function of components of both of those tensors . In
case of elastic materials the relation between stress and strain is invertible, so without any loss of
generality we may narrow our considerations to the yield conditions expressed as functions of the
stress state.

Of course, stress state in a body is in general non-uniform, so the yield condition may be
satisfied in one point and at the same time it  may be not satisfied in another point.  We may
consider different levels of yielding:

• yielding at a point  –  stress exceeds the limit  value only locally  and only in that point
permanent strains occur, while in other points deformation is still elastic. Yielding of edge
fibers  of  a  bent  cross-section  may be an  example  of  such situation.  The value of  load
parameter P  which results in first yielding in any point of a system may be termed limit
elastic bearing capacity  and it will be denoted by a bar above the symbol of parameter,
e.g. P̄ .

• yielding of a cross-section or more generally: yielding in a region which do not lead to loss
of stability of a system as a whole – in case of bar structures, in which distribution of cross-
sectional  forces  along  bar's  axis  determines  uniquely  the  distribution  of  stress  tensor
components in each cross-section, it may happen that the yield condition is satisfied in all
points of a certain cross-section – in other cross-sections yielding does not occur or occurs
only in part of it. In case of  statically determinate systems  yielding of a cross-section is
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equivalent  to  adding  a  new  degree  of  freedom  to  a  system  –  since  it  was  statically
determinate  this  additional degree of  freedom makes the system unstable.  In case of
statically indeterminate system yielding of a cross-section not necessarily leads to the
loss of stability  of a system, however,  statical configuration of the system changes. The
value of load parameter P  which results in first yielding of a cross-section as a whole
may be termed limit plastic bearing capacity and it will be denoted by a double bar above
the symbol of parameter, e.g. ̄P̄ . Partial yielding phenomena in bounded regions e.g. In
membranes, plates, brick elements etc. have similar character.

• Yielding of a system and loss of stability due to yielding – sufficiently large magnitude of
load  or  appropriately  chosen character  of  load may lead  to situation in  which yielding
occurs  in  such  regions  of  a  system  that  certain  parts  of  it  have  total  freedom  of
deformation. We say then that the system has lost its stability due to yielding and the value
of load parameter P  which caused it is termed bearing capacity of the system and it will
be denoted with a star, e.g. P* .

We will deal now only with local (at a point) yield condition, namely only with the function
f (σ)  itself – its properties and porposed forms of that function.

In case of materials with no hardening yield condition remain constant  during ongoing
plastic deformation. In case of  materials with hardening  plastic strain results in increasing the
yield  stress  what  corresponds  with  a  change  in  the  yield  condition  –  after  some  plastic
deformation a larger (in the sense of yield condition)  stress state than previously is required in
order to continue the increment of plastic strains.

3.1 YIELD SURFACE

Yield condition (3.1) may be interpreted in terms of analytical geometry as an equation of a
surface. It is not any true surface in three-dimensional space – it is an abstract hypersurface in six-
dimensional space of components of a stress tensor. This hypersurface is termed yield surface.
This interpretation is of almost no practical  significance or use in the general case, however it
becomes  a  great  and  useful  tool  for  depicting characteristic  properties  of  considered  yield
condition in case of isotropic materials

Just as in case of a yield condition for materials with no hardening, yield surface is fixed for
them. In case of materials exhibiting hardening yield surface changes its shape and size during
ongoing plastic deformation.
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3.2 YIELD CONDITION FOR ISOTROPIC MATERIALS

It is obvious that yield condition for isotropic materials cannot depend in any extent on
spatial orientation of direction of stresses but only on sole values of components of the stress
tensor – those components may be determined uniquely with the use of eigenvalues of stress
tensor, namely the principal stresses, or by its invariants. Generally, it can be stated that isotropic
function of tensorial argument may be expressed in terms of invariants of its argument. So, for
isotropic materials, function (3.1) may be expressed in one of the following forms:

• function of principal strsses σ1 ,σ2 ,σ3 :

f (σ1 ,σ 2 ,σ3)= 0 (3.3)

where σ1 ,σ2 ,σ3 are principal stresses.

• function of invariants of stress tensor I 1 , I 2 , I3 :

f (I 1 , I 2 , I 3) (3.4)
where
I 1(σ) = tr (σ) = σ1+ σ 2+ σ3 =σ 11+ σ 22+ σ33 (3.5)

I 2(σ)=
1
2
[ tr2(σ)−tr (σ2)]= ∣σ11 σ12

σ12 σ 22∣+ ∣σ11 σ 31
σ31 σ 33∣+ ∣σ22 σ23

σ23 σ33∣=
= σ22σ33+ σ 33σ11+ σ11σ 22− σ23

2 − σ31
2 − σ12

2 = σ2σ3 + σ3σ1+ σ1σ 2

(3.6)

I 3(σ)= det (σ) =
1
3

tr (σ3)−
1
2

tr(σ)tr (σ2)+
1
6

tr3 (σ) = ∣σ11 σ 12 σ13

σ 22 σ23

sym σ33
∣=

= σ11σ22σ33+ 2σ23σ31σ12− σ11σ23
2 − σ22σ31

2 − σ33σ12
2 = σ1σ 2σ3

 (3.7)

• function of invariants of stress tensor and its deviator I 1 , J 2 , J 3 :

f (I 1 , J 2 , J 3) (3.8)
where

J 2=−I 2 (s )=
1
2

tr (s2) =

= 1
6
[(σ22−σ33 )

2 + (σ33−σ11 )
2 + (σ11−σ22 )

2 ]+ (σ 23
2 +σ31

2 +σ12
2 )=

= 1
6 [(σ2−σ3)

2 + (σ3−σ1)
2+ (σ1−σ2 )

2]

(3.9)

J 3(σ) = I 3(s) =
1
3

tr (s3) =(σ1−
1
3
I 1)(σ 2−

1
3
I 1)(σ3−

1
3
I1)  (3.10)

s= σ−
1
3
I 11
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• function of invariants p , q ,θ :

f ( p , q ,θ) (3.11)

where

hydrostatic stress (pressure): p=
1
3
I1 (3.12)

deviatoric stress: q= √2 J 2 (3.13)

Lode angle: θ=
1
3

arccos[3√3
2

J 3

J 2
3/2 ] (3.14)

Invariants p , q ,θ are closely related with cylindrical coordinates in the space of principal
stresses.  Cylinder  axis  of  is  then  equally  inclined  to  axes σ1 ,σ2 ,σ3 -  it  corresponds  with
hydrostatic component of stress tensor. A component which is orthogonal to the hydrostatic one is
deviatoric  component,  which lies in deviatoric  (octahedral)  plane,  perpendicular  to the axis  of
hydrostratic stress. An angle between deviatoric component and a projection of chosen principal
stress on octahedral plane is the Lode angle.

Norm of hydrostatic component: ∣Aσ∣=
1

√3
I 1= √3 p

Norm of deviatoric component: ∣Dσ∣= √2 J 2= q

Lode angle: θ= 1
3

arccos[ 3√3
2

J 3

J 2
3/ 2]

• uniaxial tension: θ= 0∘

• uniaxial compression: θ= 60∘

• pure shear: θ= 30∘
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Also  other  combinations  of  the  above
invariants are used, yet there is no common way of
denoting them. 

A common feature of all above propositions is
that  the  yield  condition  is  a  function  of  three
independent  variables  –  considering  them  as
coordinates  in  a  certain  three-dimensional  space,
yield  surface  becomes  a  curved  two-dimensional
surface submerged in three-dimensional space. It is
convenient  to  describe  properties  of  the  yield
surface with the use of  cross-sections of the yield
surface:

• hydrostatic cross-section (section with a plane containing axis of hydrostatic stress)

• deviatoric  cross-section  (section  with  a  plane  perpendicular  to  the  axis  of  hydrostatic
stress)

In  general,  those  cross-sections  are  not  constant,  however  most  commonly  used  yield
conditions are independent of the Lode angle (surfaces of revolution with constant hydrostatic
cross-section)  and  yield  conditions  independent  of  hydrostatic  stress  (cylindrical  surfaces  with
constant deviatoric cross-section)

Chosen yield  conditions  for  isotropic  material  will  be  described now.  They  are  directly
related with the material failure criteria or –  more generally – with limit state criteria which were
introduced in the science of strength of materials. A limit state may be in particular the yield point.
Some classical limit state criteria concern limit states which differ considerably in their nature from
the plastic yielding – e.g. Coulomb-Mohr criterion for soils and rocks – so not all propositions in
strength of materials are used as yield conditions, despite the fact that description methods in
both problems are in fact the same. A final criterion which decides if given proposition may be
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used as a yield condition is its agreement with results of experiments. A common approach is to
formulate  a  yield  condition  in  form  of  simple  functions  of  invariants  of  stress  tensor  (e.g.
polynomial or power functions), in which constant coefficients are determined according to the
experimental data.

3.2.1 COULOMB-TRESCA-GUEST YIELD CONDITION

A yield condition which still emerges to be a good estimate in case of some materials and
some load cases is a classical limit state condition of  Coulomb  (1776)  – Tresca  (1864)  – Guest
(1899), namely: maximum shear stress criterion (CTG):

τmax= τ0 = const. (3.15)

where τ0 is a  limit value of shear stress.  This criterion corresponds directly with the fact tha
main mechanisms of plastic deformation are slip and twinning, which are initiated by a sufficiently
large magnitude of shearing stress. However, this condition makes no account for orientation of
that stress with respect to the crystal lattice and it is known that both slip and twinning may occur
only in certain planes. It should be admitted that in case of isotropic materials shear stress even in
a small region acts in fact on a great number of grains of different orientation of their structures,
so in macroscopic description of that problem we make a kind of „averaging” and maximum value
of  shear  stress becomes a good (experimentally proved)  measure of  a  factor  enforcing plastic
strain.

For a given stress state extreme values of shear stress correspond with shearing in planes
which are perpendicular to the one of the principal stresses and the direction of shearing is
inclined at angle 45° to the directions of the remaining two principal stresses. Maximum shear
stress may be calculated with the use of values of principal stresses σ1 ,σ2 ,σ3 in the following
way:

τmax= max(∣σ2−σ3∣
2

;
∣σ 2−σ 3∣

2
;
∣σ2−σ3∣

2 ) (3.16)

It is common to write down the yield condition in such a way that at the right hand side
there is a limit value of a normal stress σ0 (yield stress at uniaxial tension). CTG condition takes
then the following form:

σeq = max (∣σ2−σ3∣ ; ∣σ 2−σ 3∣ ; ∣σ2−σ3∣)= σ0 (3.17)

Value σeq is termed equivalent stress according to the CTG condition.

Yield condition corresponding with the CTG condition is a surface of an infinitely long prism
the cross-section of which is a regular hexagon and the axis of which is inclined a the same
angles to each axis of a system σ1 ,σ2 ,σ3 :
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3.2.2 MAXWELL-HUBER-MISES-HENKCKY YIELD CONDITION

Most  commonly  used  yield  condition  is  the  Maxwell-Huber-Mises-Hencky  limit  state
condition,  namely  the distortion  strain  energy  criterion  (MHMH).  Maxwell  (1856)  and  Mises
(1913) have porposed the yield condition as a stress state  dependent function of the following
form:

σeq = √ 1
2
[(σ22−σ33)

2 +(σ11−σ22)
2+ (σ33−σ11)

2+ 6 (σ 23
2 +σ31

2 +σ12
2 )]= σ0 (3.18)

where σ0 in a limit normal stress and σeq is termed equivalent stress according to the MHMH
condition. Equivalent stress acoording to MHMH may be also expressed as:

σeq= √3 J 2 = √ 3
2
q= √ 3

2
s⋅s= √ 3

2
sij sij (3.19)

Similar  results  was  obtained  by  Maksymilian  Tytus  Huber  (1904)  –  he  has  posed  a
hypothesis  that  a  measure  of  material  effort  in  case  of  load  cases  resulting  in  hydrostatic
compression is the density of energy of distortional strain ϕ f :

ϕ f =
1

12G
[(σ 22−σ33)

2 +(σ11−σ22)
2 +(σ33−σ11)

2 + 6(σ23
2 +σ 31

2 +σ12
2 )]= h (3.20)

where G is the Kirchhoff modulus and h is a limit value of the energy density of distortional
strain. Hencky (1924) has noticed energetic interpretation of proposition of Mises. Yield surface of
the  MHMH  condition  is  an  axis-symmetric  cylinder  of  an  axis  equally  inclined  to  the  axes
σ1 ,σ2 ,σ3 .
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In case of plane problems (σ 2=0) yield surface is an ellipse in plane (σ 1 ,σ 3) with its semi-axes
inclined equally to axes σ1 ,σ3 .

If CTG and MHMH condition predict the same limit normal stress σ0 , then CTG condition
is a „safer” one – equivalent stress according to MHMH condition is smaller or equal to the
corresponding equivalent stress according to CTG condition. MHMH cylinder is circumscribed on
CTG prism.
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It is worth noting that proposition of Huber was qualitatively distinct from Mises condition.
Huber assumed that ϕ f is  a measure of  material  effort  only in case of  compression,  namely
when p<0 .  For  th  states  of  tension ( p>0 ) Huber  assumed  that  the  measure  of  material
effort is the total strain energy density (as Beltrami assumed for all states):

{ϕ f = h ⇔ p<0
ϕ f+ϕv = h ⇔ p⩾0

where ϕv=
1

18K
(σ11+σ22+σ33)

2 (3.21)

and K is the bulk modulus. Some authors have interpreted hypothesis of Huber in such a way,
as if it required the same value on limit uniaxial stress both in case of tension and compression
k=k c/ k t=1 – this would be possible only if the limit value of energy density was different in

those two cases, what would in turn result with discontinuity of the yield surface for p=0 -  it
would be of a shape of a „mushroom” (cylinder of smaller diameter stacked to a half of an ellipsoid
of revolution of larger diameter). One should remember that Huber often referred to the limit
state as “cracking” what may suggest application of his hypothesis to a brittle destruction – not t
yielding of ductile materials. If he considered materials of different compressive strength k c and
tensile strength k t , then – according to his hypothesis – ration between those strengths would
be:

k =
k c
k t
= √ 3

2(1+ν)
(3.22)

There  is  no  experimental  evidence  for  that  relation  for  brittle  materials  (e.g.  rocks,
concrete),  for  which the ratio between compressive  and tensile  strength k∈(10 ;30) ,  yet for
common  values  of  the  Poisson's  ratio  for  material  of  that  kind ν∈(0,15;0,4) we  would  get,
according to (3.22), k∈(1,04 ; 1,14) .  It  is  worth noting that such values of k are typical  for
ductile  materials  having similar  values of ν and exhibiting the SD effect – for  such materials
Huber  hypothesis  may  provide  a  simple  yield  condition  which  has  also  a  convincing  physical
interpretation.
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3.2.3 BURZYŃSKI YIELD CONDITION

Schleicher (1926)  and Mises  (1928)  suggested that  right  hand side in  the MHMH yield
condition may be in general a function of hydrostatic stress – limit value of the equivalent stress
would be dependent on actual value of hydrostatic stress what was already accounted for in some
extent  in  the  original  formulation  of  Huber's  hypothesis.  Huber's  idea  has  no  experimental
evidence while Schleicher and Mises did not propose any form of the considered function. It was
the pupil of Huber, Włodzimierz Burzyński, who independently of Schleicher and Mises proposed a
yield condition of that form, which is mathematically simple and has great capabilities concerning
description of yield surfaces of different geometrical properties – it is clearly motivated physically,
yet it does not refer to any mechanisms of yielding. In the original formulation  Burzyński yield
condition is as follows:

ϕ f + (A+ B
p)ϕv = h  (3.23)

where ϕ f ,ϕv are  densities  of  strain  energy  of  distortional  and  volumetric  deformation
respectively, p is the hydrostatic stress, h is the limit value of the strain energy density and
A , B are material constants.

Burzyński yield condition may be written in the following form:

(σ11
2 +σ 22

2 +σ33
2 ) − 2( k c k r2k s

2
−1)(σ 22σ33+σ33σ11+σ11σ 22) +

+
k c k r
k s

2 (σ23
2 +σ31

2 +σ 12
2 ) + (k c−k r )(σ11+σ22+σ 33)−k c k r= 0

(3.24)

where k c is the limit uniaxial compressive stress, k t is the limit uniaxial tensile stress, k s is
the limit shear stress. All those parameters may be determined in relatively simple strength tests.
Burzyński's criterion accounts for asymmetric elastic range, this is, different value of limit uniaxial
stress in tension and in compression.

Equation  (3.24)  is  a  general  equation  of  a quadric  surface –  a  second degree surface.
Depending on mutual relations between values of parameters k c , k t , k s the character of the yield
surface may be different. In each case, however, it is a surface of revolution – its axis of symmetry
is σ1=σ 2=σ3  . Let's introduce parameters:

μ=
k c k r
2k s

2
−1 , k =

k c
k t

, k s , h=√ k c k t3
, k s ,min =

2k c k t
√3(k c+k t )
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Yield surface corresponding with the Burzyński yield condition is:

• ellipsoid of revolution for μ<0,5
• paraboloid of revolution for μ= 0,5 , k≠1
• cylinder for μ= 0,5 , k=1
• two-sheet hyperboloid of revolution for μ> 0,5 , k s> k s , min
• cone for μ> 0,5 , k s= k s , min

In case of two-sheet hyperboloid of revolution we consider only this sheet, inside which the
zero stress state is. The case of one-sheet hyperboloid is rejected since it is against experimental
evidence – shear strength would be the smallest for certain fixed value of hhydrostatic stress, and
it would increase with any change in the value of hydrostatic stress (independently of its sign) – up
to infinity. It is worth to mention two special cases:

• the case of cylinder is equivalent to the MHMH yield condition,
• the case of cone is equivalent with a later proposition of a yield condition by Drucker and

Prager (1952).
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3.3 DRUCKER'S POSTULATES

Drucker introduced a  notion of material stability  and formulated two conditions of that
stability. Let's consider that certain material is loaded (it corresponds with stress state σ(1) ) and
then and additional load is applied so that final stress state is described by a stress tensor σ(2) .
Then the material is unloaded until stress state σ(1) is obtained again. Such a process is termed a
stress cycle. 

Material is considered stable is:

1. Work performed by an additional load is positive.

2. Total work performed in a cycle is non-negative.

Wrok performed in a cycle is equal:

W = ∫
ABCD

(σ−σ(1))(d εe+dε pl)=∫
BC

(σ−σ(1))dε pl (3.25)

Condition that the total work in a cycle is non-negative is equivalent to

(σ ij−σij
(1))d εij

pl ⩾ 0 (3.26)

In case of an infinitely small increment of stress we may write:

dσijdεij
pl ⩾ 0 (3.27)
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Occurence  of  the  lower  yield  stress  is  related  with  material  instability,  namely,  with  a
situation in which some additional permanent strain occurs even when stress decreases.

From the Drucker's postulate is follows that:

• plastic strain increment tensor must be given by a tensor which is orthogonal to the yield
surface:

dεij
pl= d λ ∂ f∂σij

(3.28)

where d λ is  a  certain  coefficient  dependent  on
material  and  on  the  strain  path  (history  of
deformation).  This  relation  is  called  normality  rule,
what corresponds with so called associated flow rule,
which will be described later.

• Yield surface in each point must be convex.

© Paweł Szeptyński 2020 – CC-BY-SA 4.0 PL 27

σ

ε

σ(1)

σ(2)

  dσ>0

 d ε>0

W=dσ d ε>0

σ

ε

σ(1)

σ(2)

  d σ<0

 d ε>0

W=dσ d ε<0

σ

ε

σ(1)

σ(2)

  dσ>0

 d ε<0

W=dσ d ε<0

instability instability

σ1

σ3
d ε pl

f (σ)=0



dr inż. Paweł Szeptyński – A SHORT INTRODUCTION TO THE THEORY OF PLASTICITY

4. CHOSEN PHENOMENA OCCURING DURING PLASTIC DEFORMATION

4.1 PROCESS OF PLASTIC DEFORMATION

In the theory of plasticity we distinguish two types of processes:

• active  processes –  or  processes  of  loading  –  these  are  irreversible  processes  due  to
dissipation of energy in the process of creation and development of plastic strain. During
an active process both elastic strain tensor and plastic strain tensor vary. Simplifying the
problem, it may be stated that an active process is a process in which yield condition is
satisfied and applied load results in increment of plastic strain. For active processes:

▪ yield condition is satisfied:

f (σ) = 0 (3.29)

▪ increment of the yield condition corresponding to increment of stress on a yield
surface is non-negative: 

∂ f
∂σ⋅dσ ⩾ 0 (3.30)

• passive processes – or  processes  of  unloading –  these are  processes  during which  no
dissipation of energy occurs. Simplifying the problem, it can be stated that these are elastic
processes – loading in elastic deformation domain and unloading – namely, the processes
in which only elastic strain tensor varies. For passive processes:

▪ yield condition is not satisfied:

f (σ) < 0 (3.31)

▪ or yield condition is satisfied but increment of the yield condition corresponding to
increment of stress on a yield surface is negative: 

f (σ) = 0 ∧
∂ f
∂σ⋅d σ < 0 (3.32)

This  second case corresponds  with a  situation  in  which yield  condition  is  satisfied  but
increment  of  stress  would  result  in  unloading.  One  should  mention  now  that  in  case  of
incremental models of plasticity with associated flow rule, derivative of the yield condition with
respect to the stress tensor is proportional to the plastic strain increment tensor. In such a case a
dot product of the derivative and of stress increment tensor may be interpreted as proportional to
a work performed by an increment of stress on corresponding increment of plastic strain.
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4.2 ELASTIC CHARACTER OF UNLOADING

It was already mentioned that the unloading process has an elastic character. Indeed, the
only  strains  which  may  change  due  to  unloading  are  elastic  strains  which  have  developed
simultaneously with plastic deformation. Initiation of additional slips would require an additional
energy, so due to decrease in external load plastic strain remains (it  is  permanent) and only
elastic strain decreases.

It is an interesting fact that elastic characteristics of initial loading (in elastic deformation
domain) as well as of later unloading are almost identical (the same Young's modulus E ). Plastic
strain  results  in  permanent  changes  in  internal  structure  of  material  which,  determines  its
mechanical properties (i.e. elastic constants). In fact, total volume of regions in which dislocations
occur is very small compared to the total volume of a monocrystalline grain. Beyond those small
regions the structure of a crystal remains untouched by the load resulting in plastic deformation
– this structure is deformed in an elastic way and after removing the load it recovers its original
configuration. For this reason such mechanical properties as e.g. Elastic constants do not change
their values during plastic deformation, unless the strain is sufficiently large.

4.3  INCOMPRESSIBLE  CHARACTER OF  PLASTIC  DEFORMATION  AND INDEPENDENCE OF  YIELD
CONDITION OF HYDROSTATIC PRESSURE

Many experiments indicate that during the plastic deformation volume of material – to a
first approximation –  does not change,  namely that  plastic volumetric strain is approximately
zero. It is consistent with known mechanisms of plastic deformation, which base on permanent
distortional  strains –  slip  and  twinning  –  which  are  caused  by  shear  stresses.  Indeed,  those
mechanisms results in change of spatial distribution of atoms in a lattice in such a way that there is
no significant change in the volume of the region occupied by those atoms.

In case of materials in which it is possible to observe plastic „flow”, the process of plastic
deformation is similar to the motion of an incompressible fluid – this is the reason for using the
word „flow”. A phenomenon which is to some extent related with this is independence of yield
condition of  hydrostatic  stress.  It  can be noticed that in classical  yield conditions of  CTG and
MHMH adding any value of a hydrostatic stress do not change the yield condition or the value of
equivalent stress.

Both those phenomena are related within incremental models of plasticity with associated
flow rule, in which plastic strain increment tensor is determined as a gradient of a plastic potential,
which in turn in equal to the yield condition. If the yield condition is independent of hydrostatic
stress, then the derivative of  plastic potential Ψ(σ) (given by the same function as the yield
condition f (σ) ) with respect to this component is equal 0. This derivative – according to the
assumed constitutive law – is a measure of volumetric strain:

dεij
pl= d λ ∂Ψ∂σij

, Ψ(σ)= f (σ)

∂ f
∂σkk

= 0 ⇒ d εkk
pl = 0
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It must be emphasized that this observation is only approximately true – in fact, precise
measurements indicate both small changes in the volume of plastically deformed materials as well
as dependency of the yield condition on hydrostatic component, what is accounted for in yield
conditions of Burzyński, Schleicher-Mises, Drucker-Prager, etc.

4.4 HARDENING

We  already  know  that  a  basic  mechanism  of  plastic  deformation  is  the  motion  of
dislocations.  Since  in  a  certain  range  of  plastic  deformation  those  processes  require  greater
external  load  (hardening)  there  must  exist  some obstacles  in  motion of  dislocations.  We may
indicate two such obstacles.

The first one is a locally large density of dislocations. Each dislocation corresponds with a
field of stress. Fields corresponding to few dislocations may interact in such a way that motion of
dislocation requires smaller external load („dislocations attract each other”) or greated external
load  („dislocations  repulse  each  other”).  A  highly  plastically  strained  material  has  many
dislocations. If  dislocations are concentrated in a small region and interact one with another in
such a way that they make the motion more difficult (e.g. Dislocations in the same plane and of
the same Burgers vector) the phenomenon of  hardening occurs, namely, further increments of
plastic strain would require greater load.

It may happen also that in a place of high conscentration of dislocation of different types,
they  may mutually  ease  their  motion and  further  increments  of  plastic  strain  would  require
smaller load – we speak then of softening phenomenon.

Another  mechanism of  hardening  is  locking the dislocations  on grain  boundaries.  The
mechanisms of  propagation of  dislocations concern the motion only in a perfect lattice.  Some
obstacles may be due to presence of other defects in that structure or by a boundary of a region of
fixed structure. Distribution of atoms in the boundary layers and in close neighborhood of it is
highly  disturbed  and  motion  of  dislocation  in  such  a  region  is  impossible.  For  this  reason
polycrystalline solids exhibit stronger hardening than monocrystalline solids and – similarly – fine
graded materials (small grains – larger total are of boundary surfaces) exhibit stronger hardening
then materials with large grain sizes. Reducing the average size of grains is one of the methods of
strengthening of material (increasing the yield stress).
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In simple one-dimensional problems, hardening may be describet easily with approximate
empirical formulae. For example:

• Hollomon formula σ = K (εpl)n (3.33)

• Ludwik formula σ = σ0 + K (εpl )n (3.34)

• Ramberg-Osgood formula ε = σ
E
+ K (σE )

n

(3.35)

In case of formulae of Hollomon and Ludwik only plastic strain is accounted for – elastic
strain is  considered negligibly small  and those formulae correspond in face with a rigid-plastic
solid.  Parameter n is  termed the  strain hardening exponent,  and it  is  considered a material
constant – it is a basic parameter describing hardening of a material. Material constant K is a
measure of material's stiffness in plastic deformation domain. This description is a very simplified
one.

Problem of hardening is in fact much more complex. It concerns the problem of evolution
of a yield condition (and also of a  yield surface)  during ongoing plastic deformation. In case of
isotropic materials following models of hardening are commonly accepted:

• Isotropic  hardening  assume that  the  yield  surface
do not change its shape but only expands uniformly
(in an isotropic way) in the space of stresses. If, for
instance,  hardening  during  tension  in  plastic
deformation  domain  resulted  in  increase  in  limit
tensile stress α times, then in other limit states (e.g.
Compression, shear), corresponding limit stress also
increases α times. In such a situation the change of a
yield condition after hardening may be expressed as
follows:

f (σ) → f (σα )= 0 , α⩾1 (3.36)

If the yield condition is written down in the form:

f (σ) = c

where c is  a  certain  limit  value,  then  for  materials  with  no  hardening c will  be
constant. For materials with isotropic hardening c may be a function accounting for a
past deformation (strain path). It is postulated that the strain path was accounted for by a
single scalar parameter. 
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Two porpositions are commonly accepted:

▪ Taylor-Quinney isotropic hardening model – it assumes that hardening depends on
the work of stress on plastic strain W pl :

c= c (W pl ) , where W pl=∫σ ijdεij
pl (3.37)

Integral path corresponds with true history of stress and strain change processes.

▪ Odquist-Hill isotropic hardening model – it  assumes that hardening depends on
total length of a plastic strain path d pl :

c= c (d pl ) , where d pl=∫√dεij
pl dεij

pl (3.38)

Integral path corresponds with true strain history. Original proposition of Odquist
concerned the length of total strain.

• Kinematic hardening assumes thet the yield surface
does not change neither its shape nor dimensions
but it translates in the space of stress in the same
manner  as  rigid  body  moves.  A  property  of  that
model  is  that  if,  for  instance,  hardening  during
tension  in  plastic  deformation  domain  resulted  in
increase of the limit tensile stress with Δσ , then
in an opposite stress state – which is compression –
corresponding limit stress decreases with Δσ .  In
such a situation the change of a yield condition after
hardening may be expressed as follows:

f (σ) → f (σ−Δσ)= 0 (3.39)

• Mixed hardening  is a composition of kinematic and isotropic hardening models  –  yield
surface may change its dimensions and it may move in the space of stress:

f (σ) → f (σα−Δσ )= 0 (3.40)

• Anisotropic hardening assumes that the yield surface may change its shape in any direction
in the stress space in general in a different way.
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4.5 BAUSCHINGER EFFECT

When  a  material  is  deformed  plastically  and  then  unloaded,  inside  its  structure  in
microscopic scale some residual stresses remain – it is due to inhomogeneity of internal structure
of  material  what  results  with  different  stress  states  in  grains  of  different  orientation  of  their
crystallographic  structure.  Those  residual  stresses  constitute  a  system  in  equilibrium.  If  the
material is then loaded in a different manner then originally, those residual stresses influence the
initiation of mechanisms of plastic deformation what results in the fact that plastic strain occurs for
a different value of the stress than in the original process of loading. Such an effect is called the
Bauschinger effect. One of the simple ways of accounting for the Bauschinger effect is the use of
kinematic hardening model as it is depicted in the figure below:

4.6 INDUCED ANISOTROPY

It  was  mentioned  that  plastic  deformation  changes  the  internal  structure  of  a
monocrystalline  grain  only  in  small  extent  –  total  volume  of  regions  influenced  directly  by
dislocations  is  small  compared  to  the  total  volume  of  a  grain.  On  the  other  hand,  in  a
polycrystalline solid a strong plastic deformation may result in change on orientation of all grains. It
is obvious that e.g. uniaxial tension is characterized by a  specific direction –  crystal grains will
rotate and elongate along the direction af maximum stretching strain. Similar phenomena occur
also in complex stress states – the target orientation of the crystallographic structure depends on
the strain path. In case of polycrystalline solids this target orientation is in general different for
each  grain  as  the  grain's  motion  is  constrained.  As  a  result,  internal  structure  of  a  material
changes in such a way, that macroscopic mechanical properties of a material which was initially
isotropic develop the properties of anisotropy induced by a plastic deformation – such properties
as stiffness (also in elastic deformation domain) or yield stress take different values, depending on
orientation of a load with respect to the characteristic directions of the induced anisotropy.

© Paweł Szeptyński 2020 – CC-BY-SA 4.0 PL 33

σ

ε

σ

ε

σ

ε

original
material characteristics

plastic deformation with
hardening and unloading

secondary (apparent)
material characteristics

hardening

un
lo

ad
in

g

kinematic 
hardening

σ
0,t

σ
0,t

σ
0,c

σ
0,c



dr inż. Paweł Szeptyński – A SHORT INTRODUCTION TO THE THEORY OF PLASTICITY

Even for materials which were initially a complex of grains of totally random distribution of
orientation of crystallographic structure of grains – we say, that the structure do not exhibit any
noticeable texture – one may observe that during ongoing plastic  deformation the material's
texture develops,  namely,  that  a  certain  orientation  of  crystallographic  structure  of  grains
becomes gradually more common.

5. YIELD IN A POINT

5.1 CONSTITUTIVE RELATIONS IN ELASTIC-PLASTIC DEFORMATION

Kinematics  and  equilibrium  equations  derived  in  the  theory  of  elasticity  are  generally
common for all branches of mechanics of deformable solids. Key element in a proper formulation
of mathematical theory of plasticity is the choice of appropriate constitutive relations between
the  stress  state  and  strain  state  which  accounts  for  distinct  character  of  elastic  and  plastic
strains. Three approaches are common:

• simplified models – these are in face non-linear elastic models, namely the models of an
elastic solid for which non-linear constitutive relations are assumed in such a way, that they
fit  well  the σ−ε curve  determined  experimentally.  Those  models  assume  that  the
relation  between  stress  and  strain  is  a  one-to-one  relation,  an  invertible  one .  Their
applicability is constrained only to the processes of monotonic load – they do not account
for elastic character of passive processes.  Models of hardening by Ludwik or Ramberg-
Osgood are examples of such models. They are usually formulated only for simple load
ceses, e.g. uniaxial state.

• Deformation theories of plasticity  or total strain theories – they assume, that  the stress
state determine the strain state  (both elastic strain and plastic strain) in a unique way. An
important flaw of these theories is that a single stress state may correspond with different
strain states which were obtained by a different strain path. In particular these models do
not describe in a correct way the processes on unloading and subsequent loading.

• Plastic flow theories  or incremental theories of plasticity – they assume, that the stress
state determines in a unique a tensor of increment of plastic strain. Total plastic strain
must be determined by summing up (integration) of known increments. 
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5.1.1 MODELS OF ASYMPTOTIC PLASTICITY

Some  examples  of  simple  models  of  plasticity  are,  so  called,  models  of  asymptotic
plasticity:

• Prager: ε =
σ0

E
arctgh( σσ0) (3.41)

• Ylinen: ε = 1
E [ασ−(1−α)σ0 ln (1− σσ0)] , α∈〈0 ; 1〉 (3.42)

• Życzkowski: ε = σ
E (1−

σ
σ 0)

−n

, n⩾0 (3.43)

5.1.2. TOTAL STRAIN THEORIES OF PLASTICITY

5.1.2.1 THEORY OF HENCKY AND ILYUSHIN

Most commonly used total strain theory is the one due to Hencky and Ilyushin. According
to a commonly accepted assumption that the yield condition does not depend on hydrostatic
stress and that permanent volumetric deformation is approximately zero, the relation between
stress  and  strain  is  formulated  separately  for  deviatoric  and  hydrostatic  components.  Let's
introduce:

• deviator of a total strain tensor: e=ε−
1
3

tr (ε)⋅1 (3.44)

• deviator of stress tensor: s= σ−
1
3

tr (σ)⋅1 (3.45)

Constitutive relations of the Hencky – Ilyushin theory are as follows:

{eij= (ϕ+ 1
2G )sij

εkk =
1−2ν
E

σkk

(3.46)
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It is easy to separate the elastic and plastic components. 

Elastic deformation:

{eije = s ij
2G

εkk
e =

1−2ν
E

σkk

 (3.47)

Plastic deformation:

εij
pl = eij

pl= ϕ sij {ϕ>0 for active processes
ϕ=0 for passive processes

(3.48)

Constitutive relations for  elastic  components are the same as in case of  a linear-elastic
solid. Plastic component has only a deviatoric component – its hydrostatic component εkk

pl = 0 .

The key flaw of  this theory is  lack of possibility of correct description of processes of
multiple loading and unloading. Let's assume that a certain plastic (permanent)  strain state was
obtained due  to  original  load.  We consider  then an  unloading  process  in  which  elastic  strain
decreases and plastic strain remains constant. Then we load the body again but in a different way
than originally,  namely  deviator sij is  different  when the  yield  condition  is  again  satisfied.  It
requires  the  plastic  strain  state  to  be  changed  now  according  to  relation eij

pl= ϕ sij which  is
inconsistent with previous plastic strain state. If the model is used for description of monotonic
load processes, it provides sufficiently accurate predictions.

5.1.3 INCREMENTAL THEORIES OF PLASTICITY

An alternative  approach  are  the  so  called  incremental  theories  of  plasticity,  which  are
sometimes termed also plastic flow theories. This term refers  to the fluid dynamics in which one
of  the  fundamental  equations  has  an  analogous  form  as  the  assumed  constitutive  relation.
Assumption of lack of volumetric plastic strain corresponds with the mechanics of incompressible
fluids.  This  analogy  in  not  completely  correct,  so  it  is  more  appropriate  to  use  the  term  of
incremental  model.  Constitutive  relations  in  incremental  models  may be written down in  the
following form:

dεij
pl= d λ ∂Ψ∂σij

(3.49)

where dεij
pl are the components of the plastic strain increment tensor, Ψ(σ) is termed plastic

potential, and d λ is a parameter accounting for mechanical properties of a material as well as
the history of deformation – in particular, this parameter may account also for hardening.

Most common approach in formulating the incremental constitutive relations is assumption
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of the so called associated flow rule, namely an assumption that plastic potential is expressed by
the same function as the yield condition:

Ψ(σ) = f (σ) (3.50)

Assumption of the associated flow rule concerns many important aspects of modeling the
elastic-plastic materials:

• In  case  of  an  associated  flow rule, the  stress  state  in  an  elastic-plastic  solid (with  or
without hardening) for given statical boundary conditions is given uniquely.

• In  case  of  an  associated flow rule,  the  normality  condition is  satisfied –  plastic  strain
increment tensor is orthogonal to the yield surface.

• If the material is stable in the sense of Drucker, then the flow rule must ba associated with
the yield condition and the yield surface must be convex.

5.1.3.1 PRANDTL-REUSS THEORY

Most commonly used incremental model is the Prantl-Reuss model, in which the flow rule
is associated with the MHMH yield condition,  namely,  when the yield condition is  a quadratic
function of the stress deviator:

f (σ) =σ eq− σ0 = √ 3
2
sij s ij−σ0

Then the plastic strain increment tensor is simply proportional to the stress deviator:

dεij
pl= d λ sij (3.51)

Constitutive relation for total strain increment tensor is then as follows:

{dεij= d λ sij+
d sij
2G

dεkk =
1−2 ν
E

dσkk

(3.52)

5.1.3.2 LEVY-MISES THEORY

First historic incremental theory was the proposition of Levy and Mises, which is almost the
same as the later Prandtl-Reuss theory, the only difference is that it concerned rigid-plastic solid
model in which  total strain is equal to the plastic strain and elastic component of strain is zero,
what leads to relation:

dεij = d λ sij (3.53)
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6. YIELDING OF A CROSS-SECTION

As it was already mentioned, yielding may occur at various levels in a body. Until now we've
considered only yielding in a point, which was equivalent to satisfying the yield condtiion. Yielding
in a point resulted in the change of constitutive relations in that point. If the yielding concerns a
set of point (subregion in a body) we speak then of partial yielding of a body or that the body is in
an elastic-plastic state. The region in which active processes occur is called the plastic region. We
shall consider now fundamental cases of loads applied to solid bars, which may result in partial of
total yielding in  a cross-section. Our considerations will be based on a model of  ideally elastic-
plastic material with no hardening.

6.1 YIELDING OF AXIALLY LOADED MEMBERS

Within the  linear theory of elasticity  the solution of the problem of  pure tension  of a
prismatic bar given us:

σ = [σ 0 0
0 0 0
0 0 0] , εe= σ

E [1 0 0
0 −ν 0
0 0 −ν] , u = σ

E [ x 1

−ν x2

−ν x3
] , σ =

P
A
= const.

(3.54)

where P is the external tensile force, A is the surface area of the bar's cross-section, E is
the  Young  modulus,  and ν is  the  Poisson's  ratio.  Uniaxial  stress  state  assume  uniform
distribution of  stress  state in  the whole cross-section –  the only  non-zero component is  the
normal stress along the load direction. 

Starting with the linear-elastic solution and assuming the model of ideally elastic-plastic
material with no hardening, we may state that:

• the yield condition is satisfied simultaneously in all points of the cross-section.

• Normal stress in the cross-section during ongoing load  dues not exceed the limit stress
σ = σ0 (no hardening).

• The greatest magnitude of a force, which may applied to a bar, corresponds with its limit
plastic bearing capacity P pl =σ 0A . Strain increases up to infinity (the bar „flows”). 
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In the figure below plastic region is marked with pink color.

Of course, in true case finally hardening or cracking occurs, however this second stage of
deformation in elastic-plastic analysis in engineering problems is often disregarded due to large
discrepancies between theoretical predictions and observed material's behavior.
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6.2 YIELDING OF BENT MEMBERS

Within the  linear theory of elasticity  the solution of the problem of  pure bending  of a
prismatic bar given us:

σ = M
I [x3 0 0

0 0 0
0 0 0] , εe=

M
EI [x3 0 0

0 −ν x 3 0
0 0 −ν x 3

] , u =
M
EI [ x1 x 3

−ν x2 x3

1
2
(−x1

2+ν( x2
2−x3

2))] ,

(3.55)

where M is the magnitude of bending moment, I is the principal central second moment of
area (moment of inertia) of the bar's cross-section with respect to the axis which is parallel to the
vector of bending moment, E is the Young modulus, and ν is the Poisson's ratio. The state of
pure bending within linear-elastic range assumed a linear distribution of a normal stress and
corresponding linear strain in whole cross-scection of a bar.

Starting with this solution, we will assume that the distribution of strain will remain linear.
Contrary to the case of uniaxial stress state, yielding will occur in different points depending on the
magnitude of load. We may distinguish two limiting situations:

• yielding in a first fiber of a cross-section – it corresponds with the bending moment M e

which is a limit elastic bearing capacity of the cross-section.

• yielding in all points of a cross-section – it corresponds with the bending moment M pl

which is a limit plastic bearing capacity of the cross-section.

It is obvious that the first fibers that will undergo yielding will be those, in which the normal
stress is the greatest, namely the edge fibers. Limit elastic bearing capacity is equal:

M e=W σ0 (3.56)

where W is the resistance moment (strength index in bending). 

Plastic region consisting of two subregions at opposite edges of the cross-section expands
towards the neutral axis,  however, location of the neutral axis in case of non-symmetric cross-
section varies with the ongoing plastic deformation.

In a limit case – yielding of a cross-section – condition of equilibrium of internal forces,
which correspond to two regions of constant normal stress (tension – compression), requires that
the location of the neutral axis is such that the surface area of the region above the axis (in case
of yielding) of a cross-section is the same as the surface area of the region below the axis, which
is different from the situation in elastic range, in which equilibrium required equality of the first
moment of  area (statical  moments)  of  the regions on opposite sides of  this  axis.  Limit  plastic
bearing capacity is determined as a moment corresponding with a couple of forces, and each of
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the forces in that couple is a sum of a uniform system of normal stress on one and on the other
side of the neutral axis. Location of those forces is found in a usual way with the use of statical
moment.

In the figure below a character of distribution of stress and strain in a bent cross-section if
shown in various stages of loading. Plastic region is marked with pink color.
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EXAMPLE:

Elastic range:
Surface area of cross-section: A= [2⋅1 ]+[1⋅2 ]= 4 m2

1st moment of area wrt bottom edge: S Y = [2⋅1⋅0,5]+[1⋅2⋅2]= 5 m3

Location of neutral axis: ZO=
SY
A
= 1,25m

Principal central axis of inertia:

I y= [ 2⋅13

12
+ 2⋅1⋅(0,5−1,25)2]+[1⋅23

12
+ 1⋅2⋅(2−1,25)2]= 4,163 m 4  

Distance to the edge fiber: zmax= 1,75 m

Resistance moment: W y=
I y
zmax

= 2,379 m
3  

Limit elastic bearing capacity: M e=σ 0⋅W y= 2,379σ0  

Yielding of cross-section:
Location of neutral axis: ZO , pl= 1m

Sum of system of stresses above/below the neutral axis: F pl= σ0⋅1⋅2= 2σ 0

Location of sum of the top system: Z F ,g= 2 m

Location of sum of the bottom system: Z F ,d = 0,5 m

Arm of forces in a couple: d pl= Z F ,g−Z F , d= 1,5 m

Limit plastic bearing capacity: M pl= F pl d pl = 3σ0

Ratio of limit plastic and elastic bearing capacity: M pl

M e = 1,261
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The case of  a  bent  cross-section  is  a  nice  way of  depicting  of  problems of  permanent
strains,  elastic  character  of  unloading as well  as  residual  stresses.  Let's  consider a  rectangular
cross-section for simplicity. Let's denote the location of neutral axis with O, A – boundary of plastic
region, B – edge fibers. Let the cross-section be bent with a moment M 1 , such that is results in a
plastic region ranging up to the one third of the total surface area of the cross-section. Its value is:

M 1 = 2[(σ 0⋅b⋅
h
6
⋅(h3 + 1

2
⋅h

6 ))+ 1
2
σ0⋅b⋅

h
3
⋅2

3
⋅h

3]= 23
108

bh2σ0 ≈ 0,213bh2σ0  

Limit elastic bearing capacity of the cross-section: M e =
1
6
bh2σ0 ≈ 0,167b h2σ0

Limit plastic bearing capacity of the cross-section: M
pl= bh =

1
4
b h

2σ0≈ 0,250b h
2σ0

M e<M 1< M pl ⇒ elastic-plastic deformation domain.

Stress and strain in points O, A, B after
loading:

σO = 0 εO= 0

σA= σ0 εA=ε0 =
σ0

E

σB= σ0 εB=
zB
zA
εA= 1,5

σ 0

E

Let's now unload the cross-section, namely, let's load it  with a bending moment of the
same  value  but  opposite  orientation,  remembering  that  unloading  is  an  elastic  process,  so
corresponding stress and strain distribution is linear. Additional stress and strain due to unloading
in points O, A, B:

σO = 0 εO=−
M 1

EI
zO= 0

σA=−
M 1

I
zA=−0,852σ0 εA=−

M 1

EI
z A≈−0,852

σ 0

E

σB=−
M 1

I
zB=−1,278σ0 εB=−

M 1

EI
zB≈−1,278

σ0

E
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Stress and strain in points O, A, B after unloading:

σO= 0−0= 0 εO= 0−0= 0

σ A= σ0 −
M 1

I
zA ≈ 0,148σ0 εA=ε0−

M 1

EI
z A≈ 0,148

σ0

E

σ B= σ0−
M 1

I
zB ≈−0,278σ0 εB = 1,5ε0−

M 1

EI
zB ≈ 0,222

σ0

E

It  may be noticed that the system of  residual  stresses  is  in  equilibrium,  so  the cross-
section is indeed fully unloaded. We may also observe that after unloading there is a remaining
linear distribution of stain which corresponds with a certain permanent (plastic) curvature of bent
bar. Subsequent loading will be again an elastic process unless the value of the bending moment
exceeds M 1 .  Reaching M 1 again results in the same stress and strain state as after original
loading.
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6.2.1 CLASSES OF STEEL SECTIONS

Standards for desiging steel structure distinguish 4 classes of steel sections, according to
their ability of plastic deformation:

• CLASS 1 – the cross-section may reach its  limit  plastic  bearing capacity,  and after  full
yielding it preserves the ability of free deformation, so it is possible that a plastic hinge is
created. In case of statically-indeterminate systems the presence of such a hinge results in
the change of statical diagram of the system, what – in turn – changes the distribution of
internal forces (redistribution of internal forces). As a result the system may exhibit greater
bearing capacity than the limit plastic capacity of its cross-section. Bearing capacity of the
system corresponds with the load which results in so great number of plastic hinges that
the system looses its stability and becomes mechanism.

• CLASS 2 – the cross-section may reach its limit plastic bearing capacity but its deformation
is constrained, so the assumption that the plastic hinge is created is not allowed.

• CLASS 3 –  the cross-section may reach its  limit elastic bearing capacity, so the bearing
capacity of the cross-section corresponds with a load which results in yielding of its first
fiber.

• CLASS 4 –  the cross-section locally looses its stability  due to too great slenderness of its
elements (e.g. buckling of a compressed web or flange)  even before yield occurs in any
fiber of the cross-section.
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6.3 YIELDING OF MEMBERS SUBJECTED TO TORSION

Within the  linear theory of  elasticity  the solution of  the problem of  pure torsion  of a
prismatic bar with unconstrained warping given us:

σ =ΘG[ 0 ( ∂ψ∂ x2

−x3) ( ∂ψ∂ x3

+x2)
0 0

sym 0
] , εe = Θ

2 [ 0 ( ∂ψ∂ x2

−x3) (∂ψ∂ x3

+x2)
0 0

sym 0
] , u =Θ[ψ( x1 , x 2)

−x1 x 3

x1 x2
] ,

(3.57)

where Θ is  the unit torsion angle, G is  the Kirchhoff  modulis,  a funkcja ψ is  the warping
function  describing  the  out-of-plane  deformation  of  a  cross-section.  One  of  the  methods  of
description of the problem of pure bending it introduction of the Prandtl stress function ϕ such
that:

σ12=
∂ϕ
∂ x3

, σ31=−
∂ϕ
∂ x 2

(3.58)

It is easy to check, that for assumed stress state expressing its components with the use of the
Prandtl stress function guarantees that all equilibrium conditions are automatically satisfied. The
only remaining condition to be fulfilled is the strain compatibility consdition. Such a consdition
may be obtained by calculation of the following expression

∂σ31

∂ x2

−
∂σ12

∂ x3

=ΘG[( ∂2ψ
∂ x2∂ x3

+1)− ( ∂2ψ
∂ x2∂ x3

−1)]= 2ΘG (3.59)

Accounting for the dependency between stress state components and the strrss function gives us:

∇ 2ϕ = ∂ϕ
2

∂ x2
2
+ ∂ϕ

2

∂ x 3
2
=−2GΘ (3.60)

so the Prandtl stress function ϕ  satisfies the Poisson equation. 

Directional  derivative  of ϕ is  equal  to  the  shear  stress  in  a  direction  which  is
perpendicular to the direction for which the derivative is calculated. Statical boundary condition
for a bar subjected to torsion requires that the shear stress perpendicular to the boundary is zero,
what corresponds with zero value of the directional derivative along the tangent direction – this
condition is satisfied when function ϕ is constant along boundary, e.g. it is equal 0. The above
equation,  together  with  the  boundary  condition ϕ=0 on  a  boundary  of  the  cross-section,
enables to find ϕ uniquely, what in turn gives as the distribution of stress in a twisted bar.

The above equation describes also a different problem in mechanics – deformation of a
slender membrane or film fixed along a boundary of a shape of the edge of cross-section and
loaded with uniform pressure. When the stiffness of a membrane is denoted with D , and the
pressure load is denoted with q then the equation which describes the deflection of membrane
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w is of the following form:

∇ 2w =
q
D

(3.61)

So, if the function ϕ was interpreted as a distribution of deflection of a membrane, then
its   partial  derivatives  with  respect  to  variables x2 , x3 ,  namely  the  tangent  of  an  angle  of
inclination of  deformed membrane along  direction of x2 , x3 is  a  measure of  corresponding
shear stress. This observation is sometimes termed the  Prandtl membrane analogy. In order to
find the total twisting moment which corresponds with a whole system of shear stress, we need to
calculate following integral:

M =∬
A

(σ 12 x3 − σ31 x 2)d A=∬
A
( ∂ϕ∂ x3

x 3+
∂ϕ
∂ x2

x2)d A (3.62)

It may be integrated by parts:

M =∬
A
( ∂ϕ∂ x 3

x3 +
∂ϕ
∂ x2

x2)d A=∮
∂A
[ϕ (x2 n2 + x3 n3)]d A −∬

A

ϕ[ ∂∂ x 2

(x 2)+ ∂
∂ x 3

( x3)]d A
(3.63)

where n = [n2 ,n3] is external normal at the boundary. Since along the whole boundary ∂ A the
function ϕ=0 , so the contour integral is equal 0. We get:

M =−2∬
A

ϕd A

The integral at the right hand side is a volume contained between plane ( x2 , x3) and  the
graph of ϕ . So the volume contained between the surface of the cross-section and deformed
membrane is a measure of a twisting moment: 

M = 2V (3.64)

In a limit state (yielding of a first fiber) it is equal to the limit elastic bearing capacity of the
twisted cross-section. Let's consider a situation in which the twisting moment exceeds the limit
elastic bearing capacity and let's assume that still the only non-zero stress state components in the
cross-section are shear stresses. If the material exhibits no hardening, resultant shear stress in the
plastic region must be everywhere equal τ0 -  limit shear stress – which for  material  with no
hardening is constant:

√σ12
2 +σ31

2 = τ0 ⇒ ( ∂ϕ∂ x2
)

2

+( ∂ϕ∂ x3
)

2

=∣grad ϕ∣2 = τ0
2 = const. , (3.65)

Referring  to  the  membrane  analogy,  the  above  equation  may  be  interpreted  in  the
following  way:  maximum  inclination  angle (length  of  a  vector  of  a  gradient  of  deformed
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membrane) in the plastic region must be constant, equal α . This angle corresponds with limit
shear stress τ0 :

τ0
2 = tg2α= const. (3.66)

In the elastic region still equation (3.61) holds true and an angle of inclination is maller than
the constant value corresponding with τ0 . We may extend the membrane analogy in such a way,
that above the membrane in the plastic region there is an infinitely rigid roof of slope τ0 . The
membrane may deform due to applied pressure freely in the elastic region – in the plastic region in
sticks  to  the  roof.  This  observation  is  sometimes  called  the  Nadai  roof  analogy.  The  volume
contained under the membrane is a measure of twisting moment

In case of yielding of a whole cross-section, the membrane sticks the roof everywhere
and the limit plastic bearing capacity is calculated according to a volume under the roof.  The
roof starts at the contour of the cross-section at it is inclined with a constant angle to the surface
of that cross-section – this is a shape of an ideally cohesiveless material with fixed angle of internal
friction,  which is  poured uniformly on the area of  cross-section.  Its  top surface is  termed the
constant slope surface. The volume of the pile is a measure of limit plastic bearing capacity. This
observation is sometimes termed as Nadai sand hill analogy. In the figure below the character of
distribution of shear stress in a circular twisted cross-section is shown for various stages of loading.
Plastic region is marked with pink color.
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EXAMPLES:

• limit plastic bearing capacity of a twisted rectangular cross-section

Volume: V =
1

12
b2(3h−b) tgα

Bearing capacity: M pl=
1
6
b2(3h−b) τ0

• limit plastic bearing capacity of a twisted circular cross-section

Volume: V =
1
3
π r3

tgα

Bearing capacity: M pl=
2
3
π r3 τ0
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6.4 YIELDING OF A THICK - WALLED PIPE LOADED WITH INTERNAL PRESSURE

Within the  linear theory of elasticity  the solution of the
problem  of  a  thick-walled  pipe  of  internal  radius R1 and
external  radius R2 ,  loaded  with  uniform  internal  pressure
q gives is (in polar coordinates):

ur (r) =C1 r +
C2

r

εrr
e (r) =C 1 −

C2

r2 , εϕϕ
e (r) =C1 +

C2

r 2

σrr (r)= 2C1 (G+λ) −
2C2G

r2

σϕϕ(r) = 2C1(G+λ)+
2C2G

r2 (3.67)

where: C1=
q R1

2

(2G+λ)(R2
2−R1

2)
, C 2=

q R1
2R2

2

2G (R2
2−R1

2)
(3.68)

G is the Kirchhoff modulus, λ is the Lame parameter. We assume that the pipe may deform
freele along its axis, namely: σ zz=0 . Let us consider a case in which an internal pressure leads to
yielding. Character of solution elastic region will  be the same as above.  Let's write down the
expressions for the distribution of stress components:

σrr
I (r)= D1 −

D2

r 2 σϕϕ
I (r) = D1+

D2

r 2 (3.69)

in which superscript I denotes the elastic region and II denotes the  plastic region.

Constants of integration will change because boundary conditions are different:

• Boundary condition for free boundary remains unchanged σrr
I (R2)= 0 .

• Next  condition  is  the  continuity  of  radial  stress  at  the  boundary  of  plastic  region:
σrr

II (r pl)= σrr
I (r pl)

• Condition of continuity of shear stress at the boundary of plastic region is satisfied since
σr ϕ= 0 .

• Boundary  condition  for  loaded  boundary σrr
II (R1) =−q will  be  used  in  order  to

determine the distribution of stress in plastic region.

© Paweł Szeptyński 2020 – CC-BY-SA 4.0 PL 50

2 R
1

2 R
2

q r

φ



dr inż. Paweł Szeptyński – A SHORT INTRODUCTION TO THE THEORY OF PLASTICITY

Contrary  to  the  previously  discussed  cases,  the  stress  state  now  is  complex  and  it  is
necessary to assume a certain yield condition, for which the analysis is performed. Let it be the
Coulomb-Tresca-Guest  condition.  Since  components σrr and σϕϕ are  the  only  non-zero
components of the stress tensor, so they are principal stresses and the difference of their values
is a value of maximum shear stress:

τmax=
σϕϕ−σ rr

2
=

4C2G

r 2 (3.70)

The above expression takes its greatest value for minimum value of r , so yielding starts
at internal surface. Minimum value of internal pressure which results with yielding is equal:

2 τmax=σ ϕϕ−σ rr=
4GC 2

R1
2
=

2q0R2
2

(R2
2−R1

2)
= σ0 ⇒ q0 =

σ0

2 (1−R1
2

R2
2)

Boundary of plastic region is found according to the condition:

2 τmax
I (R pl) =σϕ ϕ

I (R pl)−σrr
I (R pl)=

2D2

Rpl
2 = σ0

what gives us:

Rpl = √ 2D 2

σ0
⇔ D2 =

1
2
σ0R pl

2 (3.71)

In case of a material exhibiting no hardening, in each point of the plastic region following condition
must be fulfilled:

2 τmax
II =σ 0 ⇒ σϕϕ

II −σ rr
II = σ0 (3.72)

Equilibrium equation for an axis-symmeric problem (both in elastic and in plastic range) is
of the form:

∂σrr

∂ r
+
σrr−σϕϕ

r
= 0 (3.73)

what  –  after  accounting  for  a  constraint  (3.72)  –  gives  us  an  equilibrium condition in  plastic
region:

∂σrr
II

∂ r
=
σ0

r
(3.74)
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The solution of that differential equation gives us the distribution of radial stress:

σrr
II =σ 0 ln r+D3 (3.75)

Relation (3.72) enable us to determine circumferential stress:

σϕϕ
II = σ0+σrr = σ0(1+ ln r)+D3 (3.76)

Elastic constants D1 , D2 , D3 are found with the use of boundary conditions:

{σrr
I (R2) = 0 ⇒ D1−

D2

R2
2
= 0

σrr
II(R1) =−q ⇒ D3+ σ0 lnR1 =−q

σrr
I (R pl

2 )−σrr
II (Rpl

2 )= 0 ⇒ D1−
σ0

2
− D3 − σ0 ln Rpl = 0

(3.77)

Accounting for relation (3.71) gives us:

D1=
σ0Rpl

2

2R2
2

,

hence:

σrr
I (r)=

σ 0Rpl
2

2R2
2 (1 − R2

2

r 2 ) σϕϕ
I (r) =

σ0R pl
2

2R2
2 (1+ R2

2

r2 ) (3.78)

Condition of equality of radial stress at the boundary of elastic and plastic region gives us:

σ 0Rpl
2

2R2
2 (1 − R2

2

R pl
2 )= D3+ σ 0 lnR pl ⇒ D3 =

σ0R pl
2

2R2
2 (1− R2

2

R pl
2 )− σ0 ln Rpl

and finally:

σrr
II =σ 0[ Rpl

2

2R2
2
− 1

2
−ln

R pl

r ] σϕϕ
II = σ0[ R pl

2

2R2
2
+1

2
−ln

R pl

r ] (3.79)

It may be easily noticed that in such a situation also distribution of circumferential stress is
countinuous at the boundary fo aplstic region. In the above solution parameter Rpl is used. Its
value has not been determined yet. It is found according to the boundary condition fo internal
surface:

σrr
II (R1) =−q ⇒ ln

R pl

R1

+ 1
2(1−R pl

2

R2
2 )= q

σ 0
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The above equation is a non-linear equation with respect to Rpl and it must be solved
numerically. The solution will depend on the ratio β= R1 /R2 as well as on the ratio γ = q /σ0 .
Parameter β∈(0 ;1) .  Minimum value of parameter γ ,  for  which yielding occurs is the one
corresponding  with  yielding  pressure q0 ,and  its  maximum  value γmax corresponds  with
situation in which Rpl = R2 :

γmin =
q0
σ0
=

1
2
(1−β2) γmax= ln

1
β

In the figure below a character of distribution of radial and circumferential stress in a whick-walled
pipe loaded with internal pressure is shown for various stages of loading. Plastic region is marked
with pink color.
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7. PLASTIC BEARING CAPACITY OF A STRUCTURAL SYSTEM

Yielding in a point and even yielding of a whole cross-section of one of the elements of a
bar structure, even in case of material exhibiting no hardening (total freedom of deformation after
yielding) do not necessarily mean that the structure becomes a mechanism, namely that it looses
its stability. In case of statically-indeterminate systems the internal structure and distribution of
supports may still provide geometrical invariance even after part of the system deforms fully
plastically and the system still  bears  some additional  load.  Maximum load that  the system is
capable to bear is termed the plastic bearing capacity of the system and it may be greater than
the  limit  bearing  capacity  of  a  cross-section.  One  should  mention,  however,  that  despite  its
geometrical invariance, the system may not satisfy e.g. serviceability requirements due to large
deformation.

There are two approaches used in finding the plastic bearing capacity of a structural system:

• elastic-plastic analysis – it requires an analysis of each stage of loading and finding the
plastic region for each of that stage. It given full information on the process of loading, yet
it is often troublesome from the mathematical point of view.

• Determining  the  bearing  capacity  with  the  use  of  lower-bound  and  upper-bound
estimates – this approach base on an assumption that the system is a rigid-ideally plastic
system (with no hardening). It makes use of two theorems on lower-bound and upper-
bound estimates of the plastic bearing capacity. This approach enables to determine the
conditions  for  the  limit  state  to  be  reached and  gives  no information  on  the  state  of
structure in intermediate stages of loading.
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7.1 ELASTIC-PLASTIC ANALYSIS

EXAMPLE 1

Let's consider a simple statically indeterminate truss system.

Our task is to find the maximum value of load parameter P , for which the system will
collapse. We shall  perform an elastic-plastic analysis.  At the beginning the system works in an
elastic  range.  In  order  to  get  the  internal  forces,  we  need to  solve  a  statically  indeterminate
system:

The greates force is present in the middle bar – it will yield as the first one. It will happen
when:

0,662 P = N pl= σ0A ⇒ P̄ = 1,511 N pl

Yielding bar may deform freely (plastic flow) and the force in that bar is constantly equal
N pl . This situation may be modeled in such a way that the bar will be replaced by a system of

two opposite force N pl applied to end nodes of that bar.

The system above is still stable. Let's determine the internal forces in this new system. We
may make use of the principle of superposition and determine the internal forces separately for
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external load and for the force N pl and then we may simply add the results together.

We must check now for what value of P The force in other bars will reach N pl .

Bar Force in a bar N i P : N i= N pl

1 0,849 P – 0,849 Npl 2,178 Npl

3 0,721 P – 0,721 Npl 2,387 Npl

So the next bar which will yield in bar No 1. Summing it up:

• for P̄ = ̄P̄ = 1,511σ 0 A the  first  bar  yield  –  it  is  bar  No  2.  The  system  is  stable.  The
magnitude of external load corresponds with limit elastic bearing capacity (first yielding in
a  point)  as  well  as  limit  plastic  bearing  capacity  (first  yielding of  a  cross-section)  of  a
system.

• for P*= 2,178σ0 A next bar yield – it is bar No 1. The system collapses. Corresponding
magnitude of load is the bearing capacity of the system.
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EXAMPLE 2

Let's consider a statically indeterminate truss, in which all bars have the same cross-section.

Our task is to find the maximum value of load parameter P , for which the system will
collapse. We shall  perform an elastic-plastic analysis.  At the beginning the system works in an
elastic  range.  In  order  to  get  the  internal  forces,  we  need to  solve  a  statically  indeterminate
system:

We can notice that the greatest axial force will be in bar No 10 – this is the place of first
yielding.  Due  to  yielding  force N pl =σ 0A will  be  present  there  and  this  value  will  remain
unchanged (no hardening). Yielding will occur when:

1,895P = σ0A ⇒ P̄ = 0,528 N pl

It must be remembered that the system may collapse even earlier due to e.g. Buckling of
slender members heavily compressed.

© Paweł Szeptyński 2020 – CC-BY-SA 4.0 PL 57

L L

L

2P
2P1 2

3

4

6

7

8

9

5

10 11

1,011 P

1,399 P0,148 P

1,895 P

-1,430 P

-1
,0

94
 P

-0
,9

89
 P

-0,105 P

-0
,1

05
 P

0,148 P

1,011 P



dr inż. Paweł Szeptyński – A SHORT INTRODUCTION TO THE THEORY OF PLASTICITY

We replace the bar No 10 with a system of two opposite forces N pl applied to the and
nodes of that bar – it is a tensile force.

The system is still stable. Let's determine the cross-sectional forces in this new system. We
may  make  use  of  the  principle  of  superposition  and  determine  the  forces  separately  due  to
external load and due to force in a yielding bar and then we may add the results together.
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We must check what value of parameter P will result with the presence of force ±N pl

in each bar – the change of statical diagram of a system may lead not only to the change of value
of force in the bars but also to the change of sign of force in some bars.

Bar Force in bar N i
N i (Δ P=0) Δ P : N i=−N

pl Δ P : N i=N
pl

1 -2 (P+ΔP) + Npl -0,056 Npl 0,472 Npl -0,528 Npl

2 1,207 (P+ΔP) – 0,104 Npl 0,533 Npl -1,270 Npl 0,387 Npl

3 -2 (P+ΔP) + Npl -0,056 Npl 0,472 Npl -0,528 Npl

4 2,828 (P+ΔP) – 1,414 Npl 0,079 Npl -0,382 Npl 0,326 Npl

5 2,828 (P+ΔP) – 1,414 Npl 0,079 Npl -0,382 Npl 0,326 Npl

6 -2,793 (P+ΔP) + 0,896 Npl -0,579 Npl 0,151 Npl -0,565 Npl

7 1,121 (P+ΔP) + 0,146 Npl 0,738 Npl -1,550 Npl 0,234 Npl

8 -1,707 (P+ΔP) + 0,146 Npl -0,755 Npl 0,143 Npl -1,028 Npl

9 -0,793 (P+ΔP) – 0,104 Npl -0,523 Npl 0,602 Npl -1,920 Npl

10 Npl  Npl - -

11 1,207 (P+ΔP) – 0,104 Npl 0,533 Npl -1,270 Npl 0,387 Npl

The  least  increment  of  load  parameter  which  will  result  yielding  of  a  bar  is
Δ P = 0,143N pl - it will be bar No 8 that will yield. Load parameter is equal then:

P̄ ' = P̄+Δ P = 0,671 N pl  
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We replace the bar No 8 with a system of two opposite forces N pl applied to the and
nodes of that bar – this time it is a compressive force. Please note, that we neglect all buckling
effects.

The system is still stable. Let's determine the cross-sectional forces in this new system. We
may  make  use  of  the  principle  of  superposition  and  determine  the  forces  separately  due  to
external load and due to force in a yielding bar and then we may add the results together.
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 We must check what value of parameter P will result with the presence of force ±N pl

in each bar:

Bar Force in bar N i
N i (Δ P=0) Δ P : N i=−N

pl Δ P : N i=N
pl

1 -2 (P'+ΔP) + Npl -0,342Npl 0,329 Npl -0,671 Npl

2 -0,707 Npl 0,707 Npl - -

3 -2 (P+ΔP) + Npl -0,342 Npl 0,329 Npl -0,671 Npl

4 2,828 (P'+ΔP) – 1,414 Npl 0,484 Npl -0,525 Npl 0,183 Npl

5 2,828 (P'+ΔP) – 1,414 Npl 0,484 Npl -0,525 Npl 0,183 Npl

6 -4 (P'+ΔP) + 1,707 Npl -0,977 Npl 0,00575 Npl -0,494 Npl

7 2,828 (P'+ΔP) - Npl 0,898 Npl -0,671 Npl 0,0362 Npl

8 -Npl -Npl - -

9 -2 (P'+ΔP) + 0,707 Npl -0,635 Npl -0,183 Npl -0,818 Npl

10 Npl  Npl - -

11 0,707 Npl 0,707 Npl - -

The  least  increment  of  load  parameter  which  will  result  yielding  of  a  bar  is-  it
Δ P = 0,00575N pl will be bar No 6 that will yield. Load parameter is equal then:

P̄ ' ' = P̄ '+Δ P≈ 0,676 N pl

We replace the bar No 6 with a system of two opposite forces N pl applied to the and
nodes of that bar – it is a compressive force.

The system above is a mechanism – yielding of bars 10, 8 and 6 leads to a collapse of a
system. Baring capacity of a system is equal:

P̄*≈ 0,676 N pl
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EXAMPLE 3

A statically indeterminate beam is given. It is loaded with a
uniform load q . Our taks it to find the value q , for which the
system will collapse due to yielding. Elastic-plastic analysis will be
performed. At the beginning the system works in elastic range –
let's determine the distribution of cross-sectional forces.

Greatest value of the bending moment occurs in the fixed support to the left – it is the
place where the yielding will stars. It the limit plastic bearing capacity of a cross-section is denoted
with M pl , then yielding of that cross-section will correspond with value the limit plastic bearing
capacity of the system:

̄̄q = 8
M pl

L2

Yielding of that cross-section results with creation of a plastic hinge. Plastic hinge for class 1
steel sections may deform freely, so it provides an additional degree of freedom for the system.
The difference is that in the hinge there is constant value of bending moment M pl , while in case
of a regular hinge the value of a moment in a hinge must be zero. 

Yielding  of  a  cross-section  will  be  accounted  for  by
introduction  of  a  hinge  at  the  left  support  (fixed  support  is
replaced with a pinned support) and of a moment load M pl  in
neighboring cross-sections (in general, at both sides. In case of an
end cross-section of a beam – only at one side). The system is still
stable.
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Let's determine the distribution of cross-sectional
forces.  We  are  looking  for  a  cross-section  in  which
yielding will occur next – it will be located in the place
where  the  distribution  of  bending  moments  in  the
middle of the beam span reaches its local maximum. This
second yielding will surely lead to collapse of the system.

Bending moment:

M ( x )=−M pl+ ( q L2 +M
pl

L )x − q
x 2

2
 

Shear force

Q( x) = dM
d x

=( q L2 +M
pl

L )− q x

Local maximum of moment distribution:

Q( xe)= 0 ⇒ x e=
L
2
+ M pl

q L

M ( xe) =
(M pl)2

2 q L2
− M pl

2
+ q L2

2

When yielding occurs M ( xe) =+M
pl , what is satisfied when:

4 (M pl)2 − 12q L2M pl + q2 L4= 0 ⇒ ∨
q1 = (6−4 √2)M

pl

L2
≈ 0,34315

M pl

L2

q2=(6+4 √2)M
pl

L2
≈ 11,657

M pl

L2

Location xe corresponding with the above values:

xe ,1 = [12+ 1
(6−4√2) ] L≈ 3,4142 L , xe2 =[ 1

2
+ 1
(6+4√2 )] L≈ 0,58579L   

Value q1 is smaller than ̄̄q , what would suggest an immediate collapse of the mid-span
cross-section just after yielding of the support cross-section. It is visible however that for ̄̄q new
statical diagram gives us exactly the same distribution of moments as the original diagram and the
mid-span moment is smaller than the limit value. Another thing is that xe ,1 is beyond domain.
Finally bearing capacity of the beam is equal:

q* =(6+4√2)
M pl

L2 ≈ 11,657
M pl

L2
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It  is  worth  to  mention  now,  that  presence  of  the  plastic  hinge  does  not  change  the
distribution of  bending moments in the moment of  yielding,  yet  the distribution of  deflection
differs substantially  – in an elastic  range angle of  deflection in fixed support  is  zero and after
yielding a free rotation is allowed there, what results in increase of deflection in the span. It is
difficult  to  determine  this  increment  of  deflection  precisely.  We  know  that  distribution  of
deflection depends on spatial distribution of flexural rigidity EI ( x ) - and the rigidity depends
on the range of plastic region in each bent cross-section. Strict way of finding the deflection in the
elastic-plastic range require determining the plastic range for each cross-section and on the basis
of that, the distribution EI ( x ) should be determined. After getting the distribution of flexural
rigidity, the beam equation should be integrated:

d 2

d x 2[EI (x ) d2w

d x2 ]= q ( x )

For  statically  indeterminate  system the distribution of  cross-sectional  forces  depend on
distribution of flexural rigidity and in elastic-plastic range the distribution of rigidity depends on
the distribution of cross-sectional forces. We can see that those functions are coupled and  finding
the  deflection  of  a  statically  indeterminate  system  in  elastic-plastic  range  is  a  non-linear
problem.
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7.2  UPPER AND LOWER BOUND ESTIMATES OF BEARING CAPACITY

Estimate  of  the  bearing  capacity  of  the  system  is  made  according  to  the  following
theorems:

LOWER BOUND ESTIMATE THEOREM

The structure won't collapse or it will reach a limit equilibrium state due to
external  load,  if  only  it  is  possible  to  find  a  statically  admissible  stress  field
corresponding with that load. In such a situation the bearing capacity is at least the
same as corresponding load or even higher – it is a lower bound estimate.

Statical admissibility of the stress field requires that:
• stress field is in equilibrium with external load,
• stress field satisfied the internal equilibrium conditions,
• stress field satisfies statical boundary conditions,
• stress do not exceed the limit value σ0 .

If for a given external load we find such a system of reactions and cross-sectional forces,
that satisfies equilibrium conditions and boundary conditions and that corresponding stresses do
not exceed the limit value, then the system will indeed bear that load, or even a greater load.

UPPER BOUND ESTIMATE THEOREM

The  structure  will  collapse,  if  only  it  is  possible  to  find  a  kinematically
admissible velocity field such that total power of external load is not lass than  total
power of internal forces. In such a situation the bearing capacity is at most the same
as  the  one  corresponding  with  that  load,  but  it  may  lower –  it  is  upper  bound
estimate.

Kinematic admissibility of the velocity field requires that:
• velocity  field satisfies  the kinematic  boundary conditions  (it  is  consistent  with applied

constraints),
• velocity field is such that displacement is continuous,
• total power of external load on velocities is positive.

If for a given external load we find such a way of collapse that it is consistent with the
applied supports and rules on distribution of velocities in a rigid body and the power of external
load is not less than the power of internal forces, then the system will collapse indeed, however it
is possible that it will collapse ever for smaller load.
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EXAMPLE 4

Fin the bearing capacity of the structure presented in the
picture  with  the  use  of  the  lower  und  upper  bound
theorems

sin α= 1

√2
cosα = 1

√2

sinβ= 2
√13

cosβ = 3
√13

 

LOWER BOUND ESTIMATE – STATICAL APPROACH

The system will collapse if two of three bars yield. We have three possibilities:

1) Yielding of bars 1 and 2
Σ X =−N pl cosα+ N 3 cosβ= 0 ⇒

⇒ N 3=
√26

6
N pl≈ 0,84984 N pl

N 3<N
pl  → the stress field is statically admissible.

ΣY = N pl sinα + N pl − P + N 3 sinβ= 0 ⇒ P ≈ 2,1785N pl

Bearing capacity is ̄P̄ ≈ 2,11785 N pl or more.

2) Yielding of bars 1 and 3

Σ X =−N pl cosα+ N pl cosβ = 0 ⇒

⇒ 1
√2

N pl≠ 3
√13

N pl

equilibrium equation is not satisfied → the stress field is statically inadmissible.

3) Yielding of bars 2 and 3

Σ X =−N 1 cosα + N pl cosβ= 0 ⇒

⇒ N 1 =
3√26

13
≈ 1,1767N pl

N 1>N
pl  → the stress field is statically inadmissible.
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UPPER BOUND ESTIMATE – KINEMATIC APPROACH

The system will collapse if two of three bars yield. We have three possibilities:

1) Yielding of bars 1 and 2

Let's compare power of external load and power of internal forces:

Φ̇w =Φ̇ z ⇒
⇒ (N pl cosα)⋅(v sinβ)+ (N pl sinα)⋅(v cosβ) + N pl⋅(vcosβ) = P⋅(vcosβ)

P ≈ 2,1785N pl

Bearing capacity is P*≈ 2,11785N pl or less.

2) Yielding of bars 1 and 3

Let's compare power of external load and power of internal forces:

Φ̇w =Φ̇ z ⇒
⇒ (N pl cosα)⋅v −(N pl cosβ)⋅v = 0

Total power of external load on a velocity field is non-positive →
the velocity field is kinematically inadmissible.
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3) Yielding of bars 2 and 3

Let's compare power of external load and power of internal forces:

Φ̇w =Φ̇ z ⇒
⇒ (N pl cosβ)⋅(v sinα)+ (N pl sinβ)⋅(v cosα) + N pl⋅(vcosα)= P⋅(v cosα)

P ≈ 2,3868N pl

Bearing capacity is P*≈ 2,3868N pl or less.

Let's summarize our results:

• Lower bound estimate indicate that bearing capacity is at least
P*≈ 2,11785N pl .

• Upper bound estimate indicate that bearing capacity is at most
P*≈ 2,11785N pl .

• Bearing capacity is then equal P*≈ 2,11785N pl
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PRZYKŁAD 5

Find the bearing capacity of the system presented in the figure with the use of lower and upper
bound theorems.

The system is statically  indeterminate with a single hyperstatic  quantity  –  two plastic
hinges must be created in order to make the structure unstable. They will be created in the places
where maximum values of bending moments are present. Since the structure is loaded with point
forces,  so the  distribution of bending moments is piece-wise linear and maximum values are
reached at the boundaries of characteristic intervals – either at the supported points or at the
points of application of a point load. Plastic hinges will be created in those places.

LOWER BOUND ESTIMATE – STATICAL APPROACH

First yielding in cross-section B

We consider now a statically determinate beam:

ΣM B
←= 0: −V A L+ M

pl = 0 ⇒ V A=
M pl

L

{ΣM B
→= 0

ΣY = 0 {−M pl+V C L−6PL+5V E L= 0
V A+V C+V E − 5P = 0

⇒ {V C =
19
4
P −

3
2
M pl

L

V E=
1
4
P −

1
2
M pl

L

  

Bending moments in cross-sections C and D:

M (C )= 4V E L−4 PL= 2M pl − 3PL  

M (D )= 2V E L=M pl+ PL
2
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Next yielding will occur in cross-section C when M (C) =−M pl ⇒ P = M
L

Then: M (D)=
3
2
M pl>M pl ⇒ the stress field is statically inadmissible.

Next yielding will occur in cross-section D when M (D)=M pl ⇒ P = 0

Then: M (C) = 2M pl>M pl ⇒ the stress field is statically inadmissible.

First yielding in cross-section C

We consider now a statically determinate beam:

ΣM C
←= 0: −M pl+ 3PL + 2V A L = 0 ⇒ V A=

3
2
P−

M pl

2 L
 

ΣM C
→= 0 : M pl − 4PL+ 4V E L = 0 ⇒ V E = P−M

pl

4 L

Bending moments in cross-sections B and D:

M (B)= V A L =−
1
2
M pl +

3
2
PL  

M (D )= 2V E L=−
1
2
M pl+ 2PL

Next yielding will occur in cross-section B when M (B)= M pl ⇒ P =
M
L

Then: M (D)= 3
2
M pl>M pl ⇒ the stress field is statically inadmissible.

Next yielding will occur in cross-section D when M (D)=M pl ⇒ P =
3
4
M
L

Then: M (B)= 5
8
M pl ⇒ the stress field is statically admissible.

Bearing capacity is P*= 3
4
M
L

or more.

© Paweł Szeptyński 2020 – CC-BY-SA 4.0 PL 70

3P 2P

L L 2L 2L

V
A

V
C

V
E

Mpl Mpl



dr inż. Paweł Szeptyński – A SHORT INTRODUCTION TO THE THEORY OF PLASTICITY

First yielding in cross-section D

We consider now a statically determinate beam:

ΣM D
→= 0: 2V E L− M pl = 0 ⇒ V E=

M pl

2 L

{ΣM D
←= 0

ΣY = 0 {M pl−2V C L+9PL−4V A L= 0
V A+V C+V E − 5P = 0

⇒ {V A=−
1
2
P + M pl

L

V B=
11
2
P −

3
2
M pl

L

 

Bending moments in cross-sections B and C:

M (B)= V A L =M pl − PL
2

 

M (C) = 2V A L − 3PL= 2M pl + 4PL  

Next yielding will occur in cross-section B when M (B)= M pl ⇒ P = 0

Then: M (C) = 2M pl>M pl ⇒ the stress field is statically inadmissible.

Next yielding will occur in cross-section C when M (C) =−M pl ⇒ P = 3
4
M
L

Then: M (B)=
5
8
M pl ⇒ the stress field is statically admissible.

Bearing capacity is P*=
3
4
M
L

or more.
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UPPER BOUND ESTIMATE – KINEMATIC APPROACH

Yielding in cross-sections B and C

Let's compare power of external load and power of internal forces:

Φ̇w =Φ̇ z ⇒ M pl⋅v
L
+M pl⋅v

L
+M pl⋅v

L
= 3 P⋅v ⇒ P = M pl

L

Bearing capacity is P*= M pl

L
or less.

Yielding in cross-sections B and D

Let's compare power of external load and power of internal forces:

Φ̇w =Φ̇ z ⇒ M pl⋅
v
L
+M pl⋅

v
L
+M pl⋅

v
L
+M pl⋅

v
L
= 2P⋅2v − 3P⋅v ⇒ P = 4

M pl

L

Bearing capacity is P*= 4
M pl

L
or less.
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Yielding in cross-sections C and D

Let's compare power of external load and power of internal forces:

Φ̇w =Φ̇ z ⇒ M pl⋅ v
2 L
+M pl⋅ v

2 L
+M pl⋅ v

2 L
= 2P⋅v ⇒ P = 3

4
M pl

L

Bearing capacity is P*= 3
4
M pl

L
or less.

Let's summarize the obtained results:

• Lower bound estimate indicate that the bearing capacity is at least

P*=
3
4
M
L

.

• Upper bound estimate indicate that the bearing capacity is at most

P*= 3
4
M
L

.

• Bearing capacity is then equal P*= 3
4
M
L
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