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THEORY OF ELASTICITY

1. INTRODUCTION

Theory of elasticity as well as  theory of plasticity are  branches of physics dealing with
description of motion of deformable bodies. It is thus a branch of  mechanics. As it is based on
Newton's laws of motion it should be considered a  classical theory, in the sense that it do not
account for quantun or relativistic phenomena. Contrary to most commonly considered problems
of mechanics, which deal with rigid bodies or systems of countable number of material points,
theory of  elasticity  and plasticity  deal  with a  countinuous model  of  solid  – it  will  be  called a
continuum. From the mathematical point of view a continuum is a subspace of three-dimensional
space on which a continuous and differentiable function may be defined. A point in this subspace
will  be called a  particle however this  notion has  (almost)  nothing to do with its  true physical
meaning. The shape of this subarea corresponds with shape of the considered body and functions
(scalar, vector and tensor fields) defined on it will describe certain mechanical quantities as e.g.
pressure, displacement, strain (i.e. relative elongation), stress (internal force density) etc.

Certain  types  of  materials  are  distinguished  –  respective  for  certain  theories  used  for
describing them:

• Elastic materials – these are materials which deform under applied load, but restore their
initial shape when the load is removed.

• Plastic materials – these are materials which deform under applied load and restore their
initial shape only partially. The reversible part of deformation is called an elastic one while
the irreversible (permanent) deformation is the plastic one.

• Rheological  materials  –  these  are  materials  in  which  the  factor  of  time  cannot  be
neglected. This concerns various phenomena, e.g.:
• greater material stiffness in case of more rapid load (viscosity)
• slow increase of deformation under constant load (creep)
• slow decrease in the level of internal forces under constant deformation (relaxation)

© 2019, Paweł Szeptyński – CC-BY-NC-SA 4.0 International 1

 loaded bodynot loaded body unloaded body

 

plastic
deformation

 loaded bodynot loaded body unloaded body



THEORY OF ELASTICITY – Lecture notes.

2. KINEMATICS

The deformation of a body will be fully described is position of every particle is known in
every time. 

• Reference configuration is  the where the particles of body are at the beginning of the
motion.

• Reference configuration is the where the the particles of body are in chosen time t .

We introduce following kinematic quantities:

• position vector in reference configuration: X = [X 1 ; X 2 ; X 3]
T

• position vector in current configuration: x= [ x1 ; x2 ; x3]
T

• displacement vector: u i = x i−X i ⇔ u = x−X

• velocity vector: v i =
d u i

d t
⇔ v= u̇

• acceleration vector: a i =
d2u i

d t 2
⇔ a= ü

• Components of position vector in reference configuration are
called Lagrange or material cordinates.

• Components  of  position vector in current configuration are
called Euler or spatial cordinates.
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TWO POSSIBLE DESCRIPTIONS
Description of deformation may be performed in two ways:

• MATERIAL  DESCRIPTION (Lagrangian  description)  –  material  coordinates  are
considered  independent  variables  while  spatial  coordinates  are  considered
unknown function of the latter:

x= x(t ,X)

In material description, in every moment t we answer the following question: 

„Consider a particle which at the beginning of the motion was located in point X .
In what point of space x is it now located?”

• SPATIAL DESCRIPTION (Eulerian description) – spatial coordinates are considered
independent variables while material coordinates are considered unknown function
of the latter:

X = X(t , x)

In spatial description, in every moment t we answer the following question:

„Consider  a point in space x  .  If  there is  a particle there,  what was its  initial
position X  at the beginning of motion”

• Both descriptions are equivalent. 
• Material description is usually used for solids.
• Spatial description is usually used for fluids.

In  case  of  spatial  description,  when  calculating  time  derivatives  of  position  vector  (velocity,
acceleration) one must remember that x depends on time (particles are in motion),  so time
derivative must account for this implicit time-dependence :

• material description:
d
d t

= ∂
∂ t

• spatial description: d
d t

= ∂
∂ t

+ ∂
∂ x1

∂ x1
∂ t

+ ∂
∂ x2

∂ x2
∂ t

+ ∂
∂ x3

∂ x3
∂ t
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DEFORMATION GRADIENT

Let's consider a small  material fiber – let's call it a  differential linear element - it will be
described  by  an  infinitely  small  vector dX .  After  deformation  it  will  change  its  position,
orientation and length and shape. Considering it very small we may assume that it will  be still
approximately straight and we will describe it with another infinitely small vector d x .

X = [X 1 ; X 2 ; X 3]
T X+dX = [X 1+d X 1 ; X 2+d X 2 ; X 3+d X 3]

T

x= [ x1 ; x2 ; x3]
T x+d x= [ x1+d x1 ; x2+d x2 ; x3+d x3]

T  

Let's consider a material description of deformation: x= x(X) . This function may be expanded
into a power  series  in  the neighborhood of  X=0 (assuming that  the origin  of  an  auxiliary
coordinate system coincides at the tail of dX ):

d x i =
∂ x i
∂ X 1

d X 1+
∂ xi
∂ X 2

d X 2+
∂ xi
∂ X 3

d X 3 + ... i=1,2,3

Neglecting higher order terms gives us (using Einstein's notation):

d x i ≈∑
i=1

3 ∂ x i
∂ X j

d X j =
∂ x i
∂ X j

d X j

We may define a two-index quantity called a material deformation gradient defined as

F ij =
∂ x i
∂ X j

⇔ F=x⊗∇X ⇔ F= d x
dX

so that:
d x i = F ij d X j ⇔ d x=F⋅dX
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Similarly one may define the spatial deformation gradient:

f ij =
∂ X i

∂ x j

⇔ f=X⊗∇ x ⇔ f = d X
d x

so that:
d X i = f ij d x j ⇔ dX=f⋅d x

We may write down

{d xi = F ij d X j

d X j = f jk d xk
⇒ d x i = F ij f jk d xk ⇒ F ij f jk=δik

so the material deformation gradient is an inverse of the spatial deformation gradient and vice
versa:

    f=F−1

In order for the description to be invertible we will require that:
• Determinant of F is unequal 0  – otherwise our description may result in a situation in

which many possible current positions correspond with a single particle or many particles
are located in the same point after deformation.

• Determinant of F is positive – otherwise the material behaves as if it was put inside out.

It is sufficient to write, that:

detF = 1
det f

> 0

DISPLACEMENT GRADIENT

We define also:

• material displacement gradient: H ij =
∂u i

∂ X j

= F ij−δij ⇔H= ∂u
∂X

= F−1

• spatial displacement gradient: hij =
∂u i

∂ x j

= δij− f ij ⇔h = ∂u
∂ x

= 1−f
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POLAR DECOMPOSITION OF DEFORMATION GRADIENT

It  can be shown that deformation tensor may considered a product of  two other second-rank
tensors, one of which is a symmetric one, while the other one is an orthogonal one. 

        F = VR = RU

V  – left stretch tensor - symmetric tensor: VT= V
U  – right stretch tensor – symmetric tensor UT= U
R  – rotation tensor – orthogonal tensor RT=R−1

Such a decomposition is unique. 

ROTATION TENSOR

Interpretation of R as a rotation tensor mat be justified as follows. Consider a material
fiber dX undergoing deformation such that F = R ( U=V = 1 ).  Then the length before
and after deformation is equal:

∣dX∣= √dXT⋅dX
∣R⋅d X∣= √(R⋅dX)T⋅(R⋅d X) = √dXT⋅RT⋅R⋅dX = √dXT⋅R-1⋅R⋅dX = √dXT⋅d X=∣dX∣

So such a deformation do not change the length of the fiber – only orientation is changed, so it can
be considered a rotation.

STRETCH TENSOR

Interpretation of U and V as a stretch tensor mat be justified as follows. Consider a
material  fiber dX undergoing deformation  such that F = U = V ( R = 1 ).  Now,  we can
consider  an  eigenvalue problem for  e.g. U ,  namely  looking  for  such  vectors dX
(eigenvectors of U ) and such scalars λ (eigenvalues of U ) that:

U⋅dX = λ dX

It can be seen that for such vectors a general deformation is reduced to simple scaling –
change of length without change in orientation (stretching or compressing the material fibres). It
can  be  shown  that  for  symmetric  tensors  (such  as U and V )  there  are  always  3  real
eigenvalues  (principal  stretches)  and corresponding  3  mutually  orthogonal  eigenvectors.  Any
three mutually orthogonal vectors may constitute a basis for three-dimensional vector space. We
may  also  introduce  a  new  Cartesian  coordinate  system  axes  of  which  are  parallel  to  the
eigenvectors of U .
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In such a coordinate system:

U⋅dX1 =λ1⋅dX1
U⋅dX3 =λ3⋅dX 2

U⋅dX2 =λ2⋅dX 3

Eigenvalues of V are the same as of U -  only the corresponding vectors are oriented in a
different way.

FUNDAMENTAL THEOREM ON KINEMATICS OF DEFORMABLE SOLID

Deformation of any infinitely small material fiber may is a composition of parallel
(rigid)  translation,  rotation and elongation (stretching or  compression)  along the
directions of eigenvectors of stretch tensor.
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DEFORMATION TENSOR

Let's try to express the length of deformed material fiber in terms of its reference dimensions:

Before deformation: dX =[d X 1 ; d X 2 ; d X 3]
T d S ≈∣dX∣= √dX⋅dX

After deformation: d x= [d x1 ; d x2 ; d x3]
T d s≈∣dx∣= √dx⋅d x

d s = √d x⋅d x= √d x id x i = √F ij d X j F ik d X k = √C jkd X jd X k

We introduce a quantity defined as follows:

    C jk = F ijF ik =
∂ x i
∂ X j

∂ xi
∂ X k

⇔ C= FT⋅F

Quantity C is called material deformation tensor or right Cauchy – Green deformation tensor.
It is a symmetric tensor. It can be noticed that:

C= FT⋅F= (R⋅U)T⋅(R⋅U)= U⋅(R−1⋅R)⋅U= U2

As  a  conclusion  we  may  state  that  eigenvectors  of C are  the  same  as  those  of U and
corresponding eigenvalues are (algebraic) squares of corresponding principal stretches. If a  body
is not deformed (rigid motion) then C=1 . Similarly we may  express the length of undeformed
material fiber in terms of its deformed dimensions: 

d S = √dX⋅dX= √d X id X i = √ f ijd x j f ikd xk = √c jkd x j d xk

where spatial deformation tensor or Cauchy deformation tensor is defined as follows:

  ckl= f ik f il =
∂ X i

∂ xk

∂ X i

∂ x l
⇔ c=(F−1)T⋅F−1

It is a symmetric tensor. Other symmetric deformation tensors may also be defined as follows:

•  left Cauchy-Green deformation tensor (material description)

           B jk = F ji F ki =
∂ x i
∂ X j

∂ x k

∂ X i

⇔ B= F⋅FT= c−1

B = F⋅FT=(V⋅R)⋅(V⋅R)T =V⋅(R−1⋅R)⋅V= V2

• Finger tensor (spatial description)

        bkl= f ki f li =
∂ X k

∂ x i

∂ X l

∂ x i
⇔ b= F−1⋅(F−1)T =C−1
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STRAIN TENSOR

The most commonly used measures of deformation are so called strain tensors, which arise
when a difference in squares of current and reference lengths of material fibers are caluclated:

d s2−d S 2= d x id xi−d X jd X j =(C jk−δ jk)d X jd X k = 2⋅
C jk−δ jk

2⏟
E jk

d X jd X k

Material strain tensor, or Green – de Saint-Venant strain tensor or Green – Lagrange strain tensor
is defined as follows:

     E jk =
1
2
(C jk−δ jk ) ⇔ E= 1

2
(C−1)

It is a  symmetric tensor.   If a  body is not deformed (rigid motion) then E=0 .  Similarly – in
spatial description – we obtain:

d s2−d S 2= d x id xi−d X jd X j =(δ jk−c jk)d x j d x k = 2⋅
δ jk−c jk

2⏟
e jk

d x jd xk

where spatial strain tensor or Almansi-Hamel strain tensor is defined as follows:

      e jk =
1
2
(δ jk−c jk ) ⇔ e= 1

2
(1−c)

INTERPRETATION OF COMPONENTS OF STRAIN TENSOR

A measure  of  deformation  of  a  material  fiber  may be  its  relative  elongation,  namely  a  ratio
between total elongation and initial length:

Δ = d s−d S
d S

= d s
d S

−1 ⇔ d s=(1+Δ)d S

It is a dimensionless quantity. Let's consider three material fibers, each one of it being parallel to
one of the axes of chosen coordinate system. Then, relative elongation of the one parallel to x1
may be calculated as follows:

Differential linear element: dX =[d X 1 ; 0 ; 0 ]
T

Reference length: d S =∣d X∣= d X 1

Current length: d s =∣d x∣= √C ij d X id X j = √C11d X 1

Relative elaongation: Δ = d s
d S

−1= √C11−1
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In general, we could write:

{Δ1 =√C11−1= √2 E11+1−1
Δ2 =√C22−1= √2 E22+1−1
Δ3 =√C33−1= √2 E33+1−1

It can be seen that relative elongations depend on diagonal components of strain tensor –
that's why we call the diagonal components of E the linear strains.

Let's consider now a change in an angle
between two fibers.  Let's  consider  two linear
elements:

dX(1) =[d X 1 ; 0 ; 0 ]
T

dX(2) =[0 ; d X 2 ; 0]
T

After deformation:

d x(1) = d X 1[F11 ; F 21 ; F 31]
T

d x(2) = d X 2[F 12 ; F 22 ; F32 ]
T

An angle between two vectors may be found with the use of the dot product:

cosϕ12=
d x(1)⋅d x (2)

∣d x(1)∣⋅∣d x(2)∣
=

d X 1d X 2(F11 F12+F 21F 22+F 31F 32)

d X 1√F 11
2 +F 21

2 +F31
2⋅d X 2√F 12

2 +F22
2 +F32

2

Making use of the definition of deformation tensor:

C ij = F ki F kj = F 1 iF 1 j + F2 i F 2 j + F3 i F3 j ,
we can finally write:

      

cosϕ12=
C12

√C11⋅√C22

=
2 E12

√(2 E11+1)(2 E22+1)
cosϕ13=

C13

√C 11⋅√C33

=
2 E13

√(2 E11+1)(2 E33+1)
cosϕ23=

C23

√C 22⋅√C33

=
2 E23

√(2 E22+1)(2 E33+1)

It  can  be  seen  that  change  in  angle  between  material  fibres  depend  on  off-diagonal
components of strain tensor –  we may call the off-diagonal components of E the  distortion
strains.
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KINEMATIC (GEOMETRIC) RELATIONS

The strain tensor is the most commonly used measure of deformation due to its direct
correspondence with stress (intensity of internal forces) which in turn result from the applied load,
which is usually known, contrary to the displacement which is usually to be determined (this is, of
course, a simplification, since there are many situations in which it works exactly the other way
round).  However,  strains  themselves  do not  allow us  to  determine the position of  particle  in
current  configuration,  because  they  are  derivatives  (in  common  meaning)  of  components  of
deformation tensor and deformation gradient, which in turn are only derivatives (in mathematical
meaning)  of  displacement  vector.  Only  a  certain  integration  of  components  of  deformation
gradient / deformation tensor /  strain tensor allow us to determine the displacement vector and
then the position vector in current  configuration.  This  differential  relation between strain and
displacement is called kinematic (geometric) relation.

Let's start with the definition of strain tensor:

E ij =
1
2
(C ij−δij) =

1
2
(F ki F kj−δij)=

1
2( ∂ x k

∂ X i

∂ x k

∂ X j

−δij)
Basic relations between position vectors and displacement vector gives us:

xk = uk+X k

∂ xk
∂ X i

=
∂uk

∂ X i

+δki

Substituting it in the definition of E :

E ij =
1
2
[(uk ,i+δki)(uk , j+δkj)−δij ]= 1

2
[uk ,iδkj + uk , jδki + uk ,i uk , j + δkiδkj−δij ]=

= 1
2
[u j , i + ui , j + uk ,iuk , j + δij − δij ]=

1
2
[ui , j + u j ,i + uk ,i uk , j ]

Finally, geometric relations are as follows:

 E ij =
1
2
(ui , j + u j ,i + uk ,iuk , j) ⇔ E = 1

2
(H+HT+HT⋅H )

or, written more explicitly:

E11=
1
2 [2 ∂u1

∂ X 1

+( ∂ u1
∂ X 1

)
2

+( ∂u2
∂ X 1

)
2

+( ∂ u3
∂ X 1

)
2]

E22=
1
2 [2 ∂ u2

∂ X 2

+( ∂u1
∂ X 2

)
2

+( ∂u2
∂ X 2

)
2

+( ∂u3
∂ X 2

)
2]

...

E12=
1
2[ ∂u1

∂ X 2

+
∂ u2
∂ X 1

+
∂ u1
∂ X 1

∂u1
∂ X 2

+
∂ u2
∂ X 1

∂ u2
∂ X 2

+
∂ u3
∂ X 1

∂u3
∂ X 2

]
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It  can  be  seen  that  those  relations  are  non-linear.  Similarly,  thing  may  be  done  in  spatial
description:

e ij =
1
2
(δij−c ij) =

1
2
(δij− f ki f kj)=

1
2 (δij−

∂ X k

∂ x i

∂ X k

∂ x j
)

X k = xk−uk ⇒
∂ xk
∂ X i

= δki−
∂uk

∂ X i

e ij =
1
2
[δij−(δki−uk , i)(δkj−uk , j)] =

1
2
[uk ,iδkj + uk , jδki − uk ,i uk , j − δkiδkj+δij ]=

= 1
2
[u j , i + ui , j − uk ,iuk , j − δij + δij ]=

1
2
[ui , j + u j ,i − uk ,i uk , j ]

CHANGE OF LENGTH OF LINEAR ELEMENT IN ELASTIC DEFORMATION

• Before deformation: d S =∣dX∣= √d X id X i

• After deformation: d s =∣d x∣= √d x id x i = √C ijd X i d X j =
√C ij d X i d X j

√d X k d X k

d S

If the above elements are considered elements of a material curve, then the length of the curve
may be found by proper integration:

• Before deformation: LR =∫
K

d S

• After deformation: L =∫
K

d s

CHANGE OF ANGLE BETWEEN TWO LINEAR ELEMENTS IN ELASTIC DEFORMATION

• Before deformation: ϕR = arccos( dX⋅dY∣dX∣⋅∣dY∣)
• After deformation: ϕ = arccos( (F⋅dX)⋅(F⋅d Y)

∣F⋅dX∣⋅∣F⋅dY∣ )
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CHANGE OF VOLUME IN ELASTIC DEFORMATION

Volume of a parallelepiped given by three material fibers (not necessarily perpendicular)
may be calculated with the use of the triple product:

• Before deformation: d V R = [d X ; dY ; dZ ]= (dX × dY)⋅dZ
• After deformation: d V = [d x ; d y ; d z ] = (d x × d y)⋅d z

Definition of deformation gradient allow us to write:

d V = ((F⋅dX)×(F⋅d Y))⋅(F⋅dZ)
It may be shown that

dV = ((F⋅dX)×(F⋅d Y))⋅(F⋅dZ)= det F⋅(dX × dY)⋅dZ= J dV R

so finally, we can write:

• Before deformation: dV R

• After deformation: dV=J dV R

If the above elements are considered elements of a certain material volume, then the volume after
deformation may be found by proper integration:

• Before deformation: V R=∭
V R

d X d Y d Z

• After deformation: V =∭
V

d xd yd z =∭
V R

J d X d Y d Z
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CHANGE OF AREA IN ELASTIC DEFORMATION

Volume of a parallelogram given by two material fibers (not necessarily perpendicular) may
be calculated with the use of the cross product. Let's consider volumes of two parallelepipedes as
above:

Before deformation: d V R=[dX ,dY ,dZ ]= (dX×dY)T⋅dZ= d AR⋅N
T⋅dZ

After deformation: d V =[d x ,d y ,d z ] =(dx×d y)T⋅d z= d A⋅nT⋅d z ,

where N and n are unit vectors perpendicular to the corresponding area elements. Making
use of the derived relation between reference and current volume gives us:

d A⋅nT⋅d z= J⋅d AR⋅N
T⋅dZ

Vector d z may be expressed as a product of deformation gradient and vector dZ :

d A⋅nT⋅(F⋅dZ)= J⋅d AR⋅N
T⋅dZ

The above relation may be considered an equality of two operators acting on dZ . It could be
more easily noticed in index notation:

(d An j⋅F ji )⋅dZi =( J⋅d AR⋅N i)⋅dZ i

Expressions in brackets define a certain vector.  Since the above relation must be true for  any
dZ , then those two vectors must be equal:

d A⋅nT⋅F= J⋅d AR⋅N
T

Multiplication with F−1 gives us so called Nanson formula:

d A⋅nT= J⋅d AR⋅N
T⋅F−1

The above relation is againg a relation of equality of two vectors. In particular their lengths must
be also equal:

√d A2nT⋅n= √ J 2d AR
2 (NT⋅F−1)⋅(NT⋅F−1)T
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Since n is unit vector, then ∣n∣= √nT⋅n= 1 . Finally the relation between area element before
and after deofmration is as follows:

     d A= d AR⋅J⋅√(NT⋅F−1)⋅(NT⋅F−1)T

SMALL STRAIN THEORY

Non-linearity of geometric relations is a considerable difficulty since it is extremely difficult
to find any closed-form solution for any non-trivial problem to be solved. Often, one cannot even
conclude if the solution exists or is it unique. Fortunately most of engineering problems requiring
theory of elasticity are such that the  deformation and strain is very small.  In such a situation
product of  any small  quantities may be considered even smaller – so small  that it  could be
neglected. This is the basis for (geometrically) linear theory of elasticity:

u i , j≪1 ⇒ E ij =
1
2
(u i , j + u j , i + uk , iuk , j)≈

1
2
(u i , j + u j , i)=εij

and quantity ε called the small strain tensor or  Cauchy strain tensor is defined by the Cauchy
geometric relations:

             

ε11=
∂ u1
∂ X 1

ε23=
1
2( ∂ u2

∂ X 3

+
∂u3
∂ X 2

)
ε22=

∂ u2
∂ X 2

ε31=
1
2( ∂ u3

∂ X 1

+
∂u1
∂ X 3

)
ε33=

∂ u3
∂ X 3

ε12=
1
2( ∂ u1

∂ X 2

+
∂u2
∂ X 1

)
ε = 1

2
(H+HT) ⇔ εij =

1
2
(u i , j+u j ,i)

Similarly small rotation tensor is defined:

ω= 1
2
(H−HT) ⇔ ωij =

1
2
(u i , j−u j ,i)

So that strain tensor may be expressed as:

         E= ε + 1
2
(εT+ωT)(ε+ω)
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INTERPRETATION OF COMPONENTS OF SMALL STRAIN TENSOR

We may interpret the components of ε by expanding the components of E into a power series
in a neighborhood of 0 – the strains are close to 0.

DIAGONAL COMPONENTS – LINEAR STRAINS – RELATIVE ELONGATIONS

A relative elongation is equal: Δ1= √2 E11+1−1
Let's analyze function: f (x )= √2 x+1−1

It's McLaurin series is:

f (0+x) = f (0)+
f '(0)
1 !

x +
f ''(0)
2 !

x2+ ...+ f (n )

n!
xn + ...=

= (√2 x+1−1)∣x=0+ ( 1
√2 x+1)∣x=0⋅x + (− 1

(2 x+1)3 /2)∣x=0⋅x2+ ...= 0 + x − x2 + ... ≈ x

So for small strain, when non-linear part is neglected in the geometric relations, we may write:

{Δ1≈ E11
Δ2≈ E22
Δ3≈ E33

For this reason diagonal components of small strain tensor are considered approximately equal
to relative elongations.

OFF-DIAGONAL COMPONENTS – DISTORION STRAINS – CHANGE IN ANGLE

Let's consider now an angle between two material fibers. Let's
now denote the change in this angle (originally a right angle if
the considered coordinate system is a Cartesian one):

γ12 = α12+β12 = 90∘−ϕ12

Trigonometric relations give us:

cosϕ12= cos (90
∘−γ12)= sin γ12

so we can write: sin γ12=
2 E12

√(2 E11+1)(2 E22+1)
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Let's expand both sides of the above relation into power series. Left hand side:

f (x )= sin( x)

f (x )= f (0)+
f '(0)
1 !

x +
f ''(0)
2 !

x2+ ...= 0 +
cos(0)
1 !

x −
sin(0)
2 !

x2+ ... ≈ x

It is a well known conclusion that a sine of an angle is approximately equal the angle itself if the
angle is small.

The right hand side:

f (x , y , z ) = 2 x

√(2 y+1)(2 z+1)
f (x , y , z ) = f (0,0,0) + 1

1 !
∂ f
∂ x

x + 1
1!

∂ f
∂ y

y + 1
1 !

∂ f
∂ z

z + 1
2 !

∂2 f
∂ x2

x2 + 1
2 !

∂2 f
∂ x ∂ y

x y + ...=

= 0 + 2⋅x + 0⋅y + 0⋅z+... ≈ 2 x

Finally, we can write:

{γ23≈ 2E23γ31≈ 2E31
γ12≈ 2E12

For this  reason  off-diagonal components of  small  strain tensor are considered approximately
equal to the half of change in angle between two fibers which were originally orthogonal.

TRACE OF TENSOR – DILATION – RELATIVE VOLUMETRIC CHANGE

Let's consider a small box given by
three  mutually  perpendicular  material
fibers  of  length  d X 1 , d X 2 , d X 3 .  In
case  of  small  strain  theory,  their  lengths
after  deformation  can  be  caluclated  as
follows:

d X 1 → d x1=(1+ε11)d X 1  
d X 2 → d x2= (1+ε22)d X 2  
d X 3 → d x3=(1+ε33)d X 3

The volume of box before deformation:
V R= d X 1d X 2d X 3

The volume of box after deformation:

V = d x1d x2d x3=
= [1+(ε11+ε22+ε33) + (ε22ε33+ ε33ε11+ ε11ε22+ ε11ε22ε33)]d X 2d X 2d X 3
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Relative change in volume:

ΔV
V R

=
V−V R

V R

=(ε11+ ε22 + ε33)⏟
θ

+ (ε22ε33+ ε33ε11+ ε11ε22+ ε11ε22ε33)

Neglecting the non-linear terms gives us:

ΔV
V R

≈ θ= εij δij =εkk = ε11+ ε22+ ε33=
∂u1
∂ x1

+
∂ u2
∂ x 2

+
∂u3
∂ x3

= uk ,k = ∇⋅u

The quantity defined above is called dilation.

COMPATIBILITY CONDITIONS

Concerning  the  geometric  relations  between  strain  components  and  displacements  a
question rises – is an integration of geometric relations always possible? Geometric relations are
in fact certain system of first order partial differential equations. Especially in case of non-linear
theory, solution of such a system may not exist. Furthermore, we have six equations and only three
unknowns (displacements). What conditions must be satisfied if such a system is to be solved?
These conditions are called  integrability conditions or compatibility conditions and follow from
requirement that  we look for  such a  field x (X) which is  a  single-valued function,  namely a
function that  associates only a  single position in current  configuration x (X) to each particle
X . The above image depicts restricted deformation field:

It may be shown that the compatibility conditions for finite strain theory (non-linear geometric
relations) are:

    ∇X×F = 0 ⇔ ϵpqi F jq , p=0

It gives us following conditions:

∂F13
∂ X 2

−
∂F 12

∂ X 3

= 0
∂ F23
∂ X 2

−
∂F 22

∂ X 3

= 0
∂ F33
∂ X 2

−
∂F 32

∂ X 3

= 0

∂F 11

∂ X 3

−
∂ F13
∂ X 1

= 0
∂ F21
∂ X 3

−
∂F 23

∂ X 1

= 0
∂ F31
∂ X 3

−
∂F 33

∂ X 1

= 0

∂F12
∂ X 1

−
∂ F11
∂ X 2

= 0
∂ F22
∂ X 1

−
∂F 21

∂ X 2

= 0
∂ F32
∂ X 1

−
∂F 31

∂ X 2

= 0
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For small strain theory (linear geometric relations) the compatibility conditions are:

        ∇X×(∇X×ε)=0

In index notation:

ϵpri ϵqsjε pq , rs=0 i , j=1,2 ,3

It is equivalent to 81 equations, only 6 of which are independent:

     

∂2 ε22
∂ X 3

2−2
∂2 ε23

∂ X 2∂ X 3

+
∂2ε33
∂ X 2

2 = 0
∂2ε11

∂ X 2 X 3

− ∂
∂ X 1 [− ∂ε23

∂ X 1

+
∂ε31
∂ X 2

+
∂ε12
∂ X 3 ]= 0

∂2ε33
∂ X 1

2−2
∂2 ε31

∂ X 3∂ X 1

+
∂2ε11
∂ X 3

2 = 0
∂2ε22

∂ X 3 X 1

− ∂
∂ X 2

[ ∂ ε23
∂ X 1

−
∂ε31
∂ X 2

+
∂ε12
∂ X 3

]= 0
∂2ε11
∂ X 2

2−2
∂2ε12

∂ X 1∂ X 2

+
∂2ε22
∂ X 1

2 = 0
∂2ε33

∂ X 1 X 2

− ∂
∂ X 3 [ ∂ ε23

∂ X 1

+
∂ε31
∂ X 2

−
∂ε12
∂ X 3 ]= 0

© 2019, Paweł Szeptyński – CC-BY-NC-SA 4.0 International 19



THEORY OF ELASTICITY – Lecture notes.

SUMMARY

Material coordinates (coordinates in reference configuration) X ⇔ X i

Spatial coordinates (coordinates in current configuration) x ⇔ x i

DISPLACEMENT

• Displacement vector u = x−X
• Material displacement gradient H =u⊗∇X =ε+ω= F−1
• Rotation vector (material description) w =∇X×u
• Rotation gradient w⊗∇X =∇X×ε =−∇X×ω

• Velocity vector v = du
d t

• Acceleration vector a= d v
d t

= d2u
d t 2

DEFORMATION
MATERIAL DESCRIPTION:

• Material deformation gradient F = ∂x
∂X

= x⊗∇X= R⋅U = V⋅R

• Right stretch tensor U
• Left stretch tensor V
• Rotation tensor R
• Right Cauchy–Green deformation tensor C= FT⋅F= U2= b−1

• LEft Cauchy–Green deformation tensor B = F⋅FT =V 2= c−1

• Green – de Saint-Venant strain tensor E= 1
2

(C−1)

• Small strain tensor ε= 1
2
(H+HT)= 1

2
[u⊗∇X+(u⊗∇X)

T]

• Small rotation tensor ω= 1
2
(H−HT) = 1

2
[u⊗∇X−(u⊗∇X)

T]

SPATIAL DESCRIPTION

• Spatial deformation gradient f = ∂X
∂ x

= X⊗∇ x= F
−1

• Cauchy deformation tensor c= f T⋅f = F−T⋅F−1= B−1

• Finger deformation tensor b= f⋅fT= F−1⋅F−T=C−1

• Almansi – Hamel strain tensor e= 1
2
(1−c)
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GEOMETRIC (KINEMATIC) RELATIONS

FINITE STRAIN THEORY:

• MATERIAL DESCRIPTION

E = 1
2
[u⊗∇X+(u⊗∇X)

T+(u⊗∇X)
T⋅u⊗∇X] ⇔ E ij =

1
2( ∂ u i

∂ X j

+
∂ u j

∂ X i

+∑
k=1

3 ∂ uk
∂ X i

∂uk

∂ X j
)

• SPATIAL DESCRIPTION

e= 1
2
[u⊗∇x+(u⊗∇ x)

T−(u⊗∇x)
T⋅u⊗∇ x] ⇔ e ij =

1
2( ∂ u i

∂ x j

+
∂u j

∂ x i
−∑

k=1

3 ∂ uk

∂ xi

∂uk

∂ x j
)

SMALL STRAIN THEORY:

ε= 1
2
[u⊗∇X+(u⊗∇X)

T] ⇔ εij =
1
2 ( ∂ ui

∂ X j

+
∂u j

∂ X i
)

RELATIONS BETWEEN DEFORMED AND UNDEFORMED DIFFERENTIAL MATERIAL ELEMENTS

• LINEAR ELEMENT d s = √dX⋅C⋅dX
√dX⋅d X

d S

• SURFACE ELEMENT d A= J √(NT⋅F−1)⋅(NT⋅F−1)Td AR

• VOLUME ELEMENT d V = J dV R

CONDITION OF LOCAL INVERTIBILITY

J = det F= 1
det f

>0

COMPATIBILITY CONDITIONS

• FINITE STRAIN THEORY: ∇X×F = 0
• SMALL STRAIN THEORY: ∇X×(∇X×ε) = 0
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3. STATICS AND DYNAMICS

CONSERVATION OF MASS AND CONTINUITY 

In continuum mechanics we assume the principle of conservation of mass:

 total mass of the system does not change in time.

Material particle cannot vanish and cannot be created. Total mass of the system is constant,
however both its volume and density may change:

mref =mt ⇒ ∭
V R

ρRdV R =∭
V

ρd V ,

where ρR ,V R ,mref are density,  volume and mass in reference configuration respectively,  and
ρ ,V ,mt are  the  same  quantities  after  deformation.  According  to  the  relations  derived  in

previous chapter we may write:

∭
V

ρdV =∭
V R

ρ J d V R ⇒ ∭
V R

ρRd V R =∭
V R

ρ J dV R

As the above relation must hold for any volume V R , we may write:

ρR = ρ⋅J

Density may vary in space as jacobian may vary in space and time, however the above relation is
true in every point and every time.

FORCES

A force may be considered a vector measure of mechanical action of a body on another body. In
particular  a  whole  continuous  field  (curve,  area,  volume)  of  space-varying  forces  may  be
considered. We postulate an existence of two kinds of forces:

• external forces – action of environment on particles of the body
• internal forces – mutual interaction between particles of the body
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Among external forces we shall distinguish two kinds of them:

• external  volumetric  forces (body  forces)  –  actions  on
particles inside the body. They are described as a vector of
volumetric density of forces.

b(x)= lim
ΔV →0

Fb(ΔV )
ΔV

[b]=N
m3

• external  surface  forces (surface  tractions)  –  actions  on
particles on the boundary of the body. They are described as
a vector of surface density of forces.

q(x)= lim
ΔS→ 0

Fq(ΔS )
Δ S

[q] = N
m2 = Pa

Internal forces represent mutual interactions between particles – they are a macroscopic
measure of  inter-atomic forces or  forces between grains etc.  Let's  consider a body – we shall
perform an imaginary cut-through with a surface Σ .

The system of internal forces will depend both on the
point in which they are considered and on the surface
of cross-section. We postulate that internal forces can
be described with the use of a stress vector - vector of
surface density of internal forces (internal tractions)

t (x0 ,Σ)= lim
ΔΣ→ 0

Ft (Δ Σ)
Δ Σ [ t ]=N

m2 = Pa
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LAWS OF MOTION

Continuum mechanics is a classical theory of mechanics, namely it is based on Newtonian
laws of motion:

1st LAW

There exist inertial reference frames in which if all forces acting on a body are in
equilibrium, then the body stands still if it performed no motion, or moves along
a straight line with constant velocity is it was in motion.

2nd LAW

In  inertial  reference  frames,  if  the  forces  acting  on  a  body  are  not  in  an
equilibrium, then the body moves with a non-zero acceleration and:

• in tranlational motion, change of momentum in time is equal the sum of
forces acting on the body (principle of momentum):

d
d t∭V

ρv dV = ⇔ Ṗ =S ,

• in rotational motion change of moment of momentum about point O in
time is equal the sum of moments of all forces acting on the body about point O
(principle of moment of momentum):

d
d t∭V

ρv×r dV ⇔ K̇O = MO .

3rd LAW

If a body A acts on body B with a certain force, then body B acts on body A with a
force which has the same magnitude and direction but opposite orientation.
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TETRAHEDRON CONDITIONS

Making the use of the above assumption we shall consider an equilibrium of an infinitely
small part of an elastic solid. Let's assume that it has a shape of tetrahedron three faces of which
Σi (i=1,2 ,3) are perpendicular  to the axes  of  chosen Cartesian  coordinate  system given by

versors e1 ,e2 ,e3 (∣e i∣=1, i=1,2 ,3) .  The  fourth  one Σ is  inclined  to  them  and  given  by
external unit normal  vector ν= [ν1 ; ν2 ; ν3]

T , (∣ν∣= 1) . External unit normals of the rest of
faces are νi ∥e i (i=1,2 ,3) .

We assume that there is (in general) non-uniform stress distribution on each face given by
vectors t i= [ ti1 ; t i2 ; t i3] on Σi (i=1,2 ,3) and t =[ t 1 ; t 2 ; t 3] on Σ .  These  are  whole
fields of stress on faces, so they are in general functions of x: t i(x ) (i=1,2 ,3) and t (x) . They
are depicted in the above picture with single vectors. Furthermore we assume that on each point
inside the tetrahedron body forces b =[b1 ; b2 ; b3] act.

Let's  denote  the  area  of  triangle Δ A1 A2 A3 with S and  area  of  three  other  faces
Δ A Ai A j with S ij .  Let h be  a  distance  of  point  A  from Δ A1 A2 A3 .  Volume  of  the

tetrahedron is V = 1
3
h S .

We shall  now introduce a convention of  signs for  the stress components.  Stress vector
t i(x ) (i=1,2 ,3) is described with components t i= [ ti1 ; t i2 ; t i3] . Then:

stress component t ij denotes the j-th component of a stress vector applied to
the  face  which  is  perpendicular  to  the  i-th  axis  of  the  chosen  Cartesian
coordinate system.
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If the  external unit normal νi is oriented in the same way as versor e i of
respective coordinate axis, then a  positive components of stress will be those
oriented in the same way as versors of the respective coordinate axes.

If the external unit normal νi is oriented in an opposite way as versor e i of
respective coordinate axis, then a  positive components of stress will be those
oriented in an opposite way as versors of the respective coordinate axes.

Let's make use of the principle of momentum. Sum of all forces acting on tetrahedron is equal:

S=∭
V

bdV +∬
Σ

t d S +∬
Σ1

t1d S +∬
Σ2

t 2d S +∬
Σ3

t3d S

Time derivative of sum of momenta of all particles is equal:

Ṗ = d
d t∭V

ρv dV
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Note,  that  integration takes  place over  a  time-dependent  volume V =V (t ) ,  so  time
derivative  must  account  for  that.  Let's  change  the  integration  domain  to  the  reference
configuration:

Ṗ = d
d t∭V

ρv dV = d
d t∭V R

ρv J dV R =∭
V R

d
d t

[ρv J ] dV R =

=∭
V R

[ dd t (ρ J )⋅v+(ρ J )⋅ d
d t

v ]d V R

According to the conservation of mass ρ J =ρR .  Nota that reference density is time-
independent ρR(t ) = const. , what results in:

∭
V R

d
d t

(ρ J )⋅v dV R =∭
V R

d
d t

ρR⋅v dV R = 0

Derivative of momentum is thus equal:

Ṗ =∭
V R

(ρ J )⋅ d
d t

v dV R =∭
V R

ρa J d V R =∭
V

ρad V

Let's write down principle of momentum:

Ṗ =S ⇔ ∭
V

ρad V =∭
V

bd V +∬
Σ

t d S +∬
Σ1

t1d S +∬
Σ2

t2d S +∬
Σ3

t3d S

Each integral may be replaced with a product of the measure of integration domain and a
value in a  certain  point in that  domain (different for  each face) according to the  mean value
theorem for integrals:

ρa( x̂)⋅V = b(x̃)⋅V + t( x̆)⋅S + t1(x ' )⋅S 23 + t2(x ' ' )⋅S 31 + t3(x ' ' ')⋅S 12

Let's express the volume with the use of area of face Σ and divide whole equation by S :

ρa( ̂x)⋅ h
3
=b( ̃x)⋅ h

3
+ t ( ̆x) + t1(x ' )⋅

S23
S

+ t2(x ' ' )⋅
S 31
S

+ t3(x ' ' ' )⋅
S12
S

It can be shown (by some geometric considerations) that:

ν1=
S 23
S

, ν2 =
S 31
S

, ν3=
S12
S

So the principle of momentum takes form:

ρa( ̂x)⋅ h
3
=b( ̃x)⋅ h

3
+ t( ̆x) + t1(x ')⋅ν1 + t 2(x ' ' )⋅ν2 + t3(x ' ' ' )⋅ν3
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and  in  components  (remembering  that  due  to  fact  that  external  unit  normals  of  faces
Σi (i=1,2 ,3) are oriented in an opposite way to the versors of respective coordinate axes):

ρa i( ̂x )⋅
h
3
= b i( ̃x )⋅ h

3
+ ti( ̆x) − t 1i(x ' )⋅ν1 − t 2 i(x ' ' )⋅ν2 − t 3i(x ' ' ' )⋅ν3 i=1,2,3  

Let's consider a sequence of tetrahedrons in which the face Σ moves towards point A. In a limit
case when h→0 we have

lim
h→0

ρa i( x̂)⋅
h
3
= lim

h→0 [bi( x̃)⋅
h
3
+ ti (x̆) − t1 i(x ' )⋅ν1 − t2 i(x ' ' )⋅ν2 − t 3 i(x ' ' ' )⋅ν3] i=1,2 ,3

For each value of  h  mean value point ̂x , ̃x , ̆x ,x ' ,x ' ' ,x ' ' ' will be in general different but for
h→0 they all tend toward A:

x̂ , x̃ , ̆x ,x ' ,x ' ' ,x ' ' ' →
h→0

x A

For h→0 the volume also tends to 0, so the influence of inertial forces and body forces vanishes.
Finally we can write down:

t i(x A)− t 1 i(x A)ν1− t 2 i(x A)ν2 − t 3i(xA) ν3= 0

what can be rewritten inthe following form:

t i(x) = t ji (x)ν j(x) , i , j=1,2 ,3

The above relations are called  tetrahedron conditions.  They can be written down in an
absolute form or a matrix form as follows:

t =(Tσ)
T⋅ν ⇔ [t1t 2t 3]= [

t 11 t 21 t 31
t 12 t 22 t 32
t 13 t 23 t 33

]⋅[ν1ν2ν3]
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CONCLUSIONS FROM TETRAHEDRON CONDITIONS

1. In a fixed point the stress vector depends only on the external unit normal of the surface
of imaginary cut not on the shape of the surface itself.

2. In order to find components of stress vector corresponsind to an arbitrary chosen unit
normal it is enough to know the components of stress vectors corresponding to versors of
the coordinate systems.

t i = t ji ν j ⇔ t = t j⋅ν j = t1ν1+ t2ν2+ t3ν3

3. Tetrahedron  conditions  state  that  to  a  given  external  unit  normal  a  stress  vector  is
assigned  in  a  unique  way.  In  particular  we  can  conclude  that  matrix Tσ is  a
representation of a tensor. It will be called Cauchy stress tensor or  true stress tensor. Its
component t ij denotes the j-th component of a stress vector applied to the face which is
perpendicular to the i-th axis of the chosen Cartesian coordinate system.

Diagonal components are termed normal stresses (tensile stress if positive, compressive stress in
negative), while the off-diagonal components are termed shear stresses.
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EQUATIONS OF MOTION

Let's write down the  principle of momentum for an arbitrary chosen subregion  of an current
configuration. Let it be a volume V bounded with surface S:

Ṗ=S ⇔ d
d t∭V

ρ vd V =∭
V

bdV +∬
S

t d S

The integral on the left hand side may be transformed in the same way as in derivation of
tetrahedron conditions. The internal tractions on the right hand side may be rewritten with the use
of tetrahedron conditions:

∭
V

ρa idV =∭
V

b id V +∬
S

t jiν j d S i=1,2 ,3

According to the divergence theorem (also called Green-Gauss-Ostrogradsky theorem) we
may transform a surface integral of a given vector function into a volume integral of its divergence:

∬
S

F i νi d S =∭
V

F i ,id V

We obtain:
∭

V

ρa i dV =∭
V

b id V +∭
V

t ji , jd V i=1,2 ,3

All integrals have the same domain of integration, so we may add the integrands. Expressing the
acceletaion as the second time derivative of displacement gives us:

∭
V

(ρ üi−bi−t ji , j)d V = 0 i=1,2,3
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Since the volume V may be chosen arbitrarily, the above relation holds if the integrand is equal
zero itself. As a conclusion we obtain an equation of motion:

t ji , j + b i =ρ ü i i=1,2 ,3

In case of statics we neglect the influence of inertial forces:

t ji , j + b i = 0 i=1,2 ,3

The above equations are termed equilibrium equations or Navier equations.

SYMMETRY OF STRESS TENSOR

Let's write down the principle of moment of momentum. Let's calculate the moment of
momentum and sum of moments of forces about origin of the chosen coordinate system, so that

rO=−x .

K̇O= MO ⇔ d
d t∭V

ρv×(−x)dV =∭
V

b×(−x)d V +∬
S

t×(−x)d S

Calulation of the time derivative of moment of momentum is performed as previously – nothing
changes if we subtitute v×(−x) in the place of v in derivative of momentum.

K̇O=− d
d t∭V

ρ v×x dV =−∭
V

ρ d
d t

(v×x )dV

Time derivative of a vector product is calculated in the same way as a derivative of product:

K̇O=−∭
V

ρ( v̇×x+ v×ẋ⏟
= v×v = 0

)d V =−∭
V

ρa×x dV

Principle of moment of momentum takes then form:

∭
V

ρa×xd V =∭
V

b×xd V +∬
S

t×xd S

In index notation:

∭
V

ρϵijk a j xk d V =∭
V

ϵijk b j xk dV +∬
S

ϵijk t j xk d S i=1,2,3

Let's express the stress vector according to the tetrahedron conditions:

∭
V

ρϵijk a j xk d V =∭
V

ϵijk b j xk dV +∬
S

ϵijk t ljνl x k d S
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According to the divergence theorem:

∭
V

ρϵijk a j xk d V =∭
V

ϵijkb j xk dV +∭
V

(ϵijk t lj xk ),l d V

Let's deal with integrand in the second integral on the right hand side:

(ϵijk t lj xk ),l = ϵijk ( tlj xk ),l = ϵijk ( t lj ,l xk+t lj xk ,l)=ϵijk ( tlj ,l xk+t ljδkl )= ϵijk (t lj ,l xk+t kj)

Let's substitute it in the principle of moment of momentum:

∭
V

ρϵijk a j xk d V =∭
V

ϵijk b j xk dV +∭
V

ϵijk t lj , l xk+ϵijk t kjd V

Summing the integrals over tha same domain gives us:

∭
V

ϵijk xk (ρa j−b j−t lj , l)⏟
0

d V =∭
V

ϵijk t kjd V

In the relation above we made use of the equations of motion. Since the principle of moment of
momentum must hold for any V, then we may write:

0 =∭
V

ϵijk t kjd V ∀
V

⇒ ϵijk t kj = 0 i=1,2 ,3

The above system of three equations may be written explicitly:

i=1 : ϵ1 jk t kj = t32−t 23= 0 ⇒ t 23=t 32

i=2 : ϵ2 jk t kj = t13−t 31= 0 ⇒ t31=t 13

i=1 : ϵ3 jk tkj = t 21−t12= 0 ⇒ t 12=t 21

We may conclude that Cauchy stress tensor is symmetric:

t ij=t ji

INITIAL AND BOUNDARY CONDITIONS

Equations  of  motion are a  system of  linear  partial  differential  equations  of  the second
order. They must be equipped with proper initial conditions (due to differentiation with respect to
time) and boundary conditions (spatial differentiation). 
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The highest order of differentiation with respect to time is two, so we need two initial conditions –
for position and for velocity:

INITIAL CONDITIONS:
• initial position of each point in time t 0 : u(x , t0)= u0(x)

• initial velocity of each point in time t 0 u̇(x , t0)= v0(x )

Boundary conditions will be determined for both stress and displacements. If the motion of
the body is constrained in any way, then the constraint equation becomes a kinematic boundary
condition for a displacement and - as a consequence of constitutive relations that will be discussed
later – for stress. Let's assume that such a constraint is applied to a certain part of external surface
S u⊂S :

KINEMATIC BOUNDARY CONDITIONS:
• fixed position of points on boundary S u u(x , t)= û0(x ,t ) x∈S u

Boundary  conditions  for  stresses  will  be  found  by
application of the principle of momentum to the whole body
– until now it was only applied to a part of it:

Ṗ =S ⇔ d
d t∭Bt

ρ vd V =∭
Bt

bd V +∬
St

qd S

Time derivative is calculated as previously. The body forces
vector  may  be  expressed  by  a  transformed  equation  of
motion. In an index notation:

∭
Bt

ρ üi d V =∭
Bt

(ρ ü i−t ji , j)d V +∬
St

q i d S

∭
Bt

t ji , jdV =∬
St

qid S

Application of the divergence theorem gives us:

∬
S t

t ji ν jd S =∬
St

qid S

As this relation must hold independently of the shape of the body (its external surface S t ), we
may write:

t ji ν j = q i

STATIC BOUNDARY CONDITIONS:
• fixed load on boundary S q Tσ (x)

T⋅ν (x) =q (x) x∈S q
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EQUATIONS OF MOTION AND MEASURES OF INTERNAL TRACTIONS IN MATERIAL DESCRIPTION

Equations  of  motion  derived  in  the  previous  chapter  are  formulated  in  the  spatial
description – the independent variables are the spatial (Eulerian) coordinates (differentiation is
performed with respect to them). We shall  now derive these equations in material description
which is more convenient for description of deformation of solids. What must be noted is that in
material description it is the reference configuration which is the domain of all fields. In particular
stress distribution or external forces distribution is defined in the reference configuration what
results in different values of those quantities than in spatial description because  the reference
areas (for surface forces) and volumes (for body forces) are different – undeformed instead of
deformed ones. 

While in case of spatial description the true (internal or external) forces are referred to
true (deformed) areas and volumes – that's why the Cauchy stress tensor is termed the  true
stress tensor – in material description the same true forces are referred to undeformed areas and
volumes.  As a result those artificial tractions and body forces do not give us true information on
their values. True forces referred to undeformed shape will be termed nominal instead of being
true  ones.  Knowing  true  stresses  and  making  use  of  the  relation  between  deformed  and
undeformed surface areas derived in previous chapter we will define the nominal stress tensor.

NOMINAL STRESS – PIOLA-KIRCHHOFF STRESS TENSOR OF THE 1st KIND

We define the nominal stress vector tR such that: t d A = tRd AR

According to the tetrahedron conditions: Tσ
T⋅νd A = tRd AR

Let's introduce the relation between d A and d AR :

d A νT = J d AR NT⋅F−1 ⇒ d A ν = J d AR F -T⋅N ,

where N  is the unit normal to d A before deformation. We obtain:

J Tσ
T⋅F-T⋅N d AR = tRd AR

This must hold for any d AR , so:
J Tσ

T⋅F-T⏟
TR

⋅N = tR

In the definition of TR we may make use of the symmetry of the Cauchy stress tensor Tσ
T=Tσ

TR= J Tσ⋅F-T ⇔ T ik = J tij X k , j
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Quantity TR will be termed the  Piola-Kirchhoff stress tensor of the 1st kind  (PK1) or  nominal
stress tensor, such that:

TR⋅N = tR T ij N j =T i

It is important that TR is not  symmetric because in general the deformation gradient is
not a symmetric tensor – this is a kind of inconvenience, since we have to know all 9 components
of TR instead of 6 components of Tσ .

Writing down the tetrahedron condition we've always used transposition of Tσ what –
due to symmetry of that tensor – was in fact redundant. Since now we will omit this operation in
order to make the relations between stress tensor and stress vector look the same in both cases of
true and nominal stresses. The difference between true and nominal stresses may be illustrated in
the following way

Nominal stress (TR) :

T = P
A0

True stress (Tσ) :

t = P
A

PRINCIPLE OF MOMENTUM AND EQUATIONS OF MOTION IN MATERIAL DESCRIPTION

Let's  write  down the  principle  of  momentum  in  material  description.  Body  forces  and
surface tractions are assumed to be given by vector fields B(X) i Q(X) (these are not true
loads). Let's chose any subregion V R within a reference configuration Bref . Its boundary will
be denoted with S R :

Ṗ =S ⇔ d
d t∭V R

ρR v id V R =∭
V R

BidV R +∬
S R

T id S i=1,2 ,3

In material description domain of integration is time independent so we may differentiate
the integrand directly. Also the reference density is constant in time. Making use of the relation
between the PK1 stress tensor and nominal stress vector, we may write:

∭
V R

ρRaid V R =∭
V R

BidV R +∬
S R

T ijN jd S
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Application of the divergence theorem gives us:

∭
V R

ρRaid V R =∭
V R

BidV R +∭
V R

T ij , jdV

Adding the integrals together results in:

∭
V R

(ρRai−Bi−T ij , j)d V R = 0

Since V R may  be  chosen  arbitrary  we  may  write  down  equations  of  motion  in  material
description in the following form:

T ij , j+B i =ρR üi i=1,2,3

We have to remember that  TR is not symmetric – it has 9 independent components.
Additional  required  equations  may  be  obtained  from  the  symmetry  of  Cauchy  stress  tensor
(derived from the principle of moment of momentum). Let's express Tσ by TR :

TR= J Tσ⋅F-T ⇒ Tσ =
1
J

TR⋅FT

Symmetry of Tσ gives us:

Tσ
T = Tσ ⇒ 1

J
F⋅TR

T = 1
J

TR⋅F
T

and in index notation:

x i , jT kj = T ij xk , j i , k=1,2,3

PIOLA-KIRCHHOFF STRESS TENSOR OF THE 2nd KIND

Lack of symmetry of the PK1 stress tensor is a problem in this sense, that total number of
unknown function to be determined in order to describe the deformation of a body is raised with
3. A solution to than inconvenience is introduction another measure of stress, namely the Piola-
Kirchhoff stress tensor of the 2nd kind TS (PK2) defined as follows:

TS= F−1⋅TR ⇔ S ik = X i , jT jk

If we express the PK1 in terms of Tσ , we may write

S ik = J X i , j t jl X k ,l

S ki = J X k , j t jl X i ,l = J X k ,l tlj X i , j = J X i , j t jl X k , l = S ik
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so the  Piola-Kirchhoff stress tensor of the 2nd kind is symmetric. An inverted relation between
TS and TR is:

TR= F⋅TS ⇔ T ik = x i , j S jk

Introducing it in the equations of motion gives us an alternative equations of motion in material
description:

(S kj x i , k ) j+Bi =ρR ü i i=1,2 ,3

A shortcoming of  such an approach is  that  the PK2 stress tensor has  no clear  physical
interpretation. It is sometimes termed as the material stress tensor.

SUMMARY

STRESS VECTORS

True stress vector: t : Tσ⋅ν= t
• true stress – ratio of current force and current surface area

Nominal stress vector: tR : TR⋅N = tR
• nominal stress – ratio of current force and reference surface area

STRESS TENSORS
 

Cauchy stress tensor Tσ

• symmetric tensor: t ij=t ji

Piola – Kirchhoff stress tensor of the 1st kind TR= J Tσ⋅F−T

• non-symmetric tensor: T ij≠T ji

Piola – Kirchhoff stress tensor of the 2nd kind TS= F−1⋅TR

• symmetric tensor: S ij=S ji

Cauchy stress tensor
Tσ

- J−1TR⋅FT J−1F⋅TS⋅FT

PK1 stress tensor
TR

J Tσ⋅F−T - F⋅TS

PK2 stress tensor
TS

J F−1⋅Tσ⋅F
−T F−1⋅TR -
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EQUATIONS OF MOTION

SPATIAL DESCRIPTION:
t ji , j + b i =ρ ü i i=1,2 ,3
∂ρ
∂ t

−(ρ vk ), k = 0  – mass continuity equation

MATERIAL DESCRIPTION:

{T ij , j + Bi =ρR üi i=1,2 ,3
xi , jT kj = T ij x k , j i , k=1,2 ,3

or
(S kj x i , k ) j+Bi =ρR ü i i=1,2 ,3

where
   ρR= const.

initial conditions: u =u0 at t=t 0
u̇ = v0 at t=t 0

kinematic boundary conditions: u = ̂u on S u

static boundary conditions: q =Tσ⋅ν on S q    - spatial description
Q = TR⋅N on S q  - material description
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4. CONSTITUTIVE RELATIONS

Until now, we've determined following equations governing the problems of theory of elasticity:
• 3 equations of motion
• 6 geometric (kinematic) relations

Following unknown functions should be determined with the use of  the equations mentioned
above:

• 3 unknown components of the displacement vector
• 6 unknown components of the strain tensor
• 6 unknown components of the stress tensor

It looks like we're lacking 6 more equations. In the equations of motion stress is related
with displacement while the geometric relations are between strain and displacement. We still
don't know how the stress is related to strain. Such relations will be termed constitutive relations
or  physical relations. In the most general case we can assume that a  certain measure of stress
T (one of the stress tensors that we've introduced)  is  a function of chosen particle and its

current position:

T= f (X ,x )

POSTULATED PRINCIPLES REGARDING CONSTITUTIVE RELATIONS

We postulate that following principles hold:
• Principle of determinism
• Principle of locality
• Principle of material objectivity

PRINCIPLE OF DETERMINISM

The stress in given particle X and given time t is  determined by the choice
of the particle and by past motion  of all other particles in the body:

T(X ; t) = f (X ,x (ξ ,t−τ)) , ξ∈B ref , τ∈〈0 ; ∞)

PRINCIPLE OF LOCALITY

The stress in given particle X and given time t depends on past motion of
particles in arbitrary small neighborhood of the chosen particle:

           ∣ξ−X∣ <ε → 0
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PRINCIPLE OF MATERIAL OBJECTIVITY

Constitutive  relations  describing  internal  conditions  of  a  physical  system  and
interactions  between  all  its  parts  must  be  independent  of  the  choice  of  the
reference frame.

FIRST GRADIENT THEORY

The most commonly used theory (but not the only one which is used) of the constitutive
relation is the so called first gradient theory. According to the principle of locality, the depedndecy
of the unknown function in constitutive relation on motion of other particles x (ξ ,t−τ) may be
expanded into a power series. Let X be a chosen particle and ξ =X+dX a particle in its
neighbourhood. Neglecting (only in notation) the time-dependency, we may write:

x i(ξ j)= x i(X j + d X j) = x i(X j)+
1
1 !

∂ x i

∂ X k
∣
X j

d X k +
1
2!

∂ x i

∂ X k∂ X l
∣
X j

d X k d X l + ...

Please,  note  that
∂ x i

∂ X k
∣
X j

is  simply  the  value  of  the  material  deformation  gradient  in X j .

Further  derivatives  are  further  (tensorial)  gradients  of  the  deformation.  General  constitutive
relation could be written as follows:

T(X)= f (X ; x(ξ)) ⇔ T(X)= f (X ; x (X) + F(X)⋅dX + 1
2
∇F(X)⋅d X⋅dX + ...)

Or, more generally:

T(X ; t) = f (X ; x(X ; t−τ) ; F(X ; t−τ) ; ∇F (X ; t−τ); ...)

In  fact  we  cannot  account  for x (X) in  expression  for T .  The  stress  state  indeed
depend on the choice of the particle and on deformation in that point (gradients of deformation),
yet it must be independent on the location of the particle in space. According to the principle of
material objectivity we can write:

T(X ; t) = f (X ; F(X ; t−τ) ; ∇F(X ; t−τ) ; ...)

It emerges that a very wide class of materials may be quite precisely described with the use
of a function of the following form

T(X ; t) = f (X ; F(X ; t−τ))

namely, accounting only for the first gradient of deformation and neglecting higher derivatives.
Theories based on that assumption are called the first gradient theories.
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We  know  that  the  material  deformation  gradient  may  be  subject  of  the  polar
decomposition F =R⋅U so that it can be expressed as a product of rotation tensor R and
stretch tensor U . Again -  according to the principle of material objectivity – just as location in
space cannot  influence  the form of  constitutive  relations  so the  rigid  rotation  can't.  The  first
gradient  constitutive  relation  should  depend  then  on  the  stretch  tensor U only,  or  on  any
function  of  it,  e.g.  deformation  tensor C or  strain  tensor E .  As  it  is  the  Green  -  de
Saint-Venant  strain  tensor  which  is  most  commonly  used,  we  will  try  to  find  the  constitutive
relation based on this measure of deformation. Among all measures of stress, we shall focus on
the PK2 stress tensor, as it is the most convenient in use, being a symmetric tensor applicable in
material description. Another feature is that those two quantities may be shown to be energetic
conjugates – a feature that will be discussed later. We will consider following relation:

TS (X ; t) = f (X ; E(X ; t−τ))

HOMOGENEITY

A homogeneous material is the one, in which constitutive relation is the same in each point
of the body, so it depends on the strain in that point and not on the choice of

TS (X ; t) = f (E(X ; t−τ))

Many materials may be considered approximately homogeneous (steel, alloys, plastics etc.).
In other cases inhomogeneity is an important factor – e.g. In case of concrete, wood, soil, etc. Even
then homogeneous models may be sometimes applied.

ISOTROPY

An isotropic material is the one, in which material properties (longitudinal stifness, tensile
strength etc.) are the same in all directions, namely they do not depend on the direction along
which they are examined. Many materials cannot be considered isotropic – these are e.g. wood,
composited with oriented inclusions, crystals etc.
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ELASTIC MATERIAL

In  the  introduction  it  was  stated  that  an  elastic  material is  the  one,  that recovers  its
original  shape after  being deformed, when the load is  removed,  so that  current stress state
depends only  on current  deformation and not on past  deformation (load path).  This  can be
accounted for in the constitutive relation as follows:

An elastic material is the one in which:

• current  stress  state  depends  on  current  deformation  and  not  on  past
deformation:

TS (X ; t) = f (E(X ; t ))

• deformation is reversible, so constitutive relation must be a one-to-one function
so that a unique inverse of f existed.

HYPERELASTIC MATERIAL

A  hyperelastic material  (an  elastic material in the sense of Green) is such an
elastic  material  for  which  a  scalar-valued  function W of  tensor  argument
exists, termed an elastic potential,  that the constitutive relation may be written
in the following form:

TS=
∂W
∂E

⇔ S ij =
∂W
∂E ij

i , j=1,2 ,3

COMPLETE  SET  OF  EQUATIONS  GOVERNING  THE  NON-LINEAR  THEORY  OF  ELASTICITY  FOR
HYPERELASTIC MATERIALS:

We have 15 unknowns:

• 3 components of the displacement vector u ,
• 6 components of the strain tensor E
• 6 components of the stress tensor S

and 15 equations:

• 3 equations of motions (non-linear partial differential equations)
• 6 geometric relations(non-linear partial differential equations)
• 6 physical relations (non-linear algebraic equations)
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ISOTROPIC HYPERELASTIC MATERIAL

Elastic  potential  in  given  coordinate  system  may  be  interpreted  as  a  function  of
components of the strain tensor:

W (E)=W (E11 ; E22 ; E33 ; E23 ; E31; E12)

In case of an isotropic material the elastic potential must provide an isotropic relation – it
must be an isotropic function itself. An important feature of an isotropic function is that it can be
expressed in terms of invariants of its argument only:

W (E)=W ( I 1 ; I 2 ; I 3)

so the constitutive relation may be written as follows:

S = ∂W
∂E

= ∂W
∂ I 1

∂ I 1

∂E
+ ∂W

∂ I 2

∂ I 2

∂E
+ ∂W

∂ I 3

∂ I 3

∂E

Let's introduce following notation:

ϕ1 =ϕ1( I 1 ; I 2 ; I 3)=
∂W
∂ I 1

ϕ2 =ϕ2( I 1; I 2 ; I 3) =
∂W
∂ I 2

ϕ3 =ϕ3( I 1 ; I 2 ; I 3)=
∂W
∂ I 3

Invariants  of  a  tensor  are  certain  scalar-valued  functions  of  a  tensor  argument.  Their
derivatives may be calculated with the use of so called Gȃteaux derivative. Then the constitutive
relation for an isotropic hyperelastic material may be written as follows:

TS = ϕ11+ ϕ2 [ I 11−E ]+ ϕ3[E2− I 1E+I 21] ,

Rearranging the terms gives us:

TS = ϕ3E
2 − (ϕ2+I 1ϕ3)E + (ϕ1+I 1ϕ2+I 2ϕ3)1 =

= k2E
2 + k 1E+ k 01

.

So any constitutive relation for an isotropic hyperelastic material may be written down in the
form of a tensorial quadratic polynomial. The coefficients of that polynomial depend, however, on
the strain state in given point too.
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HOOKE's MATERIAL

Let's  assume that  the  strain  is  small,  close  to  0.  Then an  approximation  of  the  elastic
potential with its power series expanded in the neighborhood of E=0 (materials natural state)
may be sufficiently precise:

W (E)≈ W (0)+ 1
1!

∂W
∂ Eij∣0 E ij +

1
2 !

∂2W
∂E ij E kl

∣
0

E ij E kl +
1
3!

∂3W
∂E ij E kl E mn

∣
0

E ij E kl Emn + ...

Derivatives of elastic potential calculated in point E=0 are certain constants

W (E)≈ W 0 + ̂S ij E ij +
1
2
Sijkl E ij E kl + ...

where:

W 0 =W (0) , ̂S ij =
∂W
∂E ij

∣
0

, Sijkl =
∂2W

∂ Eij∂E kl
∣
0

Differentiation with respect to strain components gives us:

S ij =
∂W
∂ Eij

≈ ̂S ij +
1
2
(Sijkl+Sklij)Ekl + ... = ̂S ij + Sijkl Ekl + ...

The value of W 0 may be chosen arbitrarily – it vanishes anyway after differentiation. Let's take it
equal 0. If ̂S ij

 was not equal zero, then in an unstrained body there would be a non-zero stress
state what (disregarding phenomena of e.g. residual stresses, which do not apply to elasticity) is
against experimental evidence. We will take then ̂S ij

 = 0 . Neglecting higher order terms, the
constitutive relation may be written in the form:

S ij =
∂2 W

∂E ij E kl
∣
E=0

Ekl

A  hyperelastic  material for which an  elastic potential  has a form of a
second-degree function of the strain state (no constant or linear terms) is called
Hooke's material or linear elastic material.

W = 1
2
Sijkl Eij E kl where Sijkl =

∂2W
∂ E ij E kl

∣
E=0

S ij =S ijkl Ekl
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A four-index matrix Sijkl may be called an elastic constants matrix. It may be shown that it is a
fourth-rank tensor. Constitutive relation for Hooke's material has a form of  generalized Hooke's
Law:

TS= S⋅E S ij=Sijkl E kl

or equivalently
E =C⋅TS E ij=Cijkl S kl

Where S is  termed  stiffness  tensor and C=S−1 is  a  compliance tensor.  These  tensors  are
characterized by a set of internal symmetries:

• due to symmetry of the stress tensor: S ij=S ji ⇒ Sijkl=S jikl

• due to symmetru of the strain tensor: E kl=E lk ⇒ Sijkl=Sijlk

• due to commutativity of differentiation: Sijkl =
∂

∂ E ij

∂W
∂ Ekl

∣0= ∂
∂ Ekl

∂W
∂E ij

∣0 = Sklij

The same is for compliance tensor. Summing it up:

Sijkl =S jikl =Sijlk =Sklij

Cijkl =C jikl =Cijlk =Cklij

Finally, among 81 components of S and C only 21 of them are independent. Writing
the generalized Hooke's Law explicitly, it can be noticed that every component of the stress tensor
is a linear combination of the components of the strain tensor with the components of stiffness
tensor being coefficients of that combination:

S 11 = S1111 E11 + S1122 E22 + S1133 E33+
(S1123+S1132)E23 + (S1131+S1113)E31 + (S1112+S1121)E12

S 12 = S1211 E11 + S1222 E22 + S1233 E33+
(S1223+S1232)E23 + (S1231+S1213)E31 + (S1212+S1221)E12

…

It can be expressed in the matrix notation as follows:

[
S 11

S 22

S 33

S 23

S 31

S 12

] = [
S1111 S1122 S1133 S1123 S1131 S1112

S2222 S2233 S2223 S2231 S2212

S3333 S3323 S3331 S3312

S2323 S2331 S2312

sym S3131 S3112

S1212

][
E11

E22

E33

2 E23

2 E31

2 E12

]
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[
E11

E22

E33

2 E23

2 E31

2 E12

] = [
C1111 C1122 C1133 2C1123 2C1131 2C1112

C2222 C2233 2C2223 2C2231 2C2212

C3333 2C3323 2C3331 2C3312

4C2323 4C2331 4C2312

sym 4C3131 4C3112

4C1212

][
S 11

S 22

S 33

S 23

S 31

S 12

]
If  we  substitute  double  indices  with  a  single  number  according  to  the  rule

(11 ;22 ;33 ;23 ;31 ;12)→(1 ; 2 ;3 ;4 ;5 ;6) , such a notation is  referred to as  Voigt  notation.
Much more precise notation is the one below, sometimes referred to as the Mandel notation:

[
S 11

S 22

S 33

√2S 23

√2S 31

√2S 12

] = [
S1111 S1122 S1133 √2S1123 √2S1131 √2S1112

S2222 S2233 √2S2223 √2S2231 √2S2212

S3333 √2S3323 √2S3331 √2S3312

2S2323 2S2331 2S2312

sym 2S3131 2S3112

2S1212

][
E11

E 22

E33

√2 E23

√2 E31

√2 E12

]
[

E11

E 22

E33

√2E 23

√2 E31

√2 E12

] = [
C1111 C1122 C1133 √2C1123 √2C1131 √2C1112

C2222 C2233 √2C2223 √2C2231 √2C2212

C3333 √2C3323 √2C3331 √2C3312

2C2323 2C2331 2C2312

sym 2C3131 2C3112

2C1212

][
S 11

S 22

S 33

√2S 23

√2S 31

√2S 12

]
ANISOTROPIC HOOKE'S MATERIAL

It  can  be  proven  that  there  are  only  8  possible  classes  of  anisotropy  of  linear  elastic
materials,  corresponding  to  some  extent  with  crystallographic  systems.  The  higher  is  the
symmetry, the least number of independent elastic constants is needed:

1. Anisotropy triclinic crystal system 21 constants
2. Monoclinic symmetry monoclinic crystal system 13 constants
3. Orthotropy orthorhombic crystal system 9 constants
4. Trigonal symmetry trigonal crystal system 6 constants
5. Tetragonal symmetry tetragonal crystal system 6 constants
6. Cyllindrical symmetry hexagonal crystal system 5 constants
7. Cubiy symmetry cubic crystal system 3 constants
8. Isotropy 2 constants
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MONOCLINIC SYMMETRY

S = [
S1111 S1122 S1133 √2S1123 0 0

S2222 S2233 √2S2223 0 0

S3333 √2S3323 0 0
2S2323 0 0

sym 2S3131 2S3112

2S1212

]
ORTHOTROPY

S = [
S1111 S1122 S1133 0 0 0

S2222 S2233 0 0 0
S3333 0 0 0

2S2323 0 0
sym 2S3131 0

2S1212

]
TRIGONAL SYMMETRY

S = [
S1111 S1122 S1133 √2S1123 0 0

S1111 S1133 −√2S1123 0 0
S3333 0 0 0

2S2323 0 0
sym 2S2323 2S1123

S1111−S1122

]
TETRAGONAL SYMMETRY

S = [
S1111 S1122 S1133 0 0 0

S1111 S1133 0 0 0
S3333 0 0 0

2S2323 0 0
sym 2S2323 0

2S1212

]
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CYLINDRICAL SYMMETRY (TRANSVERSAL ISOTROPY)

S = [
S1111 S1122 S1133 0 0 0

S1111 S1133 0 0 0
S3333 0 0 0

2S2323 0 0
sym 2S2323 0

S1111−S1122

]
CUBIC SYMMETRY

S = [
S1111 S1122 S1122 0 0 0

S1111 S1122 0 0 0
S1111 0 0 0

2S2323 0 0
sym 2S2323 0

2S2323

]
ISOTROPY

S = [
S1111 S1122 S1122 0 0 0

S1111 S1122 0 0 0
S1111 0 0 0

S1111−S1122 0 0
sym S1111−S1122 0

S1111−S1122

]
ISOTROPIC HOOKE'S MATERIAL

As in the elastic potential in the Hooke's material only second-degree terms may occur, not
all possible combinations of strain tensor invariants may be accounted for in case of an isotropic
material. As the first invariant is a linear function of tensor components only the square of the first
invariant may be used. The second invariant is a second-degree function itself. The third invariant
is a cubic functions and it cannot be transformed in such a way to obtain quadratic terms only –
the third invariant won't occur in the constitutive relation for isotropic Hooke's material.
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We may write then:
W (I 1 ; I 2 ; I 3)=W ( I 1

2 ; I 2)

The most simple proposition of such a function is a linear combination of those arguments
with coefficients α i β :

W =α(I 1)
2 + β I 2

Stress tensor is then equal:

TS=
∂W
∂E

= ∂W
∂ I 1

1 + ∂W
∂ I 2

( I 11−E) = 2α I 11+β(I 11−E)

Rearranging the terms gives us:
TS=(2α+β) I 11−βE

Let's introduce now:
λ =(2α+β) - the first Lamé parameter

μ =−1
2
β - the second Lamé parameter

Linear constitutive law is as follows:        TS= 2μE+λ tr (E)1 ⇔ S ij = 2μ E ij + λ Ekk

or explicitly:

{S 11 = 2μ E11+λ(E11+E22+E33) , S23=2μ E23

S 22 = 2μ E22+λ(E11+E22+E33) , S31=2μ E31

S 33 = 2μ E33+λ(E11+E22+E33) , S12=2μ E12

The above linear system of algebraic equations is sometimes referred to as the first form of the
generalized Hooke's law. Inversion of these relations give us the second form:

{E11 =
1
E
[(1+ν)S11−ν(S11+S 22+S 33)] , E23=

S 23

2G

E 22 =
1
E
[(1+ν)S 22−ν(S 11+S 22+S33) ] , E31=

S31

2G

E33 =
1
E
[(1+ν)S 33−ν(S 11+S 22+S33)] , E12=

S12

2G

where:

E =
μ(3λ+2μ)
(λ+μ)

- longitudinal stiffness modulus, Young modulus

ν= λ
2 (λ+μ)

 - transversal expansion coefficient, Poisson ratio

G =μ - transverse stifness modulus, Kirchhoff modulus
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There is also the third form which makes use of the decomposition of a second-rank tensor
into its isotropic (spherical) part and its deviator:

TS=AT + DT where AT=
1
3

tr (TS)1 , DT =TS−AT =TS−
1
3

tr(TS)1

E =AE + DE where AE =
1
3

tr(E)1 , DE=S−AE = E−
1
3

tr (E)1

Constitutive relation may be written in the following form:

[AT ] + [DT ]= [(2μ+3λ)AE ]+ [2μDE ]

It can be easily checked that spherical parts and deviators are orthogonal so for two tensors
their spherical parts and deviatoric parts are simultaneously equal only  if the tensors are equal
one to another. This results in:

{AT =3 K AE
DT = 2GDE

where

K = λ+ 2
3
μ - volumetric stiffness modulus, Helmholtz modulus

G =μ - transverse stiffness modulus, Kirchhoff modulus

It can be written down in the following form:

Law of the change of volume:  p = K θ

Law o the change of shape:      [S 11− p S12 S 13

S 21 S 22− p S 23

S 31 S32 S 33−p]= 2G[E11−
θ
3

E12 E13

E21 E22−
θ
3

E 23

E31 E32 S 33−
θ
3
]

where:

hydrostatic pressure: p = 1
3
(S 11+S 22+S33)

volumetric strain: θ= E11+E 22+E33
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WORK AND POWER IN DEFORMABLE SOLIDS

In the classical mechanics the notions of work and power are introduced. So we will do
now.  In  case  of  mechanics  of  material  points work W performed  by  a  force F along
displacement x is expressed as:

W = F⋅d x

Power P is defined as the time-derivative of work:

P = d W
d t

=F⋅ dx
d t

= F⋅v ,

where v is the velocity vector. In case of mechanics of continua the power will be calculated as
an integral (sum) of power of external forces acting on respective displacements:

P =∭
V

b i v i dV +∬
S

qi vi d S

V denoted  the  internal  volume  and S boundary  surface  of  the  solid.  Let  us  express  the
surface tractions in terms of stress:

P =∭
V

b i v i dV +∬
S

t ji ν j v i d S

Divergence theorem gives us

P =∭
V

b i v i dV +∭
V

( t ji v i), j dV =∭
V

b i v id V+∭
V

(t ji , j v i+t ji v i , j)d V

Making use of the equations of motion:

t ji , j+bi =ρa i ⇒ t ji , j=ρ ai−bi

we obtain:
P =∭

V

ρa i v i dV +∭
V

t ji v i , j dV

The first integrand may be expressed as:

ρa i v i =ρ v̇ i v i =
d
d t (1

2
v i v i)

what is the time-derivative of the kinetic energy:

d
d t

Ek =
d
d t∭V

1
2
v i vi dV
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Concerning the second integral ,the velocity gradient ∇xv =L may be decomposed into
its  symmetric  part (stretch  rate  tensor D )  and  antisymmetric  part  (spin  tensor W )
L =D+W :

Dij =
1
2
(v i , j+v j ,i) W ij =

1
2
(v i , j−v j ,i) .

The second integrand may be written as:

t jiv i , j = t ji Dij + t jiW ij

Dot product of symmetric stress tensor and antisymmetric spin tensor is equal so power may be
expressed as a sum of time-derivative of kinetic energy  and elastic strain power - an integral of
t ji Dij which will be termed the elastic strain power density:

P = d
d t∭V

1
2
v i v i d V
⏟

E k

+∭
V

t ji D jid V

ENERGY CONJUGATE PAIRS OF STRESS AND STRAIN MEASURES

It can be shown that certain pairs of all introduced measures of stress and strain may be
interpreted in such a way that the dot product of the measure of stress and time derivative of
measure of strain gives us the elastic strain power density. Let us consider e.g. The linear part of
the spatial strain tensor η 1:

e ij =
1
2
(u i , j + u j ,i − uk ,i uk , j) →

ui , j≪1
eij ≈ ηij =

1
2
(u i , j + u j , i)

We can write:

η̇ ji =
1
2
(u̇ j ,i+ u̇i , j )=

1
2
(v j ,i+v i , j )= Dij

then

P s =∭
V

t ji D ji dV =∭
V

t ji⋅η̇ ji dV ,

Every such a pair of stress and strain measures such that the dot product of the measure of
stress and time derivative of measure of strain gives us the elastic strain power density will be
termed a pair of energy conjugates. 

1) NOTE: η should not be confused with small strain tensor ε - definitions of both look the same, the difference
is that in η differentiation is performed with respect to spatial coordinates, and in ε  with respect to material
ones.
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It may be shown that the below pairs provide an elastic strain power density:

ENERGY CONJUGATE PAIRS OF MEASURE OF STRESS AND STRAIN

STRESS MEASURE STRAIN MEASURE

True stress tensor
Tσ

Linear part of the spatial strain tensor

η = 1
2
[∇xu+(∇ xu)

T]

PK1 stress tensor
TR= J Tσ⋅F

−T
Deformation gradient

F =∇X x

PK2 stress tensor
TS= J F−1⋅Tσ⋅F

−T
Material strain tensor

E= 1
2
(U 2−1)

ELASTIC STRAIN WORK AND ENERGY

As  the  work  was  defined  as  a  dot  product  of  a  vector  of  force  and  of  a  vector  of
displacement,  a  definition  of  work  of  internal  forces  (stress)  on  corresponding  displacements
(strains) may be proposed in a similar way. The dimension of such a product would be

[S ij E ij ]=
N

m2
⋅m

m
= N⋅m

m3
= J

m3

So the dot product of the stress and strain tensor could be a measure of volumetric density
of elastic strain work and elastic strain energy. Assuming linear constitutive law between material
strain tensor and PK2 stress tensor, total  energy accumulated in a monotonic process may be
expressed as:

Φ = 1
2∭V R

S ij E ij d V R=
1
2∭V R

Sijkl E ij E kl d V R =
1
2∭V R

Cijkl S ij S kl d V R=∭
V R

ϕdV R

Factor ½ is due to monotonic increment of both stress and strain starting from 0 and

ϕ = 1
2
S ij E ij =

1
2
Sijkl E ij E kl =

1
2
Cijkl S ij S kl

is the (volumetric) elastic strain energy density. We may notice that it is also the elastic potential
for Hooke's material.
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SUMMARY

OGÓLNY ZWIĄZEK KONSTYTUTYWNY DLA 
MATERIAŁU SPRĘŻYSTEGO

TS (X ; t ) = f (E(X ; t )) oraz ∃ f −1

OGÓLNY ZWIĄZEK KONSTYTUTYWNY DLA 
MATERIAŁU HIPERSPRĘŻYSTEGO

W - potencjał sprężysty

TS=
∂W
∂E

⇔ S ij =
∂W
∂E ij

i , j=1,2 ,3

OGÓLNY ZWIĄZEK KONSTYTUTYWNY DLA 
IZOTROPOWEGO MATERIAŁU HIPERSPRĘŻYSTEGO

TS = ϕ3E
2 − (ϕ2+I 1ϕ3)E + (ϕ1+I 1ϕ2+I 2ϕ3)1 =

= k2E
2 + k 1E+ k 01

gdzie: I 1 , I 2 , I 3 są niezmiennikami tensora odkształcenia.

ϕ1 =ϕ1( I 1 ; I 2 ; I 3)=
∂W
∂ I 1

ϕ2 =ϕ2( I 1; I 2 ; I 3) =
∂W
∂ I 2

ϕ3 =ϕ3( I 1 ; I 2 ; I 3)=
∂W
∂ I 3

Alternatywnie:

Tσ =
2
J [ 1

J 2 /3(∂W
∂ ̄I 1

+ ̄I 1
∂W
∂ ̄I 2 )B − 1

J 4/3
∂W
∂ ̄I 2

B2]+ [∂W
∂ J

− 2
3 J ( ̄I 1

∂W
∂ ̄I 1

+2 ̄I 2
∂W
∂ ̄I 2 )]1

gdzie B - lewy tensor deformacji
̄I 1 = J−2/3 ̂I 1 , ̄I 2 = J−4 /3 ̂I 2 , J =√ ̂I 3

̂I 1 , ̂I 2 , ̂I 3 są niezmiennikami prawego i lewego tensora deformacji.
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ZWIĄZEK KONSTYTUTYWNY DLA 
MATERIAŁU LINIOWO-SPRĘŻYSTEGO

Potencjał sprężysty postaci: W = 1
2
Sijkl Eij Ekl

Związek konstytutywny: S ij =S ijkl Ekl

gdzie: Sijkl = S jikl =Sijlk =Sklij

ZWIĄZEK KONSTYTUTYWNY DLA 
IZOTROPOWEGO MATERIAŁU LINIOWO-SPRĘŻYSTEGO

1 POSTAĆ

{S 11 =2μ E11+λ(E11+E22+E33) , S 23=2G E 23

S 22 =2μ E22+λ(E11+E22+E33) , S31=2G E31

S 33 =2μ E33+λ(E11+E22+E33) , S12=2G E12

2 POSTAĆ

{E11 =
1
E
[(1+ν)S11−ν(S11+S 22+S 33)] , E23=

S 23

2G

E 22 =
1
E
[(1+ν)S 22−ν(S 11+S 22+S33) ] , E31=

S31

2G

E33 =
1
E
[(1+ν)S 33−ν(S 11+S 22+S33)] , E12=

S12

2G

3 POSTAĆ 
Prawo zmiany objętości:

AT= 3K AE gdzie AT=
1
3

tr (TS)1 , AE =
1
3

tr(E)1

Prawo zmiany postaci:

DT = 2G DE gdzie DT =TS−AT =TS−
1
3

tr(TS)1 , DE=S−AE = E−
1
3

tr (E)1

ZWIĄZKI MIĘDZY STAŁYMI SPRĘŻYSTYMI
moduł 
Younga

E

moduł 
Kirchhoffa
G=μ

moduł 
Helmholtza

K

współczynnik
Poissona

ν

pierwszy parametr
Lamégo
λ

E
E

2 (1+ν)
E

3(1−2 ν)
ν E ν

(1+ν)(1−2 ν)

9 KG
3 K+G

G K
3 K−2G

2 (3 K+G )
K− 2

3
G

μ(3λ+2μ)
λ+μ

μ λ+2
3
μ λ

2(λ+μ) λ
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5. LINEAR THEORY OF ELASTICITY

The theory presented in the previous chapters may be summarized as being governed by
the following 15 equations (for hyperelastic solids in material description):

Equations of motion: [S kj (u i , k+δik )] j+Bi = ρR ü i i=1,2 ,3

Geometric relations: E ij=
1
2
(ui , j + u j ,i + uk ,iuk , j) , i , j=1,2 ,3  

Constitutive relations: S ij=
∂W
∂E ij

, i , j=1,2 ,3

enabling us to find 15 unknown functions: 3 components of displacement vector, 6 components of
strain tensor and 6 components of stress tensor. The theory is a nonlinear one, due to

• geometric nonlinearity – nonlinear geometric relations:

E ij=
1
2
(u i , j+ u j , i+ uk ,iuk , j⏟

nonlinear part

)

• physical nonlinearity – nonlinear constitutive relations.

S ij= f (E ij) where f may be a nonlinear functions.

Nonlinear theories are in general  much more difficult  to deal  with than linear ones.  In
particular it is more often in case of non-linear problems that their solution cannot be expressed in
any closed form. What's more, in non-linear theories it is often impossible to state if the solutions
exists at all and even if it exists, if it is a unique one or are there many possible (or even infinite
number of  possible)  solutions.  It  is  common to consider – simultaneously  with the non-linear
original theories – their linear, simplified counterparts. In case of theory of elasticity it emerges
that linearized theory is precise enough for most scientific and industrial applications.

GEOMETRIC LINEARITY – SMALL DISPLACEMENTS

Basic  assumption  in  geometrically  linear  theory  of
elasticity is an assumption fo small displacements, according
to which current configuration is close to the reference one.
The  differenc  between  them  are  assumed  to  be  arbitrary
small,  so  the  distinction  between  spatial  and  material
coordinates vanishes:

∣u∣=∣x−X∣≪ 1 ⇒ x ≈ X

However, it does not mean that displacement is 0. We shall
now denote all corrdinates with small x.
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In particular small difference between current and reference
configuration allow us to assume that position and shape of a body,
points  of  application  of  external  loads  etc.  do  not  change
significantly  after  the  body  is  deformed  and  the  reference
configuration may be considered the domain of all functions also
after deformation.

GEOMETRIC LINEARITY – SMALL STRAINS

Another assumption is the one on small strains, namaly small derivatives of displacement
(small variation of displacement), what results in linear geometric relations:

u i , j≪1 ⇒ E ij=
1
2
(u i , j + u j , i+ uk ,i uk , j⏟

≈ 0

) ≈ 1
2
(ui , j + u j ,i)= εij

It can be seen that the Green - de Saint-Venant strain tensor may be approximated by the small
strain tensor E≈ ε . 

Small strain means also that surface area of any infinitely small surface element do not
change significantly. Together with an assumption of small displacements – according to which
current and reference configurations are approximately the same – we may conclude that also the
difference between the stress measures vanish.  We shall  now consider  all  stress measures as
being equal to the Cauchy true stress tensor Tσ ≈ TR≈ TS . We will denote it with σ and its
components with σij .

PHYSICAL LINEARITY

Assumption of small strains allow us also to approximate any hyperelastic material with a
linear elastic Hooke's material, since any non-linear elastic potential may be approximated with
only first terms of its power series expansion in the neighborhood of E≈ 0 (small strains):

W (E)≈ 1
2!

∂2W
∂ E ijE kl

∣
0⏟

Sijkl

εij εkl +
1
3!

∂3W
∂E ij Ekl Emn

∣
0

E ijE kl Emn + ...
⏟

0

 

⇒ S ij =
∂W
∂ E ij

≈ Sijkl E kl  
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EQUATIONS OF LINEAR THEORY OF ELASTICITY

Finally, the set of governing equations of the linear theory of elasticity is as follows:

Equations of motions: σij , j+ bi =ρ üi i=1,2 ,3

Geometric relations: εij=
1
2
(u i , j+u j ,i ) i , j=1,2 ,3

Constitutive relations: σij=Sijkl εkl i , j=1,2 ,3

These  equations  must  be  also  equipped  with  proper  kinematic  and  static  boundary
conditions as well as with proper initial conditions.

LAMÉ DISPLACEMENT EQUATIONS

We shall focus on isotropic solids, so the constitutive relations will be of the following form:

σ ij= 2G εij+ λδijεkk

System of 15 governing equations for displacements, stresses and strains may be reduced
to the system of 3 equations for displacements only as follows:

1. Introduce the constitutive relations in the equations of motion in order to express stress in
terms of strain

2. Then  substitute  the  geometrical  relations  in  order  to  express  strain  in  terms  of
displacement

The first step:
σ ij , j+ bi =ρ üi

[2G εij+λδijεkk ], j + bi =ρ ü i

2G εij , j+λδijεkk , j+ bi=ρ üi
The second step:

2G⋅ 1
2
(ui , jj+u j ,ij )+λδij

1
2
(uk , kj+uk ,kj )+ bi=ρ üi

G (u i , jj+u j , ij)+λδij uk , kj + bi =ρ ü i

G (u i , jj+u j , ij)+λ u j , ji+ bi =ρ üi
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Finally:

Gu i , jj+(G+λ)u j , ji+ b i=ρ ü i i=1,2 ,3

or written explicitly for each value of i:

{G∇
2u1+(G+λ)(u1,11+u2,21+u3,31)+ b1=ρ ü1

G∇ 2u2+(G+λ)(u1,12+u2,22+u3,32)+ b2=ρ ü2

G∇2u3+(G+λ)(u1,13+u2,23+u3,33)+ b3=ρ ü3

,

where ∇2 is the Laplace operator (laplacian). The above system is inhomogeneous a system of
three  partial differential equations of the 2nd order for the components of displacement vector.
They are sometimes referred to as the Lamé equations or Cauchy-Navier equations.

Initial conditions and kinematic boundary conditions are the same as in the original formulation.
Static boundary conditions may be expressed in terms of displacements in the following form

1
2
Sijkl (uk ,l+u l ,k )ν j = q i on S q - loaded part of boundary

BELTRAMI – MICHELL STRESS COMPATIBILITY EQUATIONS

Another  formulation  of  the  system  of  governing  equations  makes  use  of  the  strain
compatibility equations:

εik , jl−ε jk ,il−εil , jk+ε jl ,ik = 0 i , j , k , l=1,2,3

Introducing the constitutive relations for isotropic solids:

εij=
1+ν
E

σ ij−
ν
E
δijσ nn i , j=1,2 ,3

gives us:
1+ν
E [σ ik , jl−σ jk ,il−σil , jk+σ jl ,ik ] −

ν
E [δik σnn , jl−δ jk σnn ,il−δilσ nn , jk+δ jlσ nn ,ik ] = 0

Let's perform contraction (summation) of idices i and k:

1+ν
E [σii , jl−σ ji ,il−σ il , ji+σ jl ,ii ] −

ν
E [δiiσ nn , jl−δ jiσ nn ,il−δilσnn , ji+δ jlσnn ,ii ] = 0

Let's account for properties of Kronecker deltas:

1+ν
E [σ ii , jl−σ ji ,il−σil , ji+σ jl ,ii ] −

ν
E
[3σ nn , jl−σnn , jl−σ nn , jl+δ jlσ nn ,ii ] = 0
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Let's perform some rearrangements:

1+ν
E [σii , jl−σ ji ,il−σil , ji+σ jl ,ii ] −

ν
E [σ nn , jl+δ jlσ nn ,ii ] = 0

[σ nn , jl−σ ji ,il−σ il , ji+σ jl ,ii ] −
ν

1+ν [σnn , jl+δ jlσnn , ii ] = 0

σ jl ,ii+ [1− ν
1+ν ]σnn , jl−σ ji ,il −σli ,ij−

ν
1+ν

δ jlσnn ,ii= 0

Now, we can accound for the equilibrium equations:

σ ji , i+b j= 0

We may differentiate it with respect to x l and change free subscripts:

−σ ji ,il = b j , l , −σ li ,ij = bl , j ,

what may be then substituted into previous equations:

σ jl ,ii+ [1− ν
1+ν ]σnn , jl+ (b j , l+ bl , j) −

ν
1+ν

δ jlσnn ,ii = 0 .

We will find some further useful relations if we contract indices j and l:

σkk , ii+ [1− ν
1+ν ]σnn ,kk + (bk ,k + bk ,k )−

ν
1+ν

δkkσnn ,ii= 0

Rearrangement of dummy indices gives us:

σnn , kk + [1− ν
1+ν ]σ nn , kk + 2bk , k −

3ν
1+ν

σnn ,kk = 0

and after some algebra:

σnn , kk =−
1+ν
1−ν

bk , k

This may be again substituted in the transformed compatibility equations resulting in:

σ ij , kk +
1

1+ν
σ kk , ij+ (bi , j + b j , i) +

ν
1−ν

δijbk ,k = 0 i , j=1,2 ,3 .
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The above system is an inhomogeneous system of six partial differential equations of the
2nd order for  stress tensor components.  They are referred to as the  Beltrami – Michell  stress
compatibility equations. They may be written as follows.

∇2σ11+
1

1+ν
(σ11,11+σ22,11+σ33,11) + 2b1,1+

ν
1−ν

(b1,1+b2,2+b3,3) = 0

∇2σ22+
1

1+ν
(σ11,22+σ 22,22+σ33,22)+ 2b2,2+

ν
1−ν

(b1,1+b2,2+b3,3) = 0

∇2σ33+
1

1+ν
(σ11,33+σ22,33+σ33,33)+ 2b3,3+

ν
1−ν

(b1,1+b2,2+b3,3)= 0

∇2σ23+
1

1+ν
(σ11,23+σ22,23+σ 33,23)+ (b2,3+ b3,2) = 0

∇2σ31+
1

1+ν
(σ11,31+σ22,31+σ33,31)+ (b3,1 + b1,3)= 0

∇2σ12+
1

1+ν
(σ11,12+σ22,12+σ 33,12)+ (b1,2 + b2,1) = 0

If the body forces are neglected, a homogeneous system is obtained:

σ ij , kk +
1

1+ν
σ kk , ij= 0 i , j=1,2 ,3 .

after writing it out:

∇2σ11+
1

1+ν
(σ11,11+σ22,11+σ33,11) = 0 ∇2σ23+

1
1+ν

(σ11,23+σ22,23+σ 33,23)= 0

∇2σ22+
1

1+ν
(σ11,22+σ 22,22+σ33,22)= 0 ∇2σ31+

1
1+ν

(σ11,31+σ22,31+σ33,31)= 0

∇2σ33+
1

1+ν
(σ11,33+σ22,33+σ33,33)= 0 ∇2σ12+

1
1+ν

(σ11,12+σ22,12+σ 33,12)= 0

It  is  important  to  note  that  the  strain  distribution  obtained  from the  solution of  the
Beltrami-Michell equations satisfies the compatibility relations  (so that it may be integrated to
obtain displacement field) if and only if the stress distribution satisfies the equilibrium equations,
what  is  not  guaranteed  for  the  solution  of  the  Beltrami-Michell  equations .  A  solution  of
Beltrami-Michell equations is a solution to the problem of theory of elasticity if and only if it
additionally satisfies the equilibrium equations.

Proper boundary conditions must be formulated – static boundary conditions are not a
problem. There is a non-trivial difficulty in formulating kinematic boundary conditions in terms of
stress tensor components.
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BELTRAMI STRESS FUNCTIONS

Let us consider a stress state as follows:

σij= ϵikmϵ jlnΦkl , mn ,

where Φkl is any symmetric second rank tensor field which is at least four times differentiable
– it will be called the  Beltrami stress tensor and its components will be termed  Beltrami stress
functions. Substituting them in the equilibrium equations in case of statics:

σ ij , j= ϵikmϵ jlnΦkl ,mnj= 0

It may be shown that accounting for properties of the permutation symbols, symmetry of
Beltrami stress tensor and symmetry of differentiation results in that  the equilibrium equations
are  always  satisfied  for  any  stress  functions  chosen.  It  means  that  if  only  they  satisfy  also
Beltrami-Michell stress compatibility equations, they provide a solution to the problem of theory
of  elasticity  –  strains  calculated  with  the  use  of  isotropic  generalized  Hooke's  law  satisfy  the
compatibility conditions and thus can be integrated in order to obtain displacement field. Let's
denote:

Φ =[A B C
B D E
C E F ] ,

where  A ,B , ... are  the  stress  functions A( x1 , x2 , x3) , B(x1 , x2 , x3) ... .  Stress  state
components may be calculated as follows:

σ11=
∂2 D
∂ x3

2 − 2
∂2E

∂ x2∂ x3

+ ∂2 F
∂ x2

2 σ23=
∂2C

∂ x1∂ x2

− ∂2 E
∂ x1

2 −
∂2 A

∂ x2∂ x3

+ ∂2 B
∂ x3∂ x1

σ22=
∂2 F
∂ x1

2 − 2
∂2C
∂ x3∂ x1

+ ∂2 A
∂ x3

2 σ31=
∂2 B

∂ x2∂ x3

− ∂2C
∂ x2

2 −
∂2 D
∂ x3∂ x1

+ ∂2E
∂ x1∂ x2

σ33=
∂2 A
∂ x2

2 − 2
∂2 B

∂ x1∂ x2

+ ∂2 D
∂ x1

2 σ12=
∂2 E

∂ x3∂ x1

− ∂2B
∂ x3

2 −
∂2 F
∂ x1∂ x2

+ ∂2C
∂ x2∂ x3

Substituting it  into Beltrami-Michell  equations gives us a system of  6 linear  partial  differential
equations of the 2nd order for stress functions A ,B , ... . Their form is rather complex and this is
the only reason for not writing them down in this place.
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Specific problems of theory of elasticity may be solved with the use of the following simplified
forms of Beltrami stress tensor:

MAXWELL STRESS FUNCTION

Assumed form of the Beltrami stress tensor: Φ =[A 0 0
0 D 0
0 0 F ]

Stress state components:

σ11=
∂2 D
∂ x3

2 +
∂2 F
∂ x2

2 σ23=−
∂2 A

∂ x2∂ x3

σ22=
∂2 F
∂ x1

2 +
∂2 A
∂ x3

2 σ31=−
∂2 D
∂ x3∂ x1

σ33=
∂2 A
∂ x2

2 +
∂2 D
∂ x1

2 σ12=−
∂2 F
∂ x1∂ x2

AIRY STRESS FUNCTION

Assumed form of the Beltrami stress tensor: Φ =[0 0 0
0 0 0
0 0 F ] ,

We assume that F do not depend on x3 .

Stress state components:

σ11=
∂2 F
∂ x2

2
σ23=0

σ22=
∂2 F
∂ x1

2
σ31=0

σ33= 0 σ12=−
∂2 F
∂ x1∂ x2

MORERA STRESS FUNCTION

Assumed form of the Beltrami stress tensor: Φ= [0 B C
B 0 E
C E 0 ]

Stress state components:

σ11= − 2
∂2 E
∂ x2∂ x3

σ23=
∂2C

∂ x1∂ x2

− ∂2 E
∂ x1

2 +
∂2 B

∂ x3∂ x1

σ22= − 2
∂2C

∂ x3∂ x1

σ31=
∂2 B

∂ x2∂ x3

− ∂2C
∂ x2

2 +
∂2 E
∂ x1∂ x2

σ33= − 2
∂2B

∂ x1∂ x2

σ12=
∂2 E

∂ x3∂ x1

− ∂2B
∂ x3

2 +
∂2C
∂ x2∂ x3
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EQUATIONS OF LINEAR THEORY OF ELASTICITY IN CURVILINEAR COORDINATES

CYLINDIRCAL COORDINATES

Coordinate transformation: {r = √ x1
2+x2

2

ϕ = arctg
x2

x1

z = x3

⇔ {x1= r cosϕ
x2 = r sin ϕ
x3= z

Equations of motion: σrr ,r +
1
r
σ rϕ ,ϕ+σrz , z +

σrr−σϕϕ
r

+ br =ρ ür

σr ϕ ,r +
1
r
σ ϕϕ ,ϕ+σϕ z , z +

2
r
σr ϕ+ bϕ=ρ üϕ

σrz ,r +
1
r
σϕ z ,ϕ+σ z z , z +

1
r
σrz+ bz =ρ üz

Geometric relations: εrr = ur , r εϕ z=
1
2 (1

r
uz ,ϕ+uϕ , z)

εϕϕ=
1
r
uϕ ,ϕ+

ur

r
εz r =

1
2
(uz , r+ur , z)

εzz= uz , z εr ϕ=
1
2(uϕ ,r−uϕ

r
+1
r
ur ,ϕ)

SPHERICAL COORDINATES

Coordinate transformation:

{r =√ x1
2+ x2

2+x3
2

ψ= arccos
x3

√ x1
2+ x2

2+x3
2

ϕ = arctg
x2

x1

⇔ {x1 = r sinψcosϕ
x2= r sinψ sinϕ
x3= r cosψ

Equations of motion:

σrr ,r +
1
r
σ r ψ ,ψ+

1
r sinψ

σr ϕ ,ϕ+
1
r (2σrr−σψψ−σϕϕ+σr ψctgψ)+ br =ρ ür

σr ψ , r +
1
r
σψψ ,ψ+

1
rsinψ

σψϕ ,ϕ+
1
r [(σψψ−σϕϕ)ctgψ+3σr ψ]+ bψ =ρ üψ

σr ϕ ,r +
1
r
σψϕ ,ψ+

1
r sinψ

σϕϕ ,ϕ+
1
r
(2σψϕctgϕ+3σ rϕ) + bϕ=ρ üϕ
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Geometric relations:

εrr = ur , r εψϕ=
1
2( 1

r sinψ
uψ ,ϕ+

1
r
uϕ ,ψ−

ctgψ
r

uϕ)
εψψ=

1
r
uψ ,ψ+

ur

r
εϕ r =

1
2( 1

r sinψ
ur ,ϕ+uϕ ,r−

uϕ
r )

εϕϕ=
1

r sinψ
uϕ ,ϕ+

ur

r
+

ctgψ
r

uψ εr ψ=
1
2(uψ , r−

uψ
r
+1
r
ur ,ψ)

PLANE STATE PROBLEMS

It is not a general rule however it is often easier to find a solution to a partial differential
equation for  a  problem of  lower dimension.  Considering 2-dimensional  problems of  theory of
elasticity enable us to find certain closed form analytic solutions which emerge to be extremely
useful. Reduction of dimension may be due to assumption of one of the below simplifications:

• plane stress state
• plane strain state

Plane stress state Plane strain state

We shall narrow our considerations to isotropic solids only.
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PLANE STRESS STATE
Plane stress state is described by a plane stress tensor:

σ(x)=[σ11(x1 ; x2) σ12(x1 ; x2) 0
σ12(x1 ; x2) σ22( x1 ; x2) 0

0 0 0]
Hooke's law enable us to determine the strain state given by an anti-plane strain tensor

ε(x)= [
1
E [σ11−νσ22 ]

σ12

2G
0

σ12

2G
1
E [σ 22−νσ11 ] 0

0 0 − ν
E
[σ11+σ 22]]

The body cannot be loaded perpendicularly to the plane of problem. Distribution of all  stress,
strain and displacement components depends only on (x1 ; x2) and is constant along x3 . Plane
elastic solids under plane stress state are usually termed membranes.

PLANE STRAIN STATE
Plane stress state is described by a plane strain tensor:

ε(x)= [ε11( x1 ; x2) ε12(x1 ; x2) 0
ε12( x1; x2) ε22(x1 ; x2) 0

0 0 0]
Hooke's law enable us to determine the stress state given by an anti-plane stress tensor

σ(x)= [(2G+λ)ε11+ λε22 2G ε12 0
2G ε12 (2G+λ)ε22 +λε11 0

0 0 λ [ε11+ε22 ]]
Any  displacement  along  a  direction  perpendicular  to  the  plane  of  the  problem  must  be
constrained.  Distribution  of  all  stress,  strain  and  displacement  components  depends  only  on
(x1 ; x2) and is constant along x3 . 

Stress component σ33 may be also expressed by other stress components with the use of the
assumption that off-plane normal strain is 0:

ε33=
1
E
[σ33−ν(σ11+σ 22)]= 0 ⇒ σ33= ν(σ11+σ22)
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Then normal strain can be expressed in the following form:

ε11=
1
E
[σ11−ν(σ22+σ33)]= 1

E [σ11−ν(σ22+ν(σ11+σ22)) ]=

= 1
E
[(1−ν2)σ11− (ν+ν2 )σ22 ]= 1−ν2

E [σ11−ν
1+ν
1−ν2 σ22]= 1−ν2

E [σ11−
ν

1−ν
σ22]

Similarly for ε22 . If we introduce „modified elastic constants”:

Ê = E

1−ν2
, ν̂ = ν

1−ν
, G = E

2(1+ν)
= Ê

2(1+ν̂)

then the constitutive relations in any plane state (stress or strain) can be written down in the
following form:

{ε11=
1
Ê [σ11−ν̂σ 22 ]

ε22=
1
Ê [σ 22−ν̂σ11 ]

ε12=
σ12

2G

,
{Ê = E ⇔ plane stress

Ê = E
1−ν2 ⇔ plane strain

{ν̂ = ν ⇔ plane stress
ν̂ = ν

1−ν
⇔ plane strain

what is sometimes written with the use of parameter κ :

{Ê = E ⇔ PSN

Ê = 16 E
(7−κ)(κ+1)

⇔ PSO
where ν̂ = 3−κ

κ+1
and {κ = 3−ν

1+ν
⇔ plane stress

κ = 3−4 ν ⇔ plane strain

Furthermore:
• plane stress: ε33=−

ν
E [σ11+σ22 ] σ33= 0 ,

• plane strain: σ33= ν(σ11+σ22) ε33= 0  .

AIRY STRESS FUNCTION

Let's write down the only non-zero strain compatibility condition for plane state:

ε11,22−2ε12,12+ε22,11 =0

Expressing strain in terms of stress gives us:

1
Ê [σ11−ν̂σ 22 ],22

− 2
σ12,12

2G
+ 1

Ê [σ22−ν̂σ11 ],11
= 0
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Let's rearrange the obtained result:
1
Ê [σ11−ν̂σ 22 ],22

−σ12,12

2(1+ν̂)
Ê

+ 1
Ê [σ22−ν̂σ11 ],11

= 0

σ11,22−ν̂σ22,22− 2(1+ν̂)σ12,12 +σ22,11−ν̂σ11,11= 0

∇2σ11−σ11,11−ν̂σ 11,11+Δσ22−σ 22,22− ̂νσ22,22 − 2(1+ν̂)σ12,12+ = 0

∇2(σ11+σ 22)−(1+ν)[σ11,11+σ22,22+2σ12,12] = 0

∇2(σ11+σ 22)−(1+ν)[(σ11,1+σ12,2),1+(σ 12,1+σ22,2),2 ]=0

Let's make use of the equilibrium equations:

{σ11,1+σ12,2=−b1

σ12,1+σ22,2=−b2

The result is:
∇2(σ11+σ 22)+(1+ν)(b1,1+b2,2)= 0

Let's introduce now the Airy stress function mentioned earlier:

F ( x1 ; x2): {F ,11 =σ22

F ,22 =σ11

F ,12 =−σ12−b1 x2−b2 x1

Equilibrium equations written down with the use of Airy stress function take form:

{F ,221+(−F ,122−b1,2 x2−b1−b2,2 x1)+b1 = 0
(−F ,121−b1,1 x2−b2,1 x1−b2)+F ,112+b2= 0

⇔ {b1,2 x2+b2,2 x1= 0
b1,1 x2+b2,1 x1= 0

Assuming  that  the  distribution  of  body  forces  is  constant  in  plane bi , j = 0 (i , j=1,2) the
equilibrium equations are satisfied automatically. The stress compatibility equation takes form:

∇2(σ11+σ 22)= 0

It means that  sum of normal stress components is a harmonic function. When they are
expressed in terms of Airy stress function, we obtain:

∇2(F ,22+F ,11)= ∇
2(∇ 2 F )= 0

It means that a solution to the problem of theory of elasticity is provided by a biharmonic Airy
stress function:

∇4 F = F ,1111+2 F ,1122+F ,2222= 0
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PLANE STATE IN POLAR COORDINATES

Many important engineering problems are characterized by axial symmetry and thus it is
convenient to deal with them with the use of polar coordinates:

{r= √ x1
2+x 2

2

ϕ= arctg
x2

x1

⇔ {x1 = r cosϕ
x2 = r sin ϕ

Relations between components of unknown functions in Cartesian and polar coordinates:

Displacement: ur = u1cos ϕ+ u2sinϕ
uϕ=−u1sinϕ + u2 cosϕ

Strain state: εrr =ε11 cos2ϕ + ε22sin2ϕ + ε12 sin 2ϕ
εϕϕ=ε11 sin2ϕ + ε22 cos2ϕ − ε12sin 2ϕ

εr ϕ=
ε22−ε11

2
sin 2ϕ+ ε12cos 2ϕ

Stress state: σrr =σ11 cos2ϕ +σ 22sin2ϕ + σ12 sin 2ϕ
σϕϕ=σ11sin2ϕ +σ22 cos2ϕ − σ12 sin 2ϕ

σr ϕ=
σ22−σ11

2
sin 2ϕ + σ12cos 2ϕ

Governing equations:

Equilibrium equations: σrr ,r +
1
r
σ rϕ ,ϕ+

σrr−σϕϕ
r

= 0

σr ϕ ,r +
1
r
σ ϕϕ ,ϕ+

2
r
σrϕ =0

Geometric relations: εrr = ur , r

εϕϕ=
1
r
uϕ ,ϕ+

ur
r

εr ϕ=
1
2(uϕ ,r−

uϕ
r
+1
r
ur ,ϕ)

Constitutive relations: σrr =(2G+λ)εrr+ λεϕϕ
σϕϕ=(2G+λ)εϕϕ+ λεrr
σr ϕ= 2G εrϕ

Strain compatibility condition:
1

r2

∂2εrr
∂ϕ2 −

1
r
∂εrr
∂r

+
∂2εϕϕ
∂r 2 +

2
r
∂εϕϕ
∂ r

=
2
r
∂2εrϕ
∂ r ∂ϕ

+
2

r2

∂εrϕ
∂ϕ
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Airy  stress  functions  formulation is  still  valid  in  polar  coordinates.  Biharmonic  operator
inpolar coordinates has the following form:

∇4 =ΔΔ = ( ∂2

∂ r2 +
1
r
∂
∂ r
+

1

r2
∂2

∂ϕ2)( ∂2

∂ r2 +
1
r
∂
∂ r
+

1

r 2
∂2

∂ϕ2)
And the biharmonic equation for Airy stress function in polar coordinates takes form:

F , rrrr +
2

r2
F ,rr ϕϕ+

1

r 4
F ,ϕϕϕϕ+

2
r
F ,rrr−

2

r3
F , rϕϕ−

1

r2
F ,rr+

4

r4
F ,ϕϕ+

1

r3
F , r = 0

It  may  be  shown  that  stress  components  are  now  expressed  in  terms  of  derivatives  of  Airy
functions as follows:

σrr =
1
r
∂ F
∂ r

+ 1
r2

∂2 F
∂ϕ2 σϕϕ =

∂2F
∂ r2    σr ϕ =

1
r2

∂ F
∂ϕ −

1
r
∂2F
∂ r ∂ϕ

It may be shown that there exists a general solution to the biharmonic equation in polar
coordinates – it is so called Michell solution given by the below formula:

F (r ,ϕ) = A01r
2+ A02 r

2 ln r + A03 ln r + A04ϕ +

+ (A11 r
3+ A12r ln r + A14 r

−1)cosϕ+A13 rϕsinϕ

+ (B11 r
3+ B12 r ln r + B14 r

−1)sinϕ+B13 r ϕcos ϕ

+∑
n=2

∞

[(An1 r
n+2 + An2 r

−n+2+ An3 r
n + An4 r

−n)cos (nϕ)]
+∑

n=2

∞

[(Bn1 r
n+2 + Bn2r

−n+2+ Bn3 r
n+ Bn4 r

−n)sin (nϕ)]

where  Aij , Bij (i , j=0,1,2 , ...) are  constants  of  integration  determined  according  to  the
boundary conditions.
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AXIS-SYMMETRIC PROBLEMS

An important class of problems are those characterized by  axial symmetry in which  all
quantities are independent of the angle ϕ . For axis-symmetric problems we have:

∂
∂ϕ = 0

It is often also assumed that:
uϕ= 0

Problems of axial symmetr for which uϕ≠ 0 are sometimes referred to as quasi axis-symmetric.
Assumptions of axial symmetry results in:

σr ϕ= 0 , εr ϕ= 0 .

Governing equations:
 

Equilibrium equation

σrr ,r +
σrr−σϕϕ

r
= 0  

Geometric relations:

εrr = ur ,r , εϕϕ=
ur

r
, εr ϕ= 0

Constitutive relations:

σrr =(2G+λ)εrr +λ εϕϕ=(2G+λ)ur ,r + λ
ur

r

σϕϕ=(2G+λ)εϕϕ+ λεrr= (2G+λ)
ur

r
+λ ur ,r

σr ϕ= 0

Strain compatibility condition:

− 1
r

∂ εrr
∂ r

+
∂2εϕϕ
∂ r 2 +

2
r
∂εϕϕ
∂r

= 0
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DISPLACEMENT EQUATION FOR AXIS-SYMMETRIC PROBLEMS

An approach of  finding simplified governing  equation depending on  displacement only,
which was used in derivation of Lame equations, may be applied in plane axis-symmetric state for
the only non-zero displacement component:

[(2G+λ)ur , r + λ
ur

r ], r+ 1
r [(2G+λ)ur , r+ λ

ur

r
−(2G+λ)

ur
r
− λur , r]= 0

[(2G+λ)ur , rr +λ(ur ,r

r
−

ur

r
2)]+ 2G

r (ur , r −
ur

r )= 0

(2G+λ)[ur ,rr +
ur ,r

r
−
ur

r2 ]= 0

Finally the displacement equation is of the following form:

ur ,rr +
ur ,r

r
−
ur
r 2 = 0

It is no longer a partial differential equation – it is an ordinary differential equation of the
Euler type. Its solution is known:

ur(r )= C1 r +
C 2

r
 

where C1 ,C2 are constants  of  integration determined according to the boundary conditions.
The rest of the unknown components may be found easily now:

εrr (r )= C1 −
C2

r 2

εϕϕ= C1+
C2

r2

σrr(r )= 2C 1(G+λ) −
2C2G

r 2 = 2 A01+
A03

r2

σϕϕ(r )= 2C 1(G+λ) +
2C2G

r 2 = 2 A01−
A03

r2
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THE USE OF AIRY STRESS FUNCTION FOR AXIS-SYMMETRIC PROBLEMS

Biharmonic operator in polar coordinates for axis-symmetric problems has the form:

∇4 = ( ∂2

∂r 2 +
1
r
∂
∂r )( ∂

2

∂ r2 +
1
r
∂
∂ r )= [1r ∂

∂ r (r ∂∂ r )][1r ∂
∂ r (r ∂∂ r )]=

=
1
r
∂
∂ r [r ∂∂ r [1r ∂

∂ r [r ∂∂ r ]]]
The last form is particularly useful  as it enables determination of the solution by direct

integration:

            1
r
∂
∂ r [r ∂∂ r [ 1

r
∂
∂r [r ∂ F∂ r ]]]= 0 ⇒ r ∂

∂r [1r ∂
∂ r [r ∂F∂ r ]]= C1

            ∂
∂r [1r ∂

∂ r [r ∂F∂ r ]]= C1

r
⇒ 1

r
∂
∂r [r ∂ F∂ r ]= C1 ln r+C 2

            ∂
∂r [r ∂ F∂ r ]= C1 r ln r+C2 r ⇒ r

∂F
∂ r

=
C1

4
r2 (2 ln r−1)+

C 2

2
r 2+ C 3

            ∂F
∂ r

=
C1

4
r (2 ln r−1)+

C2

2
r+

C3

r
⇒ F =

C 1

4
r2( ln r−1) +

C 2

4
r 2+ C 3ln r + C 4

Finally the general solution may be found as:

F (r )= A00+ A01 r
2+ A02r

2ln r+ A03 ln r .

Stress state components:

σrr =
1
r
∂ F
∂ r

+ 1
r2

∂2 F
∂ϕ2 = 2 A01+ A02(2 ln r+1) +

A03

r 2

σϕϕ =
∂2F
∂ r2 = 2 A01+ A02(2 ln r+3) −

A03

r2

   σr ϕ =
1
r2

∂ F
∂ϕ −

1
r
∂2F
∂ r ∂ϕ

= 0
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BOUNDARY CONDITIONS FOR AIRY STRESS FUNCTION

Biharmonic equation is fourth-order equation so it requires a number boundary conditions
of  proper  type.  Kinematic  conditions  are  difficult  to  be  involved  –  we  shall  narrow  our
considerations to the problems of purely static boundary conditions. Static boundary conditions
account  for  stress  components  which  are  expressible  in  terms  of  the  2nd derivatives  of  Airy
functions.

We may note that the equation itself do not depend on elastic constants – if the boundary
conditions are also independent of them,  then the whole solution is independent of material's
mechanical  properties,  namely –  stress distribution in a plane state is independent of  elastic
constants. This is known as the  Lévy theorem. The stress state in such situation is the same for all
materials – this fact is used in photoelasticity analysis.

We shall  find now a way for  finding boundary conditions  for  Airy  stress function:  Let's
consider a plane membrane of thickness h in plane stress state, with boundary S.

External unit normal at the boundary is equal:

n={n1= cosα
n2= sinα

,

where α is  an  angle  between  direction  of  the  unit  normal  and  axis x1 .  Trigonometric
functions of this angle may be expressed also in terms of differential relations between increment
of boundary edge and increments of coordinates:

n ={n1= cosα =
d x2

d s

n2 = sinα =−
d x1

d s

,
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Making  the  use  of  relation  between  stress  components  and  Airy  stress  function
(disregarding the body forces), static boundary conditions may be written down as follows:

σij n j = qi ⇒ {∂
2 F
∂ x2

2

d x2

d s
+(− ∂2 F

∂ x1∂ x2
)(− d x1

d s )= q1

(− ∂2 F
∂ x1∂ x2

) d x2

d s
+
∂2F

∂ x1
2 (− d x1

d s )= q2

The chain rule gives us:

{q1=
∂2 F
∂ x2

2

d x2

d s
+ ∂2F
∂ x1∂ x2

d x1

d s
= d

d s ( ∂F∂ x2
)

q2 =−[ ∂2 F
∂ x1∂ x2

d x2

d s
+
∂2 F

∂ x1
2

d x1

d s ]=− d
d s ( ∂F∂ x1

)
Let's sum up all the load along boundary starting from certain fixed point P0 and ending

in an arbitrary point P – it will be an integral along boundary:

{Q1=∬
A

q1 d A= h∫
P0

P

q1 d s = h∫
P 0

P
d
d s ( ∂F∂ x2

)d s= h
∂ F
∂ x2

∣P0

P

Q2=∬
A

q2d A= h∫
P 0

P

q2 d s =−h∫
P0

P
d
d s (∂ F∂ x1

)d s=−h
∂ F
∂ x1

∣
P0

P

Let's find also the sum of moment of the external  load about point P0 from the load
applied to the boundary between P0=(x1

P 0 ; x2
P0) and P=( x1

P ; x2
P) :

M = h∫
P0

P

[q1( x2
P−x2)−q2( x1

P−x1)]d s= h[ x2
P∫
P0

P

q1d s− x1
P∫
P0

P

q2 d s+∫
P 0

P

(q2 x1−q1 x2) d s]
Let's introduce the relation between Airy function and surface tractions:

M = h[x2
P ∂F
∂ x 2

∣P0

P

+ x1
P ∂F
∂ x1

∣P0

P

−∫
P 0

P
d

d s ( ∂F∂ x1
)x1 d s−∫

P0

P
d

d s ( ∂F∂ x2
)x2 d s]

Both integrals may be calculated by integration by parts:

∫
P0

P
d
d s ( ∂F∂ x1

)x1d s=[ x1
∂F
∂ x1
]P 0

P

−∫
P 0

P
∂F
∂ x1

d x1

d s
d s
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Finally:

M = h[ x2
P 0 ∂F
∂ x2

∣P0

+ x1
P0 ∂F
∂ x1

∣P0

+∫
P 0

P

( ∂F∂ x1

d x1

d s
+ ∂F
∂ x2

d x2

d s )d s]
An integrand is an total derivative with respect to natural parameter s:

∂ F
∂ x1

d x1

d s
+ ∂ F
∂ x2

d x2

d s
= d F

d s
so:

M = h[ x2
P 0 ∂F
∂ x2∣P0

+ x1
P0 ∂F
∂ x1∣P0

+ F∣P 0

P ]
An infinite number of Airy functions may be found respective for given stress state – they

all  may  differ  with  any  combination  of  constant  parameter  and  linear  functions,  namely  the
functions of the form a0+a1 x1+a2 x2 . We may chose this function in such a way that:

∂F
∂ x1

∣
P0

= 0 ,
∂ F
∂ x2

∣
P 0

= 0 , F∣P0
= 0

If  we assume that position of P=( x1
P ; x2

P) may be arbitrary chosen P=( x1 ; x2) then
we obtain the following result:

F∣P=
M |P
h

,
∂F
∂ x1∣P=−

Q 2 |P
h

,
∂F
∂ x2∣P =

Q1 |P
h

Boundary conditions for Airy stress function and its first derivatives may be found by proper
integrals of surface tractions – components of sum of forces and sum of moments. In particular, if
the coordinate system is chosen in such a way that its first axis coincide with directions of external
unit normal, the boundary conditions may be expressed in terms of normal and tangential forces
at the boundary:

F∣P=
M |P
h

,
∂ F
∂ n ∣P =−

Q s |P
h

,
∂ F
∂ s ∣P =

Q n |P
h
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SUMMARY

GOVERNING EQUATIONS OF LINEAR THEORY OF ELASTICITY

Equations of motion: σ ij , j+ bi =ρ üi

{
∂σ11

∂ x1

+
∂σ12

∂ x2

+
∂σ 13

∂ x3

+ b1=ρ
∂2u1

∂ t 2

∂σ 21

∂ x1

+
∂σ22

∂ x2

+
∂σ 23

∂ x3

+ b2 =ρ
∂2u2

∂ t2

∂σ31

∂ x1

+
∂σ32

∂ x2

+
∂σ 33

∂ x3

+ b3=ρ
∂2u3

∂ t 2

Geometric relations: εij=
1
2
(u i , j+u j ,i)

ε11=
∂ u1

∂ x1

ε22=
∂u2

∂ x2

ε33=
∂ u3

∂ x3

ε23=
1
2(∂ u2

∂ x3

+
∂ u3

∂ x2
) ε31=

1
2(∂ u3

∂ x1

+
∂ u1

∂ x3
) ε12=

1
2(∂ u1

∂ x 2

+
∂ u2

∂ x1
)

Constitutive law: σ ij=S ijklεkl ⇔ εij= Cijklσ kl

Constitutive relations for isotropy:

1st form: σij= 2Gεij+ λεkk δij

σ11= 2G ε11+λ(ε11+ε22+ε33) , σ23= 2G ε23

σ22= 2G ε22+ λ(ε11+ε22+ε33) , σ31= 2Gε31

σ33= 2Gε33+ λ(ε11+ε22+ε33) , σ 12= 2G ε12

2nd form: εij=
1
E
[(1+ν)σ ij−νσkk δij ]

ε11=
1
E
[(1+ν)σ11− ν(σ11+σ 22+σ33)] , ε23=

σ 23

2G

ε22=
1
E
[(1+ν)σ 22− ν(σ11+σ22+σ33)] , ε31=

σ31

2G

ε33=
1
E
[(1+ν)σ33− ν(σ11+σ22+σ33)] , ε12=

σ12

2G
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LAMÉ DISPLACEMENT EQUATIONS

GΔu + (G+λ)∇⋅(u⊗∇)+ b=ρ ü

{GΔ u1+(G+λ)(u1,11+u2,21+u3,31)+ b1=ρ ü1

GΔu2+(G+λ)(u1,12+u2,22+u3,32)+ b2 =ρ ü2

GΔu3+(G+λ)(u1,13+u2,23+u3,33)+ b3 =ρ ü3

BELTRAMI-MICHELL STRESS COMPATIBILITY EQUATIONS

Δσ + 1
1+ν

[(1⋅σ)⊗∇⊗∇ ]+ (b⊗∇+∇⊗b)+ ν
1−ν

[1⋅(b⊗∇)]1= 0

Δσ11+
1

1+ν
(σ11,11+σ 22,11+σ33,11)+ 2b1,1 +

ν
1−ν

(b1,1+b2,2+b3,3)= 0

Δσ 22+
1

1+ν
(σ 11,22+σ22,22+σ33,22)+ 2b2,2 +

ν
1−ν

(b1,1+b2,2+b3,3)= 0

Δσ33+
1

1+ν
(σ11,33+σ 22,33+σ33,33)+ 2b3,3 +

ν
1−ν

(b1,1+b2,2+b3,3)= 0

Δσ 23+
1

1+ν
(σ11,23+σ22,23+σ33,23) + (b2,3 + b3,2)= 0

Δσ31+
1

1+ν
(σ11,31+σ 22,31+σ33,31)+ (b3,1+ b1,3)= 0

Δσ12+
1

1+ν
(σ11,12+σ 22,12+σ33,12) + (b1,2+ b2,1)= 0
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7. ENERGY-BASED VARIATIONAL THEOREMS

In all below considerations we will account only for purely mechanical processes – we will
neglect thermal exchange between the body and its environment. In such a situation increment in
energy is only due to mechanical work performed by external forces:

dU = d L

This work is transformed into:

• E k kinetic energy accounting for motion of particles
• Φ internal energy of elasticity accounting for reversible elastic deformation of body

We can write then:
d L= d E k+ dΦ

We shall narrow our considerations to static or quasistatic processes so the kinetic energy
will be neglected. We shall introduce following energy quantities:

• Work of external forces: L =∭
V

biu idV +∬
S

qi u i d S

• Internal energy of elastic deformation: Φ = 1
2∭V

σ ijεijd V

• Total potential energu: Π=Φ−L

Remember that elastic strain energy is simultaneously an elastic potential for linear elastic
solids: W =Φ .

PRINCIPLE OF VIRTUAL DISPLACEMENTS

Let there be an elastic solid of volume V and boundary S .  The body is loaded with
external forces q at boundary S q and on the rest of the boundary, S u ,the displacements are
given  by  function g .  Let's  consider  a  set  of  kinematically  admissible  displacement  fields,
namely those satisfying kinematic boundary conditions:

X u = {ŭ: ̆u(x0) =g(x0) , x0∈Su}

Among them there is one which is the true displacement – we will denote it with ̂u . It is
the solution of problem of theory of elasticity. All other displacement fields may be written i the
form

̆u = ̂u + αυ ,
 
where υ is a certain vector field α is a scalar. Due to fact that both ̂u and ̆u must satisfy
kinematic boundary conditions at S u so υ must be equal to 0 at S u
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Let's define the virtual displacement δu , which is an increment in displacement due to
increment of α :

δu = ∂ ŭ∂α dα = υ dα

Let's assume that we know true displacement u = ̂u - we may differentiate it in order to
calculate strains ε and then stresses σ . The equilibrium equations must be satisfied by those
quantities:

σij , j+ bi = 0

Let's  maultiply  this  expression by  virtual  displacement (dot  product)  and integrate  it  over  the
whole volume of the body:

∭
V

[σ ij , jδ u i+ biδu i ]d V = 0

The  first  term  may  be  transformed  according  to  the  formula  for  derivative  of  a  product  of
functions:

∭
V

[(σij δ ui), j−σij δ ui , j + biδ ui ]dV = 0

Let's divide an integral of sum into a sum of integrals. Divergence will be applied to the first
of them and the second one will be put on the right hand side of equation:

∬
S

σ ij n jδu i d S +∭
V

biδ uid V =∭
V

σijδ u i , j dV

Surface  integral  may  be  rewritten  as  a  sum  over S u –  where υ= 0 and  as  a
consequence δu=0 – and over S q , where static boundary conditions of the form q =σ⋅n
hold:

∬
S

σ ij n jδu i d S =∬
Su

σ ij n jδu id S +∬
S q

σ ij n jδu i d S = 0+∬
S q

qiδ ui d S ,

as a result we obtain
∬
Sq

qiδ ui d S +∭
V

biδu idV =∭
V

σij δu i , jdV

Left hand side of this equation in a work of external forces on virtual displacements δL
. Considering the right hand side, due to symmetry of stress tensor, we may rewrite it as follows:

σ ij=
1
2
(σ ij+σ ji)

Dummy indices may be changed in the following way:

σij δu i , j=
1
2
(σ ijδ ui , j+σ ji δu i , j)=

1
2
(σij δu i , j+σijδ u j ,i)= σij

δ ui , j+δu j ,i
2
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Virtual strain corresponding to virtual displacement δu=0 may be defined as

δεij =
δu i , j+δ u j , i

2
,

So finally we obtain:

∬
Sq

qiδ ui d S +∭
V

biδu idV =∭
V

σ ij δεij dV ⇔ δL =δΦ

and  the  above  relation  must  hold  for  any  virtual  displacement  δu satisfying  kinematic
boundary conditions: δu=0 on S u .  This  is  a  relation which must be satisfied by any true
displacement field  – the solution we are looking form. It  is  then a necessary  condition for  a
displacement to be a true one. It may be shown that it is also a sufficient condition. Let's assume
that  there  is  a  displacement  field  that  satisfy  the  kinematic  boundary  conditions,  but  not
necessarily guarantees satisfying the equilibrium equations. Let's start with the final result:

∬
Sq

qiδ ui d S +∭
V

biδu idV =∭
V

σij δu i , jdV

An integral on the right hand side may be transformed according to the formula for derivative of
product of functions and then divergence theorem may be applied:

∬
Sq

qiδ ui d S +∭
V

biδu idV =∭
V

(σijδ ui) j−σ ij , jδ u id V

∬
Sq

qiδ ui d S +∭
V

biδu idV =∭
S

σij n jδ ui d V−∭
V

σij , jδ ui d V

Since u∈X u , then δu=0 on S u and surface integral over S u is zero:

∬
Sq

(q i−σ ijn j)δ uid S +∭
V

(σ ij , j+ bi)δ u i dV = 0

Virtual  displacement may be of any form. If we assume that  założymy, że δu takes on S q
values differen than 0, then the above equation will hold (what we assume to be true) for any
δu if and only if both integrands are equal to 0, what is equivalent to satisfying:

• equilibrium equations: σij , j+b i= 0
• static boundary condition: σ ij n j = qi

We  can  see  that  is  the  assumption  of  the  equality δL= δΦ for  a  certain  kinematically
admissible  displacement  leads  strain  and  stress  distribution  which  satisfy  also  equilibrium
equations as well as static boundary conditions – this means that it is a solution to the problem of
theory of elasticity.
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To sum it up:

PRINCIPLE OF VIRTUAL DISPLACEMENTS

A  necessary  and  sufficient  condition  for  a kinematically  admissible
diesplacement field  to be a true displacement field  is that  a work of external
forces  on virtual  displacement  was  equal  work  of  internal  forces  on virtual
strains for any virtual displacement and corresponding virtual strain:

∬
Sq

qiδ uid S +∭
V

biδu i dV =∭
V

σij δεij dV ∀δu

δ L=δΦ

It is important to note that this principle is independent of the form of constitutive relations. It is
only assumed that strains and displacements are small.

FINITE ELEMENT METHOD

The above result is the basis for the most commonly used numerical method for solving
problems of elasticity, namely the finite element method. Let's assume that displacement field is
approximated as a linear combinations of a finite number of some functions ϕiK (x) ,  termed
shape functions:

u i(x) =∑
k=1

n

αikϕik (x) i=1,2 ,3

in matrix form:

[u1u2u3]= [
ϕ11 ⋯ ϕ1n 0 ⋯ 0 0 ⋯ 0
0 ⋯ 0 ϕ21 ⋯ ϕ2n 0 ⋯ 0
0 ⋯ 0 0 ⋯ 0 ϕ31 ⋯ ϕ3n]⏟

N iK

[d 11d 12⋮d 3n]⏟
d K

ui =∑
A=1

3n

N iA d A , i=1,2 ,3

 

Let's determine stress and strain distribution according to that approximation

• true strains: εij=
1
2
(u i , j+u j ,i)=

1
2
∑
A=1

3N

(N iA , j+N jA ,i)d A

• true stresses: σ ij= Sijpqε pq==
1
2
Sijpq∑

A=1

3 N

(N pA , q+N qA , p)d A

• virtual displacement: δ ui =∑
B=1

3 N

N iBδ d B

• virtual strain: δεij =
1
2
(δ ui , j+δ u j ,i)=

1
2
∑
B=1

3N

(N iB , j+N jB , i)δ d B
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Principle of virtual displacements:

∬
Sq

qiδ ui d S +∭
V

biδu idV =∭
V

σij δεij dV

∬
Sq
[qi∑

B=1

3N

N iB δd B]d S +∭
V
[bi∑

B=1

3N

N iBδd B]dV =
=∭

V

1
2
Sijpq∑

A=1

3N

(N pA ,q+N A, p)d A⋅
1
2
∑
B=1

3N

(N iB , j+N jB ,i)δ d Bd V

 

∑
B=1

3 N

[(∬S q qi N iB d S +∭
V

b i N iB d V)δd B]=
=∑

A=1

3N

∑
B=1

3N

[(∭V 1
2
Sijpq(N pA ,q+N qA , p)(N iB , j+N jB ,i)dV )d Aδ d B]

Let's denote:

• load vector:

f B =∑
B=1

3N

[(∬S q qi N iBd S +∭
V

bi N iB dV )]
• stiffness matrix:

K BA=∑
B=1

3 N

[(∭V 1
2
Sijpq (N pA , q+N qA , p) (N iB , j+N jB ,i)d V)]

The principle may be written as:

∑
A=1

3N

K BA⋅d A⋅δd B = f B⋅δd B ∀δ d B

As it must hold for any δ qB , then:

∑
A=1

3N

K BA⋅d A= f B B = 1, ... ,3N

in matrix form:
K⋅d= f

where:
K – stiffness matrix
d – displacement vector
f – load vector

Whis means that we have to solve a system of linear algebraic equations for q A , with
coefficients K BA and right hand sides f B to obtain an approximate solution to the problem of
theory of elasticity.
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LAGRANGE THEOREM

Let's introduce a quatity temrs total potential energy:

Π= Φ−L = 1
2∭V

σij εij dV − [∭V b i ui d V+∬
S

q iuid S ]
It  may be considered a  functional  (a  function  in  which  a  variable  argument  in  a  function)  of
displacement field:

J [u]=∭
V

1
8
Sijkl (uk ,l+u l , k)(ui , j+u j , i)d V − [∭V b iuidV+∬

S

qiu id S ]
We will call it Lagrange functional. Its first variation may be calculated as follows:

δ J = d
dα

J [u+αδu]∣
α=0
=

=
d
dα

1
2∭V

1
4
Sijkl [(uk+αδ uk),l+(ul+αδ ul), k ][(ui+αδu i), j+(u j+αδu j), i ]d V∣α=0 −

− d
dα [∭V bi(ui+αδu i)d V+∬

S

q i(u i+αδ ui)d S ]∣α=0=

=
d
dα

1
2∭V

1
4
Sijkl [(uk , l+ul , k )+ α(δuk ,l+δ u l , k )][(ui , j+u j , i)+ α(δu i , j+δ u j , i)]dV ∣α=0−

− d
dα [∭V (b i ui+αbiδu i)d V+∬S (qi u i+α qiδu i)d S ]∣α=0 =

=
d
dα

1
2∭V

Sijkl [εkl +αδεkl ] [εij+αδεij ]dV ∣α=0− [∭V biδu i dV+∬
S

qiδ ui d S ]=

=
d
dα

1
2∭V

S ijkl [εklεij+α (δεklεij+εkl δεij )+α2δεklδεij ]d V∣α=0−[∭V biδ ui dV+∬
S

qiδ ui d S ]=

=1
2∭V

Sijkl (δ εklεij+εkl δεij )dV−[∭V b iδ u i dV+∬
S

qiδu i d S ]
Due to symmetry of stiffness tensor:

δ J =∭
V

Sijkl εklδεij dV−[∭V biδu idV+∬
S

qiδ uid S ]=
=∭

V

σijδ εij dV−[∭V biδ uid V+∬
S

q iδ u i d S ]
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According to the principle of virtual displacements this expression is equal for any δ ui ,
so the first variation of Lagrange functional has a stationary point there and it may take extremal
value, the largest or the smallest, depending on the value of the second variation:

δ2 J = d2

dα2
J [u+αδu ]∣

α=0

=∭
V

Sijkl δεij δεkldV

Since stiffness  tensor  in  a  positive  definite  tensor  (strain  energy  must  be positive)then
δ2 J>0 , so Lagrange functional has a minimal value. It may be concluded that:

LAGRANGE THEOREM

Among all  kinematically admissible displacement fields in a linear elastic solid,
the true one is the only one for which total potential energy is minimal.

It means that providing a minimum value for potential energy is equivalent to satisfying
equilibrium equations  and static  boundary conditions.  Lagrange theorem hold  only  for  linear
elastic solids (Hooke's material).

Similarly to the above considerations further theorems may be proved:

PRINCIPLE OF VIRTUAL STRESSES

A necessary and sufficient condition for a statically admissible stress field to be
a true stress distribution is that a work of virtual loads on true displacements is
equal  to  work  of  virtual  stresses  on  true  strains  for  any  virtual  stress  and
corresponding virtual load:

∬
S

δq iui d S =∭
V

δσijεijd V ∀δσ

CASTIGLIANO THEOREM

Among all statically admissible stress fields in an linear elastic solid, the true one
is the only one for which total complementary energy (Castigliano functional),
defined as

Ψ = 1
2∭V

σ ijεijd V −∬
S

qi ui d S ,

is minimal.
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BETTI-MAXWELL RECIPROCAL WORK THEOREM

Let's consider an elastic body of volume V and boundary S . Let it be supported on the
part of boundary denoted with S u . Let's consider two systems of external load:
• system 1: q i

(1) , bi
(1)

• system 2: q i
(2) , b i

(2)

Each system yields a different solution: u i
(1) , εij

(1) , σij
(1) and u i

(2) , εij
(2) , σij

(2) .  Let's write down
the equilibrium equations for both cases:

σ ij , j
(1) +b i

(1)= 0
σij , j
(2)+b i

(2)= 0

Let's calculate a dot product of both above expressions with displacements of the other system,
and integrate it over the whole body:

∭
V

σ ij , j
(1 ) u i

(2)+ bi
(1)ui

(2)dV = 0

∭
V

σij , j
(2) u i

(1)+ bi
(2)ui

(1 )d V = 0

Both  expressions  are  equal  to  0  since  equilibrium  equations  hold  true.  Let's  equate  both
expressions and transform according to the formula for derivative of a product of functions:

∭
V

σ ij , j
(1 ) u i

(2) + bi
(1)ui

(2)dV =∭
V

σij , j
(2) u i

(1)+ bi
(2)ui

(1 )d V  

∭
V

(σij
(1)ui

(2)), j−σij
(1)ui , j

(2) + b i
(1)ui

(2)dV =∭
V

(σij
(2 )ui

(1)), j−σ ij
(2)u i , j

(1) + bi
(2)ui

(1)d V

Making the use of symmetry of stress tensor and divergence theorem we may write:

∬
S

σ ij
(1)n jui

(2)d S −∭
V

σij
(1) ui , j

(2)+u j , i
(2)

2
d V +∭

V

bi
(1 )u i

(2)d V =

∬
S

σ ij
(2 )n ju i

(1)d S −∭
V

σ ij
(2) u i , j

(1)+u j ,i
(1 )

2
dV +∭

V

b i
(2)u i

(1)dV

Since stress fields σij
(1) , σ ij

(2 ) Are the solutions of the problem, then they must satisfy the
static boundary conditions. Similarly, since u i

(1) , u i
(2 ) are the true solutions, they must satisfy the

geometric relations. We may write:

∬
S

qi
(1)ui

(2)d S −∭
V

σ ij
(1)εij

(2)dV +∭
V

b i
(1)ui

(2)dV =

∬
S

q i
(2)u i

(1)d S −∭
V

σ ij
(2)εij

(1)dV +∭
V

b i
(2)u i

(1)d V
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It may be written in a different form:

∬
S

qi
(1)ui

(2)d S +∭
V

bi
(1)ui

(2)dV+Θ=∬
S

qi
(2)u i

(1)d S +∭
V

bi
(2)ui

(1)dV

where:
Θ=∭

V

(σij
(2)εij

(1 )−σij
(1)εij

(2))d V =∭
V

Sijkl (εkl
(2)εij

(1)−εkl
(1)εij

(2))dV

Since Sijkl= Sklij , then Θ= 0 . So we may write:

BETTI-MAXWELL RECIPROCAL WORK THEOREM

If  a given linear elastic solid is  a subject to two different systems of external
loads, then work of the first system of loads on displacements caused by the
second system is equal to work of the second system of loads on displacements
caused by the first system:

∬
S

qi
(1)ui

(2)d S +∭
V

bi
(1)ui

(2)dV =∬
S

qi
(2)ui

(1)d S +∭
V

bi
(2)ui

(1)dV
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FLAMANT PROBLEM

The Flamant problem (or the problem of an elastic
wedge) in the linear theory of elasticity is stated as follows:
find the stress state, strain state and displacement field in
an infinite wedge of unit thickness, made of weightless (no
body forces), homogeneous, isotropic linear elastic material
(Hooke's material), loaded at its tip with a point force. Let's
assume that the plane of the wedge is (x1 ; x2) , and the
origin of the coordinate system is at the wedge's tip. Point
force is P=[P1 ; P2] kN /m . The most convenient way
of solving this problem is to use the polar coordinates: 

          {r= √ x1
2+x 2

2

ϕ= arctg
x2

x1

⇔ {x1 = r cos ϕ
x2 = r sin ϕ

Governing equations are as follows

Equations of motion:

σrr ,r +
1
r
σ rϕ ,ϕ +

σrr−σϕϕ

r
= 0

σr ϕ ,r +
1
r
σ ϕϕ ,ϕ + 2

r
σrϕ = 0

Geometric relations:
εrr = ur , r

εϕϕ = 1
r
uϕ ,ϕ +

ur
r

εr ϕ = 1
2(uϕ ,r−

uϕ

r
+1
r
ur ,ϕ)

Physical relations:
σrr =(2G+λ)εrr + λεϕϕ

σϕϕ =(2G+λ)εϕϕ + λεrr
σr ϕ = 2G εrϕ

Static boundary conditions:

• σϕϕ(r ,α) = 0 – no normal load at bottom boundary of the wedge
• σr ϕ(r ,α) = 0 – no tangential load at bottom boundary of the wedge
• σϕϕ(r ,β)= 0 – no normal load at top boundary of the wedge
• σr ϕ(r ,β)= 0 – no tangential load at top boundary of the wedge
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We may notice that all boundary conditions are satisfied if

σϕϕ≡0 and σr ϕ≡0

Assuming that the above relations are true, equilibrium equations take form:

σrr ,r +
σ rr

r
= 0

The solution to the above equation is as follows:

σrr(r ;ϕ) =
C (ϕ)
r

where C (ϕ) is an unknown function. The stress state described as above satisfy the equilibrium
equations and boundary conditions. If it also satisfies the compatibility equations (so that the strai
corresponding  to  this  stress  state  can be integrated to  obtain  displacement field)  it  will  be  a
solution to the problem. Strain compatibility equations expressed in terms of stress components
may be expressed as follows:

Δ(σ11+σ22) = 0

Expressing it in the polar coordinates and making use of the assumptions on the form of stress
state, the condition takes form:

Δσ rr = 0

This is the Laplace (harmonic) equation, which in polar coordinates has the following form:

σrr ,rr +
1
r
σ rr , r +

1

r2
σ rr ,ϕϕ = 0

Substituting the assumed form of σrr gives us

2
r3 C − 1

r3 C + 1
r 3

d2C
dϕ2 = 0 ,

what is equivalent to:
d2C
d ϕ2 + C = 0

This is an ordinary differential equation for C (ϕ) . Its solution is:

C (ϕ) = C1 cosϕ + C2 sinϕ .
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Finally the distribution of radial normal stress is given by the following function:

σrr(r ;ϕ) =
C1

r
cos ϕ+

C2

r
sin ϕ

Constants  of  integration C1 ,C2 will  be  found
according to the applied load. Let us consider an equilibrium
of a separated part of the wedge – it is loaded at the tip with
a point force, and at the imaginary circular edge of cut with a
system of radial stresses. Those stresses may we expressed
with  the  well-known  relation  between  stress  tensor  and
stress vector

σ ij ν j = pi

Let's assume that the external unit normal is aligned with the
radial direction:

p(r ;ϕ) =σrr (r ;ϕ)⋅ν (ϕ) .

The stress vector may be expressed in the Cartesian coordinate as follows:

p = [σrr cos ϕ ; σ rrsin ϕ]

We shall now assume that this separated part is in equilibrium so the vector sum of all applied
loads must be equal 0:

S 1 = P1 +∫
K

p1d s = P1 + ∫
ϕ=α

β

σ rr cosϕr dϕ = P1 +∫
α

β

r cos ϕ[C1

r
cos ϕd ϕ+

C2

r
sinϕ]dϕ =

     = P1 + C 1∫
α

β

cos2 ϕd ϕ+ C2∫
α

β

sin ϕcosϕd ϕ =

     = P1 +
C1

4
[2(β−α)+ (sin 2β−sin 2α )] + C 2

4
[cos 2α−cos 2β ] =0

S 2 = P2 +∫
K

p2d s = P2 + ∫
ϕ=α

β

σrr sinϕr d ϕ = P2 +∫
α

β

r sin ϕ[C1

r
cosϕ dϕ +

C2

r
sin ϕ]d ϕ =

     = P2 + C1∫
α

β

cos ϕsinϕd ϕ +C 2∫
α

β

sin2 ϕd ϕ =

     = P2 +
C1

4
[cos 2α−cos 2β ] +

C 2

4
[2(β−α) + (sin 2α−sin 2β)] =0

This gives us a system of two equations for constants C1 ,C 2 .
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The solution is as follows:

C1 =
2 P1 [sin 2β−sin 2α−2(β−α)] + 2 P2 [cos 2α−cos2β]

cos (2β−2α)+2(β−α)2 − 1

C2 =
2 P1 [cos2β−cos 2α ] + 2 P2 [sin 2α−sin 2β− 2(β−α)]

cos(2β−2α)+2(β−α)2 − 1

HALF-PLANE LOADED WITH POINT FORCE

If  we  take α=0 , β =π ,  then  the  wedge  is
transformed  into  a  haelf-plane  loaded  with  point  force
P=[P1 ; P2] . The solution is as follows:

C1 =−
2 P1
π , C2 =−

2 P2
π

σrr(r ,ϕ) =− 2
π r [P1cos ϕ + P2 sinϕ]

Maxing the use of relations

cos ϕ=
x1

r
=

x1

√ x1
2+ x2

2
, sinϕ =

x2

r
=

x2

√ x1
2+ x2

2

we  can  express  the  stress in  cartesian  coordinate  system  according  to  the  transformation
formulae:

σ11 =σ rr cos2ϕ = = −
2 x1

2

π( x1
2+x 2

2)2 [P1 x1 + P2 x2 ]  

σ22 = σrr sin2ϕ = = −
2 x 2

2

π( x1
2+x2

2)2 [P1 x1 + P2 x2 ]

σ12 =σ rrsin ϕcosϕ = = −
2 x1 x 2

π(x1
2+ x2

2)2 [P1 x1 + P2 x2 ]

The strain is determined with the use of constitutive relations:

ε11 =−
2(P1 x1+P2 x2)
π Ê (x1

2+ x2
2)2 [(1+ ̂ν) x1

2 − ̂ν( x1
2+ x2

2)]

ε22 =−
2(P1 x1+P2 x2)
π Ê (x1

2+x2
2)2 [(1+ν̂) x2

2 − ν̂(x1
2+ x2

2)]

ε12 =−
2(1+ ̂ν) x1 x2(P1 x1+P2 x2)

π Ê ( x1
2+x2

2)2

© 2019, Paweł Szeptyński CC-BY-NC-SA 4.0 International 98

x
1

x
2

P
2

P
1



THEORY OF ELASTICITY – Lecture notes.

where Ê , ν̂ are generalized elastic constants:

{Ê = E ⇔ Plane stress

Ê = E
1−ν2 ⇔ Plane strain

and {ν̂ = ν ⇔ Plane stress
ν̂ = ν

1−ν
⇔ Plane strain

Displacement can be determined by integration of strain:

u1 =∫ε11 d x1 + D1(x 2)=

=−
[(( x1

2+ x2
2) ln( x1

2+x2
2)+(1+ν̂) x2

2)P1−((1+ν̂) x1 x2−(1−ν̂)(x1
2+ x2

2)arctg
x1

x2
)P2]

π Ê (x1
2+ x2

2)
+D1( x2)  

u2 =∫ε22d x2 + D2( x1)=

=−
[(( x1

2+ x2
2) ln( x1

2+x2
2)+(1+ν̂) x1

2)P2−((1+ν̂) x1 x2−(1−ν̂)(x1
2+x2

2)arctg
x2

x1
)P1]

π Ê (x1
2+ x2

2)
+D2( x1)  

Functions D1 ,D 2 is  a general  solution of  homogeneous system of  geometric  relations
and it describe the motion of the whole half-plane as a rigid body:

D1(x2)= R x2 +U 1

D2( x1)=−R x1 + U 2

R , U 1 , U 2=const.
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HALF-PLANE LOADED WITH NORMAL FORCE

The above solution is of particular importance in case
when P1 = 0 ,  namely  when  half-plane  is  loaded  with  a
single normal force:

u1 =
P2

π Ê [(1+ ̂ν)
x1 x2

x1
2+x2

2−(1−ν̂)arctg
x1

x2 ]+R x2+U 1

u2 =−
P2

π Ê [ln (x1
2+ x2

2)+(1+ν̂)
x1

2

x1
2+x2

2 ]−R x1+U 2

σ11 = −
2 P2 x2 x1

2

π( x1
2+x2

2)2  , σ22 = −
2 P2 x2

3

π( x1
2+ x2

2)2 , σ12 = −
2 P2 x1 x2

2

π( x1
2+x2

2)2

We can see that in the point of application of a force there is a singularity, namely u2 and
σ22 (along the direction of load) tend to infinity. The above solution may be used as a Green

function (unit impulse function) to be integrated in order to obtain the solution to a problem of a
half-plane  loaded  with  a  continuously  distributed  load.  Such  an  integrated  solution  has  finite
values of u2 and σ22 . 

      Vertical displacement u2              Normal stress σ22
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However  –  unlike  in  case  of  integrals  of  singular
solutions  in  3D  –  independently  of  the  choice  of
constants of integration the displacement of infinitely
distant point is still infinite. For x1→±∞ :

lim
x1→±∞

u2 =−∞

It  may  be  explained  in  such  a  way,  that  the
Flamant problem considered a plane problem is in fact
a spatial  problem with infinitely large load (infinitely
long  linear  load)  –  what  results  in  infinite
displacement.  Another feature of the discussed solution is the so called  pressure bulb.  Let  us
consider the radial stress

σrr(r ,ϕ) =−
2 P2

π r
sinϕ  

along a curve given by:
r = 2 Rsin ϕ where R=const.

It  is  simply  a  circle  of  radius R which  is  tangent  to  the  edge  of  half-plane  in  the  point  of
application  of  load.  It  can  be  easily   noticed  that  the  radial  stress  is  constant  along  the
circumference of such a circle (yet, orientation of this stress varies):

σrr(r ,ϕ) =−
P2

πR
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HALF-PLANE LOADED WITH A UNIFORM LOAD

Flamant solution may be used as a Green function to obtain solution of more complex
problems. As the considered theory is linear, the principle of superposition is valid – this means
that a sum of causes results in a sum of respective results. In particular, an infinite sum may be
considered an integral. The problem of a half-plane loaded with a continuous system of uniform
load q distributed at interval x1∈〈−L ; L〉 may be solved by integrating the Flamant solution:

Vertical displacement:

u2 =− q
π Ê ∫−L

L [ln [(x1−ξ)2+ x2
2]+

( ̂ν+1)( x1−ξ)2

[(x1−ξ)2+ x2
2] ]d ξ =

= q L
π Ê {[ x1

L
ln∣(x1−L)

2+x2
2

(x1+L)
2+x2

2∣]− ln∣[(x1−L)
2+x2

2][( x1+L)
2+ x2

2]∣+ ...

... +(1−ν̂)[ x2

L (arctg
x1−L
x2

−arctg
x1+L
x2

)+2]}
Normal stress:

σ22 = −2q
π ∫

−L

L x2
3

((x1−ξ)2+x2
2)2 d ξ =

=−qπ [ ( x1+L) x2

(x1+L)
2+x2

2
−

(x1−L)x2

(x1−L)
2+ x2

2
+ arctg

x1+L
x2

− arctg
x1−L
x2 ]  

    Vertical displacement u2              Normal stress σ22
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7.1 KELVIN PROBLEM

The Kelvina problem in the linear theory of elasticity may be
stated as follows: find the stress state, strain state and displacement
field  in  a  homogeneous,  isotropic  linear  elastic  (Hooke's  material)
space loaded with a single point force. Let's assume that this force is
equal P and  the  material  is  characterized  by  elastic  constants
λ ,G . As the space is considered infinite, no surface tractions are

taken  into  account.  We  assume  that  influence  of  the  force  on
infinitely distant point is negligibly small. This solution is sometimes
referred  to  as  the  fundamental  solution  of  the  linear  theory  of
elasticity. As the theory is linear, the principle of superposition holds
true, so the result of sum of causes is the sum of results of each of
the cuses determined separately:

f (α1⋅P1 +α2⋅P2+ ... +αN Pn) = α1 f (P1)+ α2 f (P2)+ ... +αN f (PN )  

In  particular,  we  may consider  an  infinite  sum which  under  certain  conditions  may be
calculated as a certain integral:

lim
N →∞
Δ x i→0

f (∑
i=1

N

q (x i
0)⋅Δ x i) = lim

N →∞
Δ si→0

∑
i=1

N

q( xi
0)⋅ f (1(x i0))⋅Δ xi = ∫ q( x) f (x )d x

The solution due to an infinitely small impulse is called a Green function. Such an infinitely
small impulse component of load is a point force. As it is described by a Dirac distribution, its
„finite value” should be considered only in distributional sense:

∭P δx0
d x = P∭δx0

d x= P .
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The Kelvin problem may be posed as follows (assuming that the force is applied in the origin of a
Cartesian coordinate system):

• governing equation: G∇2ui + (λ+G)uk ,ik + bi = 0

• body force: b =[0 ;0 ; P δ0]

• kinematic boundary conditions: lim
R→∞

ui = 0, i=1,2,3

lim
R→∞

ui , j = 0, i , j=1,2,3 ,

where R= √ x12+ x22+ x32

The problem will be solved with the use of the Fourier integral transform. In case of one-
dimensional function f (x ) the transform is defined as follows:

ℱ { f ( x)}(ω)= ̂f (ω) =∫
−∞

∞

f (x )e−iω x d x ,

where i is an imaginary unit. Function ̂f (ω) of variable ω is called  transform of function
f (x ) ,  while f (x ) is  called  original  of  function ̂f (ω) .  Inverse  transform  is  defined  as

follows:

ℱ −1 { ̂f (ω)}(x )= f ( x) = 1
2π∫−∞

∞
̂f (ω)e iωx d x

It  is  the matter  of  chosen convention  if  „-”  sign in  the exponent  accounted for  in  the
definition of the transform or its inverse. It is also up to our choice how a scaling factor (2π)−1 is
„distributed” between those definitions.  The definition of  three-dimensional  Fourier  transform
that we will use is as follows:

ℱ {ui }= ̂ui = ∫
ω1=−∞

∞ [ ∫ω2=−∞
∞

[ ∫ω3=−∞
∞

ui e
−iω3 x3d x3]e−iω2 x2d x2]e−iω1x1d x1 =

=∭
−∞

∞

u i e
−i (x1ω1+ x2ω 2+x3ω3)d x1d x2d x3

and its inverse is:

u i= ℱ
−1{û i}=

1

(2π)3
∭
−∞

∞

̂ui e
i (x1ω1+x2ω2+ x3ω3)dω1dω2dω3
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Integral operator ℱ is linear one, so

ℱ {α1u1+α2u2} = α1ℱ {u1} + α2ℱ {u2}

and it may be applied to each term of displacement equations separately, putting the constants
outside brackets:

ℱ {G∇2u i+ (λ+G)uk , ik + b i}= Gℱ {∇
2ui} + (λ+G)ℱ {uk ,ik } + ℱ {bi}

Let's find transforms of body force components. Transform of a zero function is 0, while transform
of Dirac distribution can be calculated in such a way:

ℱ {b3}=ℱ {P δ0}= P∭
−∞

∞

δ0 e
−i(x1ω1+ x2ω2+ x3ω3 )d x1d x 2d x3= P e

−i( x1ω 1+x2ω2+ x3ω3)∣x=0 = P  

Let's  find  the  transform  of  the  second  derivatives  of  displacement.  Let's  start  with
derivative with respect to x1 , x2 :

ℱ {u i ,12}=∭
−∞

∞ ∂2u i
∂ x1∂ x2

e−i( x1ω1+ x2ω2+ x3ω 3)d x1d x2d x3

Let's integrate it by parts with respect to x1 :

ℱ {u i ,12}=∭
−∞

∞ ∂ ui
∂ x1∂ x2

e−i( x1ω1+ x2ω2+ x3ω 3)d x1d x2d x3=

=∬
−∞

∞ [[∂u i∂ x2
e
−i (x1ω1+x2ω2+x3ω3)]x1=−∞

∞

− ∫
x1=−∞

∞ ∂ u i
∂ x2

∂
∂ x1

e
−i (x1ω1+ x2ω 2+x3ω3)d x1]d x2d x3

In the first expression we shall notice that according to the Euler formula

e iϕ= cos ϕ+ i sin ϕ , where ϕ =−( x1ω1+ x2ω2 + x3ω3) .

Due to fact that trigonometric function may take values from interval 〈−1 ;1〉 , function
e iϕ is  bounded so it  has finite value also for ϕ→±∞ .  Simultaneously we've assumed that
lim
R→∞

ui =0 and lim
R→∞

ui , j = 0 , so a product of a finite-valued function and a function tending

to 0 will also tend to 0 for ϕ→±∞ . Let's perform the differentiation

ℱ {u i ,12}=∬
−∞

∞ [−(−iω1) ∫x1=−∞
∞ ∂ ui
∂ x 2

e−i( x1ω1+ x2ω2+ x3ω3 )d x1]d x2d x3=
= iω1∭

−∞

∞ ∂ ui
∂ x2

e−i( x1ω1+ x2ω2+ x3ω3 )d x1d x2d x3

and integrate by parts with respect to x2 as previously:
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ℱ {u i ,12}= iω1∬
−∞

∞

[[ui e−i (x1ω1+ x2ω 2+x3ω3)]x2=−∞
∞

− ∫
x2=−∞

∞

ui
∂
∂ x2

e−i( x1ω1+ x2ω2+ x3ω3 )d x2]d x1d x3=
=( iω1)(iω2)∭

−∞

∞

u i e
−i (x1ω1+ x2ω 2+x3ω3)d x1d x2d x3= i

2ω1ω2 ̂ui =−ω1ω2 ̂u i

We've  made  the  use  of  definition  of  the  Fourier  transform.  It  emerges  that  transform  of  a
derivative may be expressed by the transform of the function itself, multiplied by a certain factor,
e.g.:

ℱ {u1,11}=(−iω1)
2 ̂u1 =−ω1

2 ̂u1
ℱ {∇2u2}=ℱ {u2,11+u2,22+u2,33}= −(ω1

2+ω2
2+ω3

2) ̂u2

Displacement equations:

{G (u1,11+u1,22+u1,33)+ (λ+G)(u1,11+u2,21+u3,31)= 0G (u2,11+u2,22+u2,33)+ (λ+G)(u1,12+u2,22+u3,32) = 0
G (u3,11+u3,22+u3,33) + (λ+G)(u1,13+u2,23+u3,33)+ Pδ0= 0

are expressed in the space of transforms in the form of a linear system of algebraic equations: 

{−G(ω1
2+ω2

2+ω3
2) ̂u1−ω1(λ+G)(ω1 ̂u1+ω2 ̂u2 +ω3 ̂u3)= 0

−G(ω1
2+ω2

2+ω3
2) ̂u2− ω2(λ+G)(ω1 ̂u1+ω2 ̂u2+ ω3 ̂u3)= 0

−G(ω1
2+ω2

2+ω3
2) ̂u3−ω3(λ+G)(ω1 ̂u1+ω2 ̂u2+ω3 ̂u3) =−P

In matrix form:

[G (ω1
2+ω2

2+ω3
2) + (λ+G)ω1

2 (λ+G)ω1ω2 (λ+G)ω3ω1
(λ+G )ω1ω2 G(ω1

2+ω2
2+ω3

2) + (λ+G )ω2
2 (λ+G)ω2ω3

(λ+G )ω3ω1 (λ+G)ω 2ω3 G (ω1
2+ω2

2+ω3
2) + (λ+G )ω3

2][ ̂u 1̂u 2̂u 3]=[ 00P]
It is important conclusion – instead of solving a system of differential equation, we have to

solve a system of algebraic equations. What's more – it is a linear system, so the solution can be
found easily:

û1=−
P (λ+G )
G (λ+2G)

ω1ω3
(ω1

2+ω2
2+ω3

2)2

û2=−
P(λ+G)
G(λ+2G)

ω2ω3
(ω1

2+ω2
2+ω3

2)2

û3=
P
G

1

ω1
2+ω2

2+ω3
2 −

P(λ+G)
G (λ+2G)

ω3
2

(ω1
2+ω2

2+ω3
2)2
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We have to find only two originals now:

f 1=ℱ
−1{ 1

ω1
2+ω2

2+ω3
2}= ? oraz f 2= ℱ

−1{ 1

(ω1
2+ω2

2+ω3
2)2}= ?

If f 2 is found, then other required originals can be found as derivatives of this one:

f 2,13=ℱ
−1{− ω1ω3

(ω1
2+ω2

2+ω3
2)2}, f 2,23 =ℱ −1{− ω2ω3

(ω1
2+ω2

2+ω3
2)2 }, f 2,33 =ℱ −1{− ω3

2

(ω1
2+ω2

2+ω3
2)2} .

We have to calculate following integrals:

f 1=
1

(2π)3
∭
−∞

∞ e i(ω1x1+ω2 x2+ω3 x3 )

ω1
2+ω2

2+ω3
2 dω1dω2dω3

f 2=
1

(2π)3
∭
−∞

∞ e i(ω1 x1+ω 2x2+ω3 x3 )

(ω1
2+ω2

2+ω3
2)2
dω1dω2dω3

It is not an elementary task. Fortunately, we may make use of ready charts involving originals and
transforms of certain functions:

ℱ { 1

√x12+x22+ x32}= 4 π
1

ω1
2+ω2

2+ω3
2 ⇒ f 1=

1
4π

1

√ x12+x 22+x32

ℱ {√ x12+ x22+ x32}=−8π 1

(ω1
2+ω2

2+ω3
2)2

⇒ f 2=−
1
8π √ x1

2+x2
2+x3

2

So:

     u1=
P (λ+G)
G(λ+2G)

f 2,13 , u2=
P(λ+G)
G(λ+2G)

f 2,23 , u3=
P
G
f 1 +

P (λ+G)
G (λ+2G)

f 2,33

Performing proper differentiations we can write down the fundamental solution:

u1=
P (λ+G)

8πG(λ+2G)
x1 x3

[x12+x22+ x32]
3/2

u2=
P (λ+G)

8πG (λ+2G)
x2 x3

[ x12+x22+x32]
3 /2

u3=
P
4 πG

1

√ x12+ x22+x32
+

P (λ+G)
8πG(λ+2G)

x3
2

[ x12+ x22+x32]
3 /2
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We may now consider a system of fundamental solutions corresponding to three cases of a
unit point force parallel to the one of the axes of coordinate system a applied to the same point
ξ  (not necessarily the origin of coordinate system):

u i
(k )=

1
4πG [ 1

[(xn−ξn)(xn−ξn)]
1 /2 δik +

1
4(1−ν)

(x i−ξi)( xk−ξk )

[(x n−ξn)(xn−ξn)]
3 /2 ]

εij
(k)=−

1
16πG(1−ν)[ (3−4ν)2

( x j−ξ j)δik+(x i−ξi)δ jk

[( xn−ξn)(xn−ξn)]3 /2
−

−
( xk−ξk )δij

[( xn−ξn)(xn−ξn)]
3 /2 +

3(xi−ξi)(x j−ξ j)(xk−ξk )

[( xn−ξn)(x n−ξn)]
5 /2 ]

σ ij
(k)=

ν(4 ν−3)
8π(1−ν)(1−2ν)

xk

[(xn−ξn)( xn−ξn)]
3/ 2 −

− 1
8π(1−ν)[ (3−4 ν)2

(x j−ξ j)δik+( x i−ξi)δ jk

[(xn−ξn)( xn−ξn)]
3/2 −

−
(xk−ξk )δij

[(xn−ξn)( xn−ξn)]
3/2 +

3( xi−ξi)( x j−ξ j)( xk−ξk )

[(xn−ξn)( xn−ξn)]
5/2 ]

Such a system of solution may be used as a Green function to be integrated in order to
obtain solutions of more complex problems. A characteristic feature of such unit impulse solution
is that in the point of application of the point force there is a singularity – stresses, strains and
displacement diverge to infinity. It has no physical meaning, as in fact all load are not point forces
but distributed one, however sometimes highly concentrated, and it emerges that an integral of
such a singular Green function is no longer singular.
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Displacement u3
(3) Stress σ33

(3)
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LAMÉ PROBLEM

The Lamé problem in linear theory of elasticity
stated as follows: find the stress state, strain state and
displacement  field  in  a  plane  circular  membrane  of
radius R2 with a central opening of radius R1 . The
membrane is weightless (no body forces), made of a
homogeneous  isotropic  linear  elastic  material
(Hooke's material) and it is loaded with a normal load
q1  on external boundary and with  a normal load
q2 on internal boundary. Let's assume that it lies in

plane (x1 ; x2) and  the  origin  of  the  coordinate
system  is  in  the  center  of  the  opening.  The  most
convenient way of solving the problem is to use the
polar  coordinates  and  to  make  use  of  the  axial
symmetry  as  we  can  notice  that  all  unknown
quantities do not vary with the change of angle ϕ
and  furthermore  geometry  and  character  of  load
indicate  that  also  displacement uϕ≡0 .  Governing
equations are as follows:

Equations of motion: σrr ,r +
σ rr−σϕϕ

r
= 0

Geometric relations: εrr = ur , r

εϕϕ =
ur
r

εr ϕ = 0

Physical relations: σrr =(2G+λ)εrr+ λεϕϕ
σϕϕ =(2G+λ)εϕϕ + λεrr
σr ϕ = 0

Statical boundary conditions::

• Internal boundary: σrr(R1)= q1
• External boundary: σrr(R2) = q2

Due to axial symmetry we may make the use of displacement equations which for axial
symmetric problems in polar coordinates take form:

ur ,rr +
ur ,r
r

−
ur
r 2

= 0

This is so called Euler differential equation and its general solution is known to be of the following
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form:

ur(r )= C1 r +
C 2

r
Strain and stress state may be thus found:

εrr (r )= C1 −
C 2
r 2

, εϕϕ = C1+
C2
r2

σrr(r )= 2C 1(G+λ) −
2C2G

r 2
, σϕϕ(r )= 2C 1(G+λ) +

2C2G

r 2

Constants of integration are found with the use of boundary conditions:

{σrr(R1)= 2C 1(G+λ) −
2C2G

R1
2 = q1

σ rr(R2)= 2C 1(G+λ) −
2C2G

R2
2 = q2

⇒ {C1 = q2 R2
2−q1 R1

2

(2G+λ)(R2
2−R1

2)

C 2=
R1
2 R2

2(q2−q1)

2G(R2
2−R1

2)

As a result we obtain the solution of the Lamé problem:

ur(r )=
q2 R2

2−q1 R1
2

(2G+λ)(R2
2−R1

2)
⋅r +

R1
2 R2

2(q2−q1)
2G (R2

2−R1
2)

⋅1
r

εrr (r )=
q2 R2

2−q1 R1
2

(2G+λ)(R2
2−R1

2)
−
R1
2R2

2(q2−q1)
2G(R2

2−R1
2)
⋅1
r2

εϕϕ(r )=
q2 R2

2−q1 R1
2

(2G+λ)(R2
2−R1

2)
+
R1
2R2

2(q2−q1)
2G(R2

2−R1
2)
⋅1
r2

σrr(r )=
q2R2

2−q1R1
2

R2
2−R1

2 −
(q2−q1)R1

2 R2
2

R2
2−R1

2 ⋅ 1
r 2

 σϕϕ(r )=
q2 R2

2−q1R1
2

R2
2−R1

2 +
(q2−q1)R1

2R2
2

R2
2−R1

2 ⋅ 1
r2

A general character of distribution of stress in the case of zero external load (e.g. Pipe with internal
pressure) is depicted below:

                    radial stress σrr       circumferential stress σϕϕ
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