Limit plastic moment

Basic formulae for the plastic cross-sectional factor

the neutral axis position in simple bending

$$
A_{1}=A_{2} \rightarrow z_{0}
$$

the limit plastic factor, calculated in regard of the central axis

$$
\overline{\bar{W}}=2 S_{y}^{(1)}=2 S_{y}^{(2)}
$$

the limit plastic factor, calculated in regard of the neutral axis

$$
\overline{\bar{W}}=S_{y_{0}}^{1}+S_{y_{0}}^{2}
$$

the limit plastic moment of the cross-section

$$
\overline{\bar{M}}=\overline{\bar{W}} R_{e}
$$

(the limit elastic factor of the cross section: $\bar{W}=\frac{I_{y}}{z_{\max }}$)
the shape coefficient

$$
k=\frac{\overline{\bar{M}}}{\bar{M}}=\frac{\bar{W}}{\bar{W}}
$$

Examples

Example 14.1

Determine the shape coefficient for the cross section in Fig. 14.1.

Fig. 14.1 Cross-section
Solution
cross-section area: $A=9 \cdot 2+3 \cdot 6=36 \mathrm{~cm}^{2}$
position of the neutral axis: $z_{0}=\frac{36}{2 \cdot 9}=2 \mathrm{~cm}$
position of the centroid: $z_{c}=\frac{18 \cdot 1+18 \cdot 5}{36}=3 \mathrm{~cm}$
cross-section inertia moment:

$$
I_{y}=\frac{9 \cdot 2^{3}}{12}+18 \cdot 2^{2}+\frac{3 \cdot 6^{3}}{12}+18 \cdot 2^{2}=204 \mathrm{~cm}^{4}
$$

elastic cross-section factor:

$$
\bar{W}=\frac{I_{y}}{z_{\max }}=\frac{204}{5}=40.8 \mathrm{~cm}^{3}
$$

plastic cross-section factor
a) about the central axis

$$
\overline{\bar{W}}=2 \cdot(6 \cdot 3 \cdot 2)=72 \mathrm{~cm}^{3}
$$

b) about the neutral axis

$$
\overline{\bar{W}}=6 \cdot 3 \cdot 3+9 \cdot 2 \cdot 1=72 \mathrm{~cm}^{3}
$$

the shape coefficient:

$$
k=\frac{\overline{\bar{W}}}{\bar{W}}=\frac{72}{40.8}=1.76
$$

Example 14.2

Determine the shape coefficient of the cross-section in Fig. 14.2.

3.513 .5

Fig. 14.2 Beam cross-section

Solution

the cross-section area, $A=2 \cdot 5+6 \cdot 1+2 \cdot 8=32 \mathrm{~cm}^{2}$
the position of centroid, $z_{c}=\frac{8 \cdot 2+6 \cdot 5+10 \cdot 9}{32}=4.25 \mathrm{~cm}$
the position of neutral axis, $z_{p}=2 \mathrm{~cm}$
the inertia moment, $I_{y}=\frac{8 \cdot 2^{3}}{12}+16 \cdot 3.25^{2}+\frac{1 \cdot 6^{3}}{12}+6 \cdot 0.75^{2}+\frac{5 \cdot 2^{3}}{12}+10 \cdot 4.75^{2}=424.7 \mathrm{~cm}^{4}$
the elastic cross-section factor, $\bar{W}=\frac{I_{y}}{z_{\max }}=\frac{424.7}{5.75}=73.86 \mathrm{~cm}^{3}$
the plastic cross-section factor (with respect to the central axis)

$$
\overline{\bar{W}}=2 \cdot 2 \cdot 8 \cdot 3.25=104 \mathrm{~cm}^{3}
$$

the plastic cross-section factor (with respect to the neutral axis)

$$
\overline{\bar{W}}=2 \cdot 8 \cdot 1+6 \cdot 3+10 * 7=104 \mathrm{~cm}^{3}
$$

the shape coefficient:

$$
k=\frac{\overline{\bar{W}}}{\bar{W}}=\frac{104}{73.86}=1.41
$$

Example 14.3

A cross-section in Fig. below is loaded by a bending moment $M=\bar{M}+0.5(\overline{\bar{M}}-\bar{M})$. Determine the stress distribution and the residual stress after unloading, $R_{e}=480 \mathrm{MPa}$.

Fig. 14.3 Cross-section in bending

Solution

the cross-section area, $A=14 \cdot 2+12 \cdot 3+2 \cdot 3=70 \mathrm{~cm}^{2}$
the position of centroid, $z_{c}=\frac{14 \cdot 2 \cdot 13+12 \cdot 3 \cdot 4 \cdot 5+2 \cdot 3 \cdot 1.5}{70}=7.643 \mathrm{~cm}$
the position of neutral axis, $z_{p}=3+\frac{35-6}{12}=3+2.417=5.417 \mathrm{~cm}$
the inertia moment, $I_{y}=\frac{2 \cdot 20^{3}}{12}+40 \cdot 2.357^{2}+\frac{10 \cdot 3^{3}}{12}+30 \cdot 3.143^{2}=1874 \mathrm{~cm}^{4}$
the elastic cross-section factor, $\bar{W}=\frac{I_{y}}{Z_{\max }}=\frac{1874}{20-7.64}=151.7 \mathrm{~cm}^{3}$
the plastic cross-section factor (with respect to the central axis)

$$
\overline{\bar{W}}=2 \cdot(6 \cdot 6.143+12 \cdot 2.417 \cdot 3.4345)=272.9 \mathrm{~cm}^{3}
$$

the plastic cross-section factor (with respect to the neutral axis)

$$
\overline{\bar{W}}=6 \cdot 3.917+12 \cdot 2.417^{2} \cdot 0.5+12 \cdot 0.583^{2} \cdot 0.5+14 \cdot 2 \cdot 7.583=272.9 \mathrm{~cm}^{3}
$$

the value of applied bending moment

$$
M=R_{e}[\bar{W}+0.5 \cdot(\overline{\bar{W}}-\bar{W})]=480 \cdot 10^{6}[151.7+0.5(272.9-151.7)] \cdot 10^{-6}=101.9 \mathrm{kNm}
$$

the Bernoulli's hypothesis:

$$
\varepsilon=\varepsilon_{0}+\kappa Z
$$

where ε_{0} - axis strain, κ - axis curvature
Using the position of neutral axis, z_{0}

$$
\varepsilon\left(z=z_{0}\right)=0 \rightarrow \varepsilon_{0}=-\kappa z_{0} \rightarrow \varepsilon=\left(z-z_{0}\right) \kappa
$$

and the elastic range extent, ξ

$$
\left|z-z_{0}\right|=\xi \rightarrow E \varepsilon(\xi)=R_{e} \rightarrow \varepsilon=\frac{z-z_{0}}{\xi} \cdot \frac{R_{e}}{E}
$$

we are searching such values of z_{0} and ξ, that the axial force and the bending moment would be:

$$
\iint_{A} \sigma d A=0, \quad \iint_{A} \sigma Z d A=101.9 \cdot 10^{3}
$$

The numerical procedure consists in several steps:

- divide the cross-section into rectangles with constant width
- check which part (if any) of each rectangle works in one of three range:
- plastic compression,
- elastic compression-tension, and
- plastic tension.

From numerical solution, we get the parameters of the stress distribution:

$$
z_{0}=5.586 \mathrm{~cm}, \quad \xi=1.539 \mathrm{~cm}
$$

Partial results are given in the table below:

z_g	z_d	N_1	M_1	z_g	z_d	N_2	M_2	z_g	z_d	N_3	M_3
3	0	-6	36,86	4,048	3	$-12,57$	51,777	6	6	0	0
3	3	0	0	6	4,048	$-8,5577$	$-38,15$	7,124	6	1,4263	9,513
3	3	0	0	6	6	0	0	20	7,124	25,753	152,4

The unloading process means application of the elastic moment equal to the given elastic-plastic moment. The unload stress distribution is linear, so the extreme value of the unloading stress is:

$$
\sigma_{\max }=\frac{M_{u l}}{\bar{W} R_{e}}=\frac{101.9 \cdot 10^{3}}{151.7 \cdot 10^{-6} \cdot 480 \cdot 10^{6}}=1.399
$$

it means, that the extreme value of the residual stress is equal to

Adam Paweł Zaborski - Strength of Materials - second semester - summer 2019

$$
\sigma_{\text {res }}=(1.399-1) R_{e}=0.399 R_{e}=191.5 \mathrm{MPa}
$$

The distribution of the loading, unloading and residual stress in the cross-section is given in Fig. 14.4

Fig. 14.4 Stress distribution (blue: loading, red: unloading, green: residual)

Review problems

For the given cross-section, determine the shape coefficient k (the relation of limit plastic factor to the limit elastic factor). Check your solution using the "przekroj" program.

Fig. 14.5 Cross-sections with one symmetry axis

