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Tension – part 2 

Statically undetermined structures 

In the situation when the statics equations are not sufficient we need reference to the complete set of 

equations: 

- static equations (←  Navier’s equations + static boundary conditions) 

- compatibility (geometric) equations (← Cauchy’s equations + kinematic conditions) 

- constitutive equations (← Hooke’s equations, thermal expansion equations) 

Linearized geometry 

We assume that the bars lengthen or shorten but their angles do not change (the influence of their 

change is negligible). In this way, the length change is the segment determined by two points: the 

projection of actual position of the bar’s end onto original bar direction and the bar end itself, Fig. 2.1. 

 

Fig. 2.1 Elongation of the bar 

Please remember some concepts of displacement, Fig. 3.6: 

 real displacement (“true”, “actual”, observed), 

 possible displacement (that is possible with respect to the constraints) 

 virtual displacement (parallel to the virtual velocities). 
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Fig. 2.2 Displacements 
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Examples of statically indeterminable problems 

Example 1 

Determine the forces in the deformable bars in Fig. 2.3. 

 

Fig. 2.3 Set of deformable bars, displacements and forces 

Solution: 

We have: 
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Eliminating: 
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we get: 

04.143 321                                                                        (1*) 

Assuming idemEA  and substituting the Hooke’s law we change kinematic unknowns in (1*) into 

static unknowns: 

05.31015 321  NNN                                                                       (1) 

Moreover, we have two static equations: 

08.06.0 321  NNN                                                                       (2) 

06.08.0 21  PNN                                                                         (3) 
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which form with equation (1) the set of three equations with three unknowns. The solution of the set 

gives us: 

 PNPNPN 00.1,717.0,712.0 321  . 

To check the linear geometry assumption we calculate the loaded point displacement, E = 200 GPa, A 

= 4 cm
2
: 24.41   mm, 13.22    mm, 98.23    mm and )52.7,98.2( s mm. This proves 

that the displacements are sufficiently small. 

Tip: Both schemes of virtual displacements and static equilibrium should be compatible. The 

static forces equilibrium scheme, compatible with the virtual displacements scheme, can be 

always selected, but not vice versa. Not for every static scheme, the compatible scheme of 

virtual displacements exists. Therefore, we proceed first with the displacements draft and next 

with the forces draft. 

Example 2 

In this example the direction of the loaded point’s displacement is imposed (but not its sense) by the 

rigid link, Fig. 2.4: 
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Fig. 2.4 Structure, displacements and forces schemes 

Solution: 

     0,1,1,0,cos,sin 21  eess  

hence: 

 sin,cos 2211 sesses  . 

and the geometric equation has the form: 

 21 3  

inserting the constitutive equations, we have:  
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21 3NN                                                                                (1) 
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The static equation completes the set:  

.0sincos)(
6261   aNaNP                                                                (2) 

The solution of the equations set is: 
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 (compression). 

Example 3 

For the truss in Fig. 2.5 determine the axial forces in the bars. 
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Fig. 2.5 Truss and displacement scheme 

Solution: 

The loaded point has two degrees of freedom. Introducing two translation parameters we express the 

change of the bars’ length: 
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Eliminating the auxiliary parameters, we get the geometric equation in the form: 

 213 3 . 

Expressing the elongations through the bar forces, the equation with the equations of static equilibrium 

gives us the set to determine the bars’ forces.  

Review problems 

Problem 1 

Determine the forces in the truss bars in Fig. 2.6 developed by the temperature growth by 30 degrees. 

Assume  𝐴1 = 𝐴2 = 3 cm
2
, 𝐴3 = 5 cm

2
, a = 3 m, E = 205 GPa, thermal expansion coefficient 𝛼 = 14.5 ∙

10−6. 

Ans.: 𝑁1 = 𝑁3 = −3.186 kN, 𝑁2 = 5.518 kN. 
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Fig. 2.6 Thermal stress in truss  

Problem 2 

Determine the forces in the truss bars in Fig. 2.7 developed during assembly, when the bar no 2 was shorter 

by 𝛿 = 2 mm. Assume  𝐴1 = 𝐴2 = 3 cm
2
, 𝐴3 = 5 cm

2
, a = 3 m, E = 205 GPa. 

 
Fig. 2.7 Assembly gap  

Ans.: 𝑁1 = 𝑁3 = −8.46 kN, 𝑁2 = 14.65 kN. 

Problem 3 

Determine the forces in the deformable bars, Fig. 2.8. Assume 𝐴1 = 5 cm
2
, 𝐴2 = 4 cm

2
, 𝐸 = 205 GPa.  

 
Fig. 2.8 Rigid connector and deformable bars 

Ans.: 𝑁1 = 22.24 kN, 𝑁2 = 17.76 kN. 

Problem 4 

Determine the axial force diagram in the bar in Fig. 2.9. Assume E = 205 GPa, P = 20 kN, a = 3.5 cm, 

b = 4 cm, c = 5 cm, A = 7 cm
2
. 
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Fig. 2.9 Constrained tension 

Ans.: 16 kN (a) and -4 kN (b+c) 


