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Biaxial bending 

Basis formulae 
There are two cases, apparently different: (a) the bending of the cross-section by the moment the direction 

of which is not parallel to the one of the principal central axes, and (b) the cross-section loaded by two 

bending moments acting in the directions of the principal central axes, Fig. 4.1. 
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Fig. 4.1 Bending moment and its decomposition 

It is obvious from the decomposition shown, that the problem is the same in both cases.. 

Note, that we always consider the directions of the bending moments in relation with the directions of the 

principal central axes. 

Tip: there is no biaxial bending of such cross-sections as circle, square, and any regular polygon; there is 

no biaxial bending because any central axis of a cross-section considered is the principal axis, too.  

The normal stress is the sum of the normal stresses of two bending components: 
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The distribution of the normal stress in the cross-section is linear.  

The neutral axis is a straight line that passes through the cross-section centroid: 
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The neutral axis doesn’t agree with the direction of the resultant bending moment: it declines more or less 

slightly in the direction of the axis of the greatest flexibility (of smaller principal central inertia moment). 

The maximal value of the normal stress is reached at the points the most distant from the neutral axis.  

From the ultimate limit state we have the design inequality: 

Rx max , 
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where R  is the material strength. 

To determine the most exerted points of the cross-section we have to know the position of the neutral 

axis. 

Examples 

Example 4.1 

The T-shape steel purlin, Fig. 4.3, is bent by the horizontal vector of bending moment. Knowing that the 

acceptable value of the normal stress is 150 MPa, determine the value of the allowable moment. The 

cross-section characteristics are: s = h = 60 mm, e = 18.6 mm, 8.23yI  cm
4
, 2.12zI  cm

4
, the angle 

 5.12 . 

 

Fig. 4.2 T-shape purlin 

Solution 

the decomposition of the bending moment: 

  sin,cos MMMM zy , 

the normal stress: 
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the neutral axis equation: 

 yyz 4325.0
2.12

8.23
tan   

from the cross-section drawing, Fig. 4.3: 
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Fig. 4.3 Cross-section with neutral axis 

we get the maximal stress at the web corner, near the symmetry axis, (0, -41.4) in [mm]: 

 MMx
66 101698.010))14.4(041021.0(   

from ultimate limit state, we have: 

 88310150101698.0 66  MMrx  Nm 

Example 4.2 

Determine the cross-section parameter a, Fig. 4.4, knowing that the acceptable stress value is R = 300 

MPa. 
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Fig. 4.4 Cross-section with load 

Solution 

position of the centroid: yc = 1.17 a, zc = 2.17 a 

central inertia moments: Jy = 30.75 a
4
, Jz = 10.75 a

4
, Jyz = -10 a

4
 

eigenvalues: J1 = 34.89 a
4
, J2 = 6.61 a

4
, principal directions:  = 22.49 

bending moments: M1 = Mcos = 185 kNm, M2 = -M sin = -76.5 kNm 

normal stress distribution: 3
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neutral axis equation: 12 19.2 xx   

we calculate the coordinates of the corners in principal central coordinates from the transformation 

formula 
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pt y z x1 x2 from neutral axis.  [MPa] 

A -1.17 a -2.17 a -1.91 a -1.56 a 2.39 a -243 

B 2.83 a -2.17 a 1.78 a -3.09 a 0.34 a 35 

C 2.83 a -1.17 a 2.17 a -2.16 a 1.07 a 109 

D -0.17 a 3.83 a 1.31 a 3.60 a 2.69 a  max. 274 

E -1.17 a 3.83 a 0.38 a 3.99 a 2.01 a 205 

Tab. 4.1 Calculation data for the problem 3.5. 

The most distant point from the neutral axis is point D where the stress value is the greatest. 

The cross-section design: x(1.31 a, 3.60 a)  R        a  0.0485 m  0.05 m 

The normal stress for assumed value of the parameter a are stated in the Tab. 4.1 and the diagram of the 

normal stress distribution is shown in Fig. 4.5. 
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Fig. 4.5 Normal stress distribution 

Example 4.3 

A beam cross section is formed by nailing together two 50 mm by 150 mm boards as indicated in Figure 

4.6 and loaded by a moment of 2 kNm. The plane of the load passes through the centroid of the cross 

section as indicated. Determine the maximum flexure stress in the cross section and the orientation of the 

neutral axis. 

 

Fig. 4.6 Cross section for ex. 4.3 
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Solution 

position of the centroid: 𝐶(50, 125) 

central inertia moments 

𝐼𝑦0 =
50∙1503

12
+ 50 ∙ 150 ∙ (175 − 125)2 +

50∙1503

12
+ 50 ∙ 150 ∙ (75 − 125)2 = 6.563 ∙ 107 mm

4
 

𝐼𝑧0 =
503∙150

12
+ 50 ∙ 150 ∙ 252 +

503∙150

12
+ 50 ∙ 150 ∙ 252 = 1.25 ∙ 107 mm

4 

𝐼𝑦0𝑧0 = 50 ∙ 150 ∙ (25 − 50) ∙ (175 − 125) + 50 ∙ 150 ∙ (75 − 50) ∙ (75 − 125) = −1.875 ∙ 107 mm
4
 

principal central inertia moments and directions 

𝐼𝑦 =
6.563∙107+1.25∙107

2
+ √(

6.563∙107−1.25∙107

2
)

2

+ 1.875 ∙ 107 = 7.158 ∙ 107 mm
4
 

𝐼𝑧 =
6.563∙107+1.25∙107

2
− √(

6.563∙107−1.25∙107

2
)

2

+ 1.875 ∙ 107 = 6.549 ∙ 106 mm
4
 

tan 𝛼 =
7.158∙108−6.563∙107

−(−1.875∙107)
= 0.3173 → 𝛼 = 17.61°  

bending moment decomposition 

moment direction relative to horizontal axis: 90 − tan−1 2 = 90 − 63.43 = 26.57° 

moment direction relative to the principal central axis y: 26.57 − 17.61 = 8.955° 

𝑀𝑦 = 2 ∙ cos(8.955) = 1.976 kNm, 𝑀𝑧 = 2 ∙ sin(8.955) = 0.3113 kNm 

normal stress 

𝜎𝑥 =
𝑀𝑦

𝐼𝑦
𝑧 −

𝑀𝑧

𝐼𝑧
𝑦 =

1976

7.158∙10−5 𝑧 −
311.3

6.549∙10−6 𝑦 = 27.61𝑧 − 47.53𝑦 (in MPa) 

position of the neutral axis 

𝜎𝑥 = 0 → 𝑧 = 1.721𝑦 →  𝛽 = 59.85° 

maximum flexure stress at left upper corner (input → central → principal central) 

𝐴(0, 250) → (−50, 125) → (−9.840, 134.3) 

𝜎𝑥
𝐴 = 27.61 ∙ 0.1343 − 47.53 ∙ (−0.00984) = 4.175 MPa 

Example 4.4 

A girder that supports a brick wall is built up of an s-310×47 I-beam (𝐴1 = 6030 mm
2
, 𝐼𝑦1 = 90.7 × 106 

mm
4
, 𝐼𝑧1 = 3.90 × 106 mm

4
), a C-310×31 channel (𝐴2 = 3930 mm

2
, 𝐼𝑦2 = 53.7 × 106mm

4
, 𝐼𝑧2 =

1.61 × 106 mm
4
), and a cover plate 300 mm by 10 mm riveted together (Fig. 4.7). The girder cross 

section is loaded by moment 𝑀 = 90 kNm (bottom tensioned). Determine the orientation of the neutral 

axis and the maximum tensile and compressive stress. 
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Fig. 4.7 Cross section from the problem 4.4 

Solution 

positions of the elements’ centroids 

I-beam (63.5, 162.5) 

C-channel (197.3, 162.5) 

plate (150, 5) 

cross section area A = 6030 + 3930 + 3000=12960 mm
2
 

centroid of the cross section 

𝑦𝑐 =
6030∙63.5+3930∙197.3+3000∙150

12960
= 124.1 mm 

𝑧𝑐 =
6030∙162.5+3930∙162.5+3000∙5

12960
= 126.0 mm 

central inertia moments 

𝐼𝑦𝑐 = 90.7 ∙ 106 + 6030 ∙ (162.5 − 126)2 + 53.7 ∙ 106 + 3930 ∙ (162.5 − 126)2 + 0.025 ∙ 106 +

3000 ∙ (5 − 126)2 = 201.6 ∙ 106 mm
4
 

𝐼𝑧𝑐 = 3.90 ∙ 106 + 6030 ∙ (63.5 − 124.1)2 + 1.61 ∙ 106 + 3930 ∙ (197.3 − 124.1)2 + 22.5 ∙ 106 +

3000 ∙ (150 − 124.1)2 = 77.20 ∙ 106 mm
4
 

𝐼𝑦𝑐𝑧𝑐 = 0 + 6030 ∙ (63.5 − 124.1) ∙ (162.5 − 126) + 0 + 3930 ∙ (197.3 − 124.1) ∙ (182.5 − 126) +

0 + 3000 ∙ (150 − 124.1) ∙ (5 − 126) = −12.24 ∙ 106 mm
4
 

principal central inertia moments 

𝐼𝑦 =
201.6+74.20

2
∙ 106 + √(

201.6−74.20

2
)

2
+ 12.242 ∙ 106 = 202.8 ∙ 106 mm

4
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𝐼𝑧 =
201.6+74.20

2
∙ 106 − √(

201.6−74.20

2
)

2
+ 12.242 ∙ 106 = 73.03 ∙ 106 mm

4
 

tan 𝛼 =
1.2

12.24
= 0.098 →  𝛼 = 5.60° 

bending moment decomposition 

𝑀𝑦 = 90 ∙ cos 5.6 ° = 89.57 kNm, 𝑀𝑧 = 90 ∙ sin 5.6° = 8.78 kNm 

normal stress equation 

𝜎𝑥 =
𝑀𝑦

𝐼𝑦
𝑧 −

𝑀𝑧

𝐼𝑧
𝑦 =

89570

202.8 ∙ 10−6
𝑧 −

8780

73.03 ∙ 10−6
𝑦 

neutral axis equation 

𝜎𝑥 = 0 → 𝑧 = 0.2722𝑦 

angle: 15.23° 

this is a simple case of 4-corners cross section, maximum tensile stress is at right bottom corner B, and 

maximum compression stress is at left top corner A 

𝐴(−124.1, 189) → (−70.09, 214.9) 

𝐵(175.9, −126) → (136.6, −167.8) 

so 

𝜎𝑥
𝐴 =

89570

202.8∙10−6
(−0.0701) −

8780

73.03∙10−6 0.2149 = −56.79 MPa 

𝜎𝑥
𝐵 =

89570

202.8∙10−6 0.1366 −
8780

73.03∙10−6
(−0.1678) = 80.51 MPa 

(Attention! If we neglect the small angle of the principal directions we would get 𝜎𝑥
𝐴 = −84.4 MPa and 

𝜎𝑥
𝐵 = 56.3 MPa) 

Review problems 

Problem 4.1 

Determine the parameter a of the cross-section in Fig. 4.9. The allowable stress value is 280 MPa. Draw 

the stress repartition diagram. (Ans.: a ≥ 0.0056 m) 
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Fig. 4.9 Cross-section with loading 

Problem 4.2 

Determine the normal stress distribution of the cross-section in Fig. 4.10. Draw the normal stress diagram 

and determine the stress at p. A. (Ans.: 53.7 MPa) 
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Fig. 4.10 Cross-section with loading 

Problem 4.3 

A C-180×15 rolled steel (𝐼𝑦 = 8.87 × 106 mm
4
, 𝐼𝑧 = 4.04 × 105 mm

4
, depth = 178 mm, width = 53 mm, 

and 𝑥𝐵 = 13.7 mm) is used as a purlin in a roof (Fig. 4.11). If the slope of the roof is ½ and the applied 

bending moment is 2 kNm, determine the maximum tensile and compressive stresses. (Ans.:105.2 MPa, -

48.4 MPa) 
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Fig. 4.11 C-channel purlin 

Problem 4.4 

An I-beam has the cross section shown in Fig. 4.12. The design flexural stress is limited to 120 MPa. 

Determine the allowable bending moment M. (Ans.: 13.2 kNm) 

 

Fig. 4.12 I-beam cross section 

Problem 4.5 

A T-beam has the cross section shown in Fig. 4.13. The design flexural stress is limited to 150 MPa. 

Determine the allowable bending moment M. (Ans.: 97.9 kNm) 
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Addendum 

Some useful formulae 

The transformation formula for the point’s coordinates: 
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The distance from a point P to a line 0sincos  pzy , (
i
): 

 pzyd PP  sincos  

 

                                                      
i
 The normal form of the line equation can be derived from the general form of the line: 

𝐴𝑦 + 𝐵𝑧 + 𝐶 = 0 

dividing by a normalizing factor: 

𝜇 = −
𝑠𝑖𝑔𝑛(𝐶)

√𝐴2 + 𝐵2
 

we get then the normal form: 

𝑦 cos 𝛼 + 𝑧 sin 𝛼 − 𝑝 = 0 

where the parameter p means the distance of the line from the origin of the coordinate set. 


