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Beams deflections – Macaulay’s method 

Introduction 
A deflection is the displacement of structural element under load. In the case of the beams, we use this 

term for linear vertical displacement. In the technical bending theory, we make two main assumptions 

that: 

 Bernoulli’s hypothesis (about the plane cross-sections) is valid, 

 the derivatives of the displacements are small. 

From the course about the beam bending we know that the beam curvature is proportional to the bending 

moment and inversely proportional to the stiffness of bending:  
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The mathematical formula for the curvature of a line is: 
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hence, we get the equation of deflections with separable variables: 
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The sign in the formula above results from admitted coordinate set of the beam axis line and the sagging 

bending moment, Fig. 8.1. 
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Fig. 8.1. Coordinate set 

The beam deflections equation may be solved in several ways. We will limit our considerations to three 

of them, the most commonly used in engineering. 

Analytical method 
The method of integration of the curvature equation, named shortly: the analytical method, consists in 

direct solution by twice integration of the equation. Because of the second order of the differential 

equation, after the integration we have two integration constants, which should be determined from the 

kinematic boundary conditions. Moreover, when the bending moment is not given by one formula for the 

whole beam, but instead of this is given separately for each of the cross-section forces interval, the 

boundary value problem (the equation with its proper boundary conditions) should be formulated for each 

interval. The number of integration constants raises and is as twice as the number of intervals. The 

additional conditions are needed to determine all integral constants. These are so-called the compatibility 

or conformity conditions. It means that the deflection from both sides of the intermediate characteristic 
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point should be the same. If there is no hinge at such a point the deflection derivatives from both sides 

should also be the same. While the first condition is obvious, the second one results from the curvature 

formula: a bent beam deflected axis means an infinite bending moment or zero bending stiffness. Both 

cases are excluded for beams. 

The calculation technique will be explained in some examples.  

Example 8.1 

Determine the deflection of the cantilever loaded by a point force at its free end, Fig. 8.2. 
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Fig. 8.2 Cantilever with load 

Solution 

the bending moment equation: 

 xXM 124.20)(   

the curvature equation: 

 xxEJw 124.20)(''   

after first integration: 

 CxxxEJw  264.20)('  

and next: 

 DCxxxxEJw  32 22.10)(  

the kinematical conditions are: 

 0)0(',0)0(  ww  

hence we find 0 DC  

and finally we get: 
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Example 8.2 

The simple supported beam is loaded by the point force, Fig. 8.3. Determine the maximum deflection of 

the beam. 
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Fig. 8.3 Beam with load 

Solution 

We introduce the coordinate sets from both sides (cf. Fig. 8.3): 

00)0(

5'

10''

10)(

3

3

5

2











Dw

DCxxEJw

CxEJw

xEJw

xxM

   

00)0(

10'

20''

20)(

11

111

3

13
10

1

1

2

11

11

11











Dw

DxCxEJw

CxEJw

xEJw

xxM

 

the compatibility conditions are: 
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Note: The minus sign in the second condition results from different definition of positive derivative, see 

Fig. 8.4. 

w2(0)=0

w1(a)=w2(0)

w1'(a)=w2'(0)

w1(0)=0

w1(0)=0

w1, w2

w1

w2w1

w2

x2

x2

x2

x1

x1

x1

w2(l-a)=0

w2(l)=0
w1(a)=w2(a)

w1'(a)=w2'(a)

w1(0)=0
w1(a)=w2(l-a)

w1'(a)=-w2'(l-a)
 

Fig. 8.4. Different coordinate sets 

performing calculation, we get: 33.13C , and finally: 
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Calculating the position of extreme deflection, we get: 
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Example 8.3 

Determine the deflection of a simply supported beam, loaded by a point force in the middle of the span. 

Solution 

1
st
 interval: 210 lx  : 111

3

11211121 )()( DxCxxwEJxxM P
y

P  , 

2
nd

 interval: 220 lx  : 222

3

21222222 )()( DxCxxwEJxxM P
y

P  , 

boundary and compatibility conditions: 0)0(,0)0( 21  ww ,   )(')('),()(
22212221
llll wwww  , 

hence: ,021  DD     2
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The final form of the equation may be written:  
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The maximum deflection in the middle is: 
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Macaulay’s method 
If there are many intervals of the cross-section forces, the analytic method is cumbersome. The 

formulation of the problem may be significantly simplified, when the compatibility conditions are 

automatically fulfilled. This can be done by writing equations in a particular way: 

1. We adopt one coordinate set for all intervals: x, w(x), M(x). 

2. The equation in i-th interval is written in such a way, that it contains the equation for the previous 

interval. In this way the compatibility conditions are automatically fulfilled. 

3. Instead of writing each equation separately, we write one general equation marking alternative terms 

by the Macaulay’s brackets. The integral constants are shared for all intervals.  

4. The terms within the Macaulay’s brackets, 
n

iax  , signify the positive difference, which means 

they are positive or zero. 

5. To fulfill the requirements of the point (2), the method may be applied to the intervals with the same 

constant bending stiffness. Moreover, the continuous loadings and the point moments should be 

treated in a special way. 
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Example 8.4 

Determine the deflections of the beam in Fig. 8.5. 
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Fig. 8.5 Loaded beam 

Solution 

We write the equations: 
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The integral constants are determined from the boundary conditions: 0)()0(  cww , so 
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Note, that the integral constants are written without the Macaulay’s brackets. 

Example 8.5 

Determine the deflections of the beam in Fig. 8.6. 

 

Fig. 8.6 Beam with load 

Solution 

statics: decomposition into the simple beams & constraints reactions 
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Fig. 8.7 Beam decomposition 

diagram of bending moments: 

 

Fig. 8.8 Diagram of bending moments 

diagram of shear forces: 

 

Fig. 8.9 Diagram of shear forces 

𝑄(𝑥) = 25 − 30(𝑥 − 2) = 0  →    𝑥 = 2.833 m, 𝑀(2.833) = 60.42 kNm 

Macauley’s method 

first beam: 

𝐸𝐼𝑤1
′′(𝑥1) = −25𝑥1 + 15 < 𝑥1 − 2 >2− 15 < 𝑥1 − 5 >2− 70 < 𝑥1 − 5 > 

𝐸𝐼𝑤1
′(𝑥1) = 𝐶1 − 12.5𝑥1

2 + 5 < 𝑥1 − 2 >3− 5 < +𝑥1 − 5 >3− 35 < 𝑥1 − 5 >2 

𝐸𝐼𝑤1(𝑥1) = 𝐶1𝑥1 + 𝐷1 − 4.167𝑥1
3 + 1.25 < 𝑥1 − 2 >4− 1.25 < 𝑥1 − 5 >4− 11.67 < 𝑥1 − 5 >3 

boundary conditions: 

𝑤1(0) = 0 → 𝐷1 = 0 

𝑤1(5) = 0 → 0 = 5𝐶1 − 4.167 ∙ 53 + 1.25 ∙ 34 = 5𝐶1 − 419.6 → 𝐶1 = 83.93 

additional results: 

𝑤1(2) =
(83.93 ∙ 2 − 4.167 ∙ 23)

(𝐸𝐼)
=

134.5

𝐸𝐼
 

𝑤1(7) =
(83.93 ∙ 7 − 4.167 ∙ 73 + 1.25 ∙ 54 − 1.25 ∙ 24 − 11.67 ∙ 23)

𝐸𝐼
= −

173.8

𝐸𝐼
 

𝑤1
′(0) =

83.92

𝐸𝐼
 

𝑤1
′(5) = −

93.57

𝐸𝐼
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𝑤1
′(7) = −

83.57

𝐸𝐼
 

second beam: 

2𝐸𝐼𝑤2
′′(𝑥2) = −5𝑥2 + 15𝑥2

0 

2𝐸𝐼𝑤2
′ (𝑥2) = 𝐶2 − 2.5𝑥2

2 + 15𝑥2 

2𝐸𝐼𝑤2(𝑥2) = 𝐶2𝑥2 + 𝐷2 − 0.8333𝑥2
3 + 7.5𝑥2

2 

boundary conditions: 

𝑤2(0) = −
173.8

𝐸𝐼
=

𝐷2

2𝐸𝐼
→ 𝐷2 = −347.6 

𝑤2(3) = 0 → 0 = 3𝐶2 − 347.6 − 0.8333 ∙ 33 + 7.5 ∙ 32 = 3𝐶2 − 302.6 →  𝐶2 = 100.9 

𝑤2
′ (0) =

50.4

𝐸𝐼
 

𝑤2
′ (3) =

61.7

𝐸𝐼
 

deflections diagram: 

 

Fig. 8.10 Diagram of deflections 

Example 8.6 

Using the superposition principle determine the extreme value of the deflection of the beam in Fig. 8.11. 

 

Fig. 8.11 Beam with the load 

Using the superposition we split the problem into two: the active load and the hyperstatic reaction. 

The reactions for the active load are: 𝑅𝑢 = 40 kN, 𝑀𝑢 = 80 kNm 

The bending moment equation: 
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𝑀(𝑥) = 40 < 𝑥 > −80 < 𝑥 >0−
20

2
< 𝑥 − 1 >2+

20

2
< 𝑥 − 3 >2 

𝐸𝐼𝑤′′(𝑥) = −40 < 𝑥 > +80 < 𝑥 >0+ 10 < 𝑥 − 1 >2− 10 < 𝑥 − 3 >2 

𝐸𝐼𝑤′(𝑥) = 𝐶 − 20 < 𝑥 >2+ 80 < 𝑥 > +
10

3
< 𝑥 − 1 >3−

10

3
< 𝑥 − 3 >3 

𝐸𝐼𝑤(𝑥) = 𝐶𝑥 + 𝐷 −
20

3
< 𝑥 >3+ 40 < 𝑥 >2+

5

6
< 𝑥 − 1 >4−

5

6
< 𝑥 − 3 >4 

kinematic boundary conditions: 𝑤(0) = 𝑤′(0) = 0 → 𝐶 = 𝐷 = 0 

𝑤(4) =
1

𝐸𝐼
(−

20

3
∙ 43 + 40 ∙ 16 +

5

6
∙ 34 −

5

6
∙ 14) =

280

𝐸𝐼
 

The solution for the hyperstatic reaction: 𝑅𝑢 = −𝑅, 𝑀𝑢 = 4𝑅 

The bending moment equation: 

𝑀(𝑥) = −𝑅𝑥 + 4𝑅 < 𝑥 >0 

𝐸𝐼𝑤′′(𝑥) = 𝑅 < 𝑥 > −4𝑅 < 𝑥 >0 

𝐸𝐼𝑤′(𝑥) = 𝐶 +
1

2
𝑅 < 𝑥 >2− 4𝑅 < 𝑥 > 

𝐸𝐼𝑤(𝑥) = 𝐶𝑥 + 𝐷 +
1

6
𝑅 < 𝑥 >3− 2𝑅 < 𝑥 >2 

kinematic boundary conditions: 𝑤(0) = 𝑤′(0) = 0 → 𝐶 = 𝐷 = 0 

𝑤(4) =
𝑅

𝐸𝐼
(

1

6
∙ 43 − 2 ∙ 16) = −

21.33𝑅

𝐸𝐼
 

final deflection of the right end should be zero, so: 

280−21.33𝑅

𝑅𝐼
= 0 → 𝑅 = 13.125 kN 

Total reactions: 𝑅𝑢 = 26.875 kN, 𝑀𝑢 = 27.5 kNm 

the bending moment final equation: 

𝑀(𝑥) = −27.5 < 𝑥 >0+ 26.875 < 𝑥 >
20

2
< 𝑥 − 1 >2+

20

2
< 𝑥 − 3 >2 

𝐸𝐼𝑤′′(𝑥) = 27.5𝑥0 − 26.875𝑥 + 10 < 𝑥 − 1 >2− 10 < 𝑥 − 3 >2 

𝐸𝐼𝑤′(𝑥) = 𝐶 + 27.5𝑥 − 13.44𝑥2 + 3.333 < 𝑥 − 1 >3− 3.333 < 𝑥 − 3 >3 

𝐸𝐼𝑤(𝑥) = 𝐶𝑥 + 𝐷 + 13.75𝑥2 − 4.48𝑥3 +
5

6
< 𝑥 − 1 >4−

5

6
< 𝑥 − 3 >4 

The extreme value of deflection is 𝑤(2.28) =
20.63

𝐸𝐼
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Example 8.7 

To reduce the weight of a metal beam the flanges are made of steel E = 200 GPa and the web of 

aluminum E = 70 GPa as shown in the Figure 8.12. Determine the maximum deflection of the 

beam. 

 

Fig. 8.12 Composite beam with the load. 

Solution 

the bending moment equation: 

𝑀(𝑥) = 5𝑥 − 10𝑥0 

𝐸𝐼𝑤′′(𝑥) = −5𝑥 + 10𝑥0 

𝐸𝐼𝑤′(𝑥) = 𝐶 − 2.5𝑥2 + 10𝑥 

𝐸𝐼𝑤(𝑥) = 𝐶𝑥 + 𝐷 = −0.8333𝑥3 + 5𝑥2 

from KBC: 𝑤(0) = 𝑤′(0) = 0 → 𝐶 = 𝐷 = 0 

𝑤(2) =
1

𝐸𝐼
(−0.8333 ∙ 23 + 5 ∙ 22) =

13.33

𝐸𝐼
 

the flexural stiffness will be calculated for homogeneous cross-section made from aluminum: 

𝑛 =
𝐸𝑠𝑡

𝐸𝑎𝑙
= 2.857 

the weighted inertia moment:  

𝐼𝑦 = 2 ∙ 2.857 ∙ (0.07 ∙
0.013

12
+ 0.07 ∙ 0.01 ∙ 0.0552) + 0.01 ∙

0.073

12
= 1.242 ∙ 10−5 m

4
 

the flexural stiffness: 

𝐸𝐼 = 𝐸𝑎𝑙𝐼𝑦 = 70 ∙ 109 ∙ 1.242 ∙ 10−5 = 869400 Nm
2
 

the maximum deflection: 
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𝑤 =
13.33∙103

869400
= 0.0153 m = 1.53 cm 

Review problems 
Determine the deflection at the point K of the beams in Fig. 8.17, using the Macaulay’s method. (Use the 

statykawin program for verification of solutions). 

 

K K K K K 

K K K K K K 

 

Fig. 8.13 Review problems 

 


