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3. Pure and biaxial bending 

Introduction 

Bending is a major concept used in the design of many structural components, such as beams and girders. 

It is a case of prismatic member loading, when the direction of the bending moment vector (as a so-called 

free vector) is parallel to principal central axis of the cross-section. 

The simplest examples of the pure bending are a barbell or an axle in a trailer. (These cases are commonly, 

however not correctly, named 4-point bending). 

Some results of the pure bending will be also used in the analysis of other types of loading, such as 

eccentric axial loading and transverse loading. 

The BVP solution can be found by the static approach, similarly to the case of tension.  

Bernoulli’s theorem 

A cross-section, plane and perpendicular to the bar axis before loading, remains a plane and perpendicular 

to the deformed bar axis after the loading.  

This does not rule out the possibility of deformations within the cross-section plane. 

We will use the above theorem as the kinematic approximate assumption to other loading cases. 

Strain and stress state 

The longitudinal normal strain x  varies linearly with the distance from the neutral surface. The neutral 

axis (surface) intersects the cross-section and divides it into two regions: compressed and tensioned. The 

neutral axis agrees with the principal central axis of the applied bending moment.  

Due to the Hooke’s law, the repartition of normal stress, the flexural stress, is also linear: 
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where the distance z is measured from the principal central axis. 

The maximum absolute value of the stress is attained at the fibers which are the most distant from the 

neutral axis: 
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We denote the elastic section modulus yW  as: 
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Maximum stress is proportional to the bending moment and inversely proportional to the elastic section 

modulus. 

From the ultimate limit state we have the design inequality: 
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By virtue of Saint-Venant’s principle, the relations obtained can be used to compute stresses as long as the 

section considered is not too close to the points where the couples are applied. 

Three kinds of problems can arise: 
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 we seek for material that can sustain the loading (it happens rarely, usually the choice of material 

depends on other reasons – technological, economic, etc.), 

 we determine the largest permissible load for given material and cross-section geometry, 

 we determine the cross-section geometry needed to bear the loading. 

Curvature 

The curvature of the bent beam is: 
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Examples 

Example 4.1 

There are three cross-sections with the same height and area. Which section will be the most useful for the 

pure bending? Assume the same value of bending moment. 
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Fig. 3.1 Three cross-sections 

Solution 

We calculate the elastic section modulus: 

 for the rectangle 12yW  cm
3
 (100%) 

 for the box 33.15yW  cm
3
 (128%) 

 for the I-beam 67.18yW  cm
3
 (156%) 

Assuming the maximum value of the stress for rectangle as 100%, the corresponding values for the box and 

I-beam are 78% and 64%, respectively. 

The results show that the best cross-section geometry for the pure bending is the one with the material 

which is the most distant from the neutral axis; it means S-beam (standard beam) and W-beam (wide flange 

beam), Fig. 3.2. 

           
Fig. 3.2 Standard beam and wide flange beam 



Adam Paweł Zaborski 

Example 3.2 

Determine the value of the parameter a of the cross-section of the beam in Fig. 4.3 if P = 140 kN, l = 2 m, 

b = 0.2 m, R = 150 MPa. 
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Fig.. 3.3. Beam and the cross-section 

Solution 

 the maximum value of the bending moment is at the span and is 28 PbM y  kNm 

 position of the cross-section centroid: ay 5.50   

 principal central inertia moment: 417.85 aJ y   

 section modulus: 3
4

48.15
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Finally, we assume a = 2.3 cm, 2380yJ  cm
4
, 188yW  cm

3
 and 149max  x  MPa. 

The normal stress repartition can be presented by means of a stress solid or a stress diagram, Fig. 4.4. 

 

 
Fig. 3.4 Stress solid and stress diagram 

Example 3.3 

Straight rods of 6-mm diameter and 30-m length are stored by coiling the rods inside a drum of 1.25 m 

inside diameter. Assuming the elastic behavior of the rods, determine (a) the maximum stress in the coiled 

rod, (b) the corresponding bending moment in the rod. Use E  = 200 GPa. 

Solution 

The curvature radius is known: 
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The bending moment can be calculated from the curvature formula: 
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The maximal stress is: 
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(much more then the steel elastic limit). 
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Example 3.4 

Knowing that for the extruded beam shown in Fig. 3.5, the allowable stress is 84 MPa in tension and 110 

MPa in compression, determine the largest moment M that can be applied. The bottom side is tensioned. 
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Fig. 3.5 Extruded cross-section 

Solution 

The cross-section characteristics: 

 area: 27123838250)382123( A  mm
2
 

 position of the centroid: 61.18
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 stress repartition:  
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so, we have, respectively: 

 73.2yM  kNm and 12.2yM  kNm, 

and, finally: 

 12.2yM  kNm 

Biaxial bending 

At first glance there are two cases, seemingly different: (a) the bending of the cross-section by the moment 

the direction of which is not parallel to the one of the principal central axes, and (b) the cross-section 

loaded by two bending moments acting in the direction of the principal central axes, Fig. 3.6. 
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Fig. 3.6 Bending moment and its decomposition 

Note, that we always consider the directions of the bending moments in relation with the directions of the 

principal central axes. 
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Tip: there is no biaxial bending of such cross-sections as circle, square, and any regular polygon; there is 

no biaxial bending if any central axis of a cross-section considered is the principal axis, too.  

The normal stress is the sum of the normal stresses of two bending components: 
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The repartition of the normal stress in the cross-section is linear.  

The neutral axis is a straight line that passes through the cross-section centroid: 

y
J

J

M

M
z

z

y

y

z
x  0 . 

The neutral axis doesn’t agree with the direction of the resultant bending moment: it declines more or less 

slightly in the direction of the axis of the smaller principal central inertia moment. 

The maximal value of the normal stress is reached at the points the most distant from the neutral axis.  

From the ultimate limit state we have the design inequality: 

Rx max , 

where R  is the material strength. 

To determine the most exerted points of the cross-section we have to know the position of the neutral axis. 

Examples 

Example 3.4 

The T-shape steel purlin, Fig. 3.7, is bent by the horizontal vector of bending moment. Knowing that the 

acceptable value of the normal stress is 150 MPa, determine the value of the allowable moment. The cross-

section characteristics are: s = h = 60 mm, e = 18.6 mm, 8.23yJ  cm
4
, 2.12zJ  cm

4
, the angle  5.12 . 

 
Fig. 3.7 T-shape purlin 

Solution 

the decomposition of the bending moment: 

  sin,cos MMMM zy , 

the normal stress: 
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the neutral axis equation: 

 yyz 4325.0
2.12

8.23
tan   

from the cross-section drawing, Fig. 3.8: 
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Fig. 3.8 Cross-section with neutral axis 

we get the maximal stress at the web corner, near the symmetry axis, (0, -41.4) in [mm]: 

 MMx
66 101698.010))14.4(041021.0(   

from ultimate limit state, we have: 

 88310150101698.0 66  MMrx  Nm 

Example 3.5 

Determine the cross-section parameter a, Fig. 3.9, knowing that the acceptable stress value is R = 300 MPa. 

 

5a 

a 

a 

3a 

200 kNm 

 
Fig. 3.9 Cross-section with loading 

Solution 

position of the centroid: yc = 1.17 a, zc = 2.17 a 

central inertia moments: Jy = 30.75 a
4
, Jz = 10.75 a

4
, Jyz = -10 a

4
 

eigenvalues: J1 = 34.89 a
4
, J2 = 6.61 a

4
, principal directions:  = 22.49 

bending moments: M1 = Mcos = 185 kNm, M2 = -M sin = -76.5 kNm 

normal stress distribution: 3
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neutral axis equation: 12 19.2 xx   

we calculate the coordinates of the corners in principal central coordinates from the transformation formula 

pt y z x1 x2 from neutral axis.  [MPa] 

A -1.17 a -2.17 a -1.91 a -1.56 a 2.39 a -243 

B 2.83 a -2.17 a 1.78 a -3.09 a 0.34 a 35 

C 2.83 a -1.17 a 2.17 a -2.16 a 1.07 a 109 

D -0.17 a 3.83 a 1.31 a 3.60 a 2.69 a  max. 274 

E -1.17 a 3.83 a 0.38 a 3.99 a 2.01 a 205 

Tab. 3.1 Calculation data for the problem 3.5. 

The most distant point from the neutral axis is point D where the stress value is the greatest. 

The cross-section design: x(1.31 a, 3.60 a)  R        a  0.0485 m  0.05 m 

The normal stress for assumed value of the parameter a are stated in the Tab. 3.1 and the diagram of the 

normal stress distribution is shown in Fig. 3.10. 
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Fig. 3.10 Normal stress distribution 

Review problems 

Problem 3.1 

Determine the cross-section parameter a, Fig. 3.11, if the acceptable value of the normal stress is R = 240 

MPa. (Ans.: a   2.95 [mm]) 
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Fig. 3.11 Cross-section 

Problem 3.2 

Determine the maximum normal stress in the axle of the coal car, Fig. 3.12. Total weight is 72 tonnes, there 

are 4 axles of 120 mm diameter each, the wheel track 1435 cm, the span 1.3 m. (Ans.:  35.1 MPa) 
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Fig. 3.12 Coal car and axle scheme 

Problem 3.3 

Determine the acceptable value of the bending moment, applied to the section in Fig. 3.13, knowing that 

the allowable stress is 80 MPa in tension and 105 MPa in compression. Draw the diagram of the stress 

repartition. (Ans.: M 370 kNm, compression determines) 
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Fig. 3.13 Cross-section in bending 

Problem 3.4 

From the table of I-section profiles, chose an appropriate profile knowing that the acceptable value of the 

normal stress is 150 MPa and that the bending moment M = 12 kNm is rotated by 20 with respect to the 

first principal central axis, counterclockwise. (Ans.: for  IPN 120               MPa) 

Problem 3.5 

Determine the parameter a of the cross-section in Fig. 3.14. The allowable stress value is 280 MPa. Draw 

the stress repartition diagram. (Ans.: a   0.0056 m) 
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Fig. 3.14 Cross-section with loading 

Problem 3.6 

Determine the normal stress distribution of the cross-section in Fig. 3.15. Draw the normal stress diagram 

and determine the stress at p. A. (Ans.: 53.7 MPa) 
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Fig. 3.15 Cross-section with loading 
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Addendum 

Some useful formulae 

The transformation formula for the point’s coordinates: 
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The distance from a point P to a line 0sincos  pzy : 

 pzyd PP  sincos  

Glossary 

free vector – wektor swobodny 

barbell – sztanga 

neutral axis – oś obojętna 

flexural stress – naprężenia zginania 

elastic section modulus – (sprężysty) wskaźnik wytrzymałości na zginanie 

coil – zwój; zwijać 

drum – bęben, beczka 

wheel track – rozstaw kół 

biaxial bending – zginanie ukośne 

purlin – płatew dachowa 


