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9. Strain state



The lowdown on tensor calculus
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Notation:

- vector, 

- matrix, and

- index

example: a velocity vector 𝒗
- vector notation Ԧ𝑣

- matrix notation 𝑣𝑥, 𝑣𝑦 , 𝑣𝑧 or 

𝑣𝑥
𝑣𝑦
𝑣𝑧

- index notation (tensor notation) 𝑣𝑖 , 𝑖 = 𝑥, 𝑦, 𝑧

example: a transformation matrix A

- vector notation 𝑣1, 𝑣2, 𝑣3

- matrix notation 

𝑎𝑥𝑥 𝑎𝑥𝑦 𝑎𝑥𝑧
𝑎𝑦𝑥 𝑎𝑦𝑦 𝑎𝑦𝑧
𝑎𝑧𝑥 𝑎𝑧𝑦 𝑎𝑧𝑧

- index notation (tensor notation) 𝑎𝑖𝑗 , 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧

variables: 𝑥, 𝑦, 𝑧,  or  ξ, η, ζ,  or  𝑥1, 𝑥2, 𝑥3



Tensor calculus – cont. 
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Einstein’s summation convention

Dummy indexes and dummy variables

Whenever an index is repeated once (and no more) in the same term in equation it implies summation over the 

specified range of the index. In such cases there is no need to write the expanded form of the sum or use the 

summation sign.

Example: a set of linear equations

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑏1 = 0
𝑎21𝑥2 + 𝑎22𝑥2 + 𝑎23𝑥3 + 𝑏2 = 0
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 + 𝑏3 = 0

Σ𝑗𝑎1𝑗𝑥1 + 𝑏1 = 0

Σ𝑗𝑎2𝑗𝑥2 + 𝑏2 = 0

Σ𝑗𝑎3𝑗𝑥3 + 𝑏3 = 0

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖 = 0, 𝑖, 𝑗 = 𝑥1, 𝑥2, 𝑥3

The equations contain two different types of indexes: free indexes that appear once in each term of the 

equation, and dummy indexes, that are fictitious and appear temporarily. 

Similarly, we use dummy variables in the integration:

𝑀 𝑥 = න

0

𝑥

𝑞(𝑡) ∙ 𝑥 − 𝑡 𝑑𝑡 = න

0

𝑥

𝑞(ξ) ∙ 𝑥 − ξ 𝑑ξ = න

0

𝑥

𝑞(𝑥1) ∙ 𝑥 − 𝑥1 𝑑𝑥1

(𝑡, ξ, 𝑥1 - dummy variables)

𝑖 – free index, 𝑗 – dummy index

differentiation is written using a comma: 
𝜕ℎ

𝜕𝑥𝑖
≡ ℎ,𝑖



Tensor: definition
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There are several definitions of a tensor.

1. A tensor is just a fancy word for a matrix

2. A tensor is a linear transformation from vectors to vectors

3. A tensor is an ordered set of numbers that transform in a particular way upon a change of basis

4. A tensor of n-rank is a geometric object that projected onto an axis (a direction) gives a tensor of rank 𝑛 − 1
5. (and others, with dyadic product, for instance)

The transformation rule of a tensor of the second rank

𝑡𝑖𝑗 = 𝑡𝑘𝑙𝑎𝑖𝑘𝑎𝑗𝑙

Our choice of a tensor definition:

A tensor of the second rank is a symmetric matrix that transforms according to the tensor transformation rule

where 𝑎𝑖𝑗 are elements of the transformation matrix (orthonormal, 𝑎𝑖𝑗 ≡ cos ෟ𝑥𝑖 , 𝑥𝑗)

Similarly, we have:

- 𝑠, a scalar is a tensor of 0 rank,

- 𝑣𝑖, a vector is a tensor of 1st rank,

- 𝑡𝑖𝑗, a tensor of 2nd rank,

- 𝑡𝑖𝑗𝑘, a tensor of 3rd rank, (etc.)



Tensor: operations and invariants
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decomposition into an isotropic and deviatoric parts:

𝑡𝑖𝑗 =

𝑡11 𝑡12 𝑡13
𝑡21 𝑡22 𝑡23
𝑡31 𝑡32 𝑡33

=

𝑡𝑚 0 0
0 𝑡𝑚 0
0 0 𝑡𝑚

+

𝑡𝑖𝑗 − 𝑡𝑚 𝑡12 𝑡13
𝑡21 𝑡22 − 𝑡𝑚 𝑡23
𝑡31 𝑡32 𝑡33 − 𝑡𝑚

= At + Dt

𝑡𝑚 =
1

3
𝑡11 + 𝑡22 + 𝑡33

summation (allowed only for the terms with the same free index (indexes))

𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

Multiplication

- scalar product (example: 𝑙2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 = 𝑣𝑖𝑣𝑖 , 𝑖 = 𝑥, 𝑦, 𝑧)

- contraction (example: tr A = t11 + 𝑡22 + 𝑡33 = 𝑡𝑖𝑖 , 𝑖 = 1, 2, 3)

- tensor (cross, dyadic) product (example: 𝑣𝑖𝑤𝑗 = 𝑡𝑖𝑗 , 𝑖 = 𝑥, 𝑦, 𝑧)

transformation from one basis to another (we assume both bases orthogonal)

𝑡𝑖𝑗 = 𝑎𝑖𝑘𝑎𝑗𝑙𝑡𝑘𝑙 , 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧; 𝑖, 𝑗 = 1, 2, 3

𝑥1
𝑥

𝑦𝑥2

𝛼

invariants

invariants of a tensor are independent of the transformation due to rotation of a frame

examples: a vector length, a trace of a matrix (see below)

𝑣𝑖𝑣𝑖 = 𝑎𝑖𝑥𝑣𝑥𝑎𝑖𝑦𝑣𝑦 = 𝑎𝑖𝑥𝑎𝑖𝑦𝑣𝑥𝑣𝑦 = 𝑣𝑥𝑣𝑥 = 𝑣𝑖𝑣𝑖



Kronecker delta and permutation tensor
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Kronecker delta

𝛿𝑖𝑗 = ቊ
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

𝛿𝑖𝑗 =
1 0 0
0 1 0
0 0 1

𝛿11 = 𝛿22 = 𝛿33 = 1
𝛿12 = 𝛿21 = 𝛿13 = 𝛿31 = 𝛿23 = 𝛿32 = 0

permutation symbol (alternating tensor or Levi-Civita tensor)

𝜖𝑖𝑗𝑘 =
1
−1
0

if   𝑖, 𝑗, 𝑘 are 

an even

an odd

not a
permutation of 1, 2, 3

𝜖123 = 𝜖231 = 𝜖312 = 1 (cyclic order: counter clockwise)

𝜖132 = 𝜖213 = 𝜖321 = −1 (cyclic order: clockwise) 

𝜖111 = 𝜖211 = 𝜖133 = ⋯ = 0

example of use:

𝑣𝑖𝑣𝑖 = 𝑎𝑖𝑘𝑣𝑘𝑎𝑖𝑙𝑣𝑙 = 𝑎𝑖𝑘𝑎𝑖𝑙𝑣𝑘𝑣𝑙 and 𝑣𝑖𝑣𝑖 = 𝑣𝑘𝑣𝑘 = 𝑣𝑙𝑣𝑙 → 𝑎𝑖𝑘𝑎𝑖𝑙 = 𝛿𝑘𝑙

Tr 𝑡𝑖𝑗 = 𝑡11 + 𝑡22 + 𝑡33 = 𝑡𝑖𝑖 = 𝑎𝑖𝑘𝑎𝑖𝑙𝑡𝑘𝑙 = 𝛿𝑘𝑙𝑡𝑘𝑙 = 𝑡𝑘𝑘 = 𝑡𝑙𝑙



Eigenvalue problem
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Using the method of Lagrange multipliers the extreme values of the tensor can be found as well as the direction 

of corresponding coordinate set:

𝑡𝑖𝑗 − λ𝛿𝑖𝑗 𝑛𝑗 = 0

(it is a set of three equations: algebraic, homogeneous and linear)

Non-trivial solution: 

det 𝑡𝑖𝑗 − λ𝛿𝑖𝑗 = 0

(but in the same time, it means that the  equations are not independent)

so:

λ3 − 𝐼1λ
2 + 𝐼2λ − 𝐼3 = 0

the roots are so-called principal values of the tensor (the principal invariants):

λ1, ≥ λ2, ≥ λ3
next, solving the equations sets we get the principal directions (the transformation matrix)

𝐼1 = 𝑡𝑖𝑖 = 𝑡11 + 𝑡22 + 𝑡33

𝐼2 = 𝑡𝑖𝑗𝑡𝑗𝑖 =
𝑡11 𝑡12
𝑡21 𝑡22

+
𝑡11 𝑡13
𝑡31 𝑡33

+
𝑡22 𝑡23
𝑡32 𝑡33

𝐼3 = 𝑡𝑖𝑗𝑡𝑗𝑘𝑡𝑘𝑖 =

𝑡11 𝑡12 𝑡13
𝑡21 𝑡22 𝑡23
𝑡31 𝑡32 𝑡33

The fundamental invariants



Eigenvalue problem – special cases
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If 𝐼3 = 0, than one principal value is also zero. Such a state is called 2D case.

The canonical equation becomes:

𝑡2 − 𝐼1𝑡 + 𝐼2 = 0
Principal values are given as:

𝑡1 =
𝑡𝑥 + 𝑡𝑦

2
+

𝑡𝑥 − 𝑡𝑦

2

2

+ 𝑡𝑥𝑦
2

𝑡2 =
𝑡𝑥 + 𝑡𝑦

2
−

𝑡𝑥 − 𝑡𝑦

2

2

+ 𝑡𝑥𝑦
2

and principal directions as:

tan 𝛼𝑖 =
𝑡𝑖 − 𝑡𝑥
𝑡𝑥𝑦

with the transformation matrix (from original to principal directions)  𝑎𝑖𝑗 =
cos 𝛼 sin 𝛼
− sin 𝛼 cos𝛼

If two principal values are equal there is a surface where every direction is principal.

If all principal values are equal, any direction in space is equal. Such a tensor is called isotropic.

The mean values part of a tensor is an example of an isotropic tensor.  



Kinematics of motion
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z 

x 
y 

 

x 

u  ix  

 i  

original 

configuration actual 

configuration 

aktualna 

original (initial, unloaded, not deformed) configuration

actual (final, loaded, deformed) configuration

𝑃 – a material point

ξ𝑖 - coordinates of the point 𝑃 in initial configuration (or position vector of 𝑃)

𝑥𝑖 - coordinates of the point 𝑃 in actual configuration (or position vector of 𝑃)

displacement vector:

𝑢𝑖 = 𝑥𝑖 − ξ𝑖

There are two possible ways of deformation description, depending on the choice of the reference configuration:

- if the initial configuration serves as a reference configuration, this is so-called material (or Lagrangian) 

description

𝑥𝑖 = ξ𝑖 + 𝑢𝑖
- if the final configuration is chosen as a reference configuration, this is so-called spatial (or Eulerian) 

description

ξ𝑖 = 𝑥𝑖 − 𝑢𝑖

Another way is applied in hydromechanics: there is no ability to follow material particles over time and the 

quantities of interest (pressure, velocity, etc.) are described at a fixed position in space.



Lagrangial and Eulerian descriptions
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Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current 

configuration.

During the deformation process, a matter (a continuum, a body, a material) undergoes changes in the shape and 

size.  The distances between points as well as angles between directions change.

If the transformation from the original configuration to the actual configuration is continuous and sufficiently 

smooth, the transition from one configuration to another can be established in both ways: from original to actual 

configuration and vice versa.

Strain is the change of body shape and size. The deformation is more general notion than a strain, including a 

movement of a rigid body. 

In the structural mechanics, usually, the lagrangian description is used (material coordinates). It means, that we 

are interested in the change of position of points, chosen in original configuration.

The lagrangian description is totally  equivalent to the eulerian description.

To describe the strains of material we need to select a suitable measure for the purpose.



Deformation and strain
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The spatial derivatives of one set of coordinates with respect of another set of coordinates, are:

- spatial in regard to material
𝜕𝑥𝑖
𝜕ξ𝛼

= 𝑥𝑖,𝛼 = 𝑢𝑖,𝛼 + 𝛿𝑖𝛼

- material in regard to spatial
𝜕ξ𝛼
𝜕𝑥𝑖

= ξ𝛼,𝑖 = 𝛿𝛼𝑖 − 𝑢𝛼,𝑖

and their total derivatives, respectively:

𝑑𝑥𝑖 = 𝑥𝑖,𝛼𝑑ξ𝛼
and

𝑑ξ𝛼 = ξ𝛼,𝑖𝑑𝑥𝑖

where the quantities 𝑥𝑖,𝛼 and ξ𝛼,𝑖 are the deformation gradients. The deformation gradient is the fundamental 

measure of body deformation.



Tensors of finite strains
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Let’s calculate the length of an elementary segment squared:

𝑑𝑠0
2 = 𝑑ξ𝛼𝑑ξ𝛼 = 𝑑ξ𝛼𝑑ξ𝛽𝛿𝛼𝛽 = ξ𝛼,𝑖𝑑𝑥𝑖ξ𝛽,𝑗𝑑𝑥𝑗𝛿𝛼𝛽

and

𝑑𝑠2 = 𝑑𝑥𝑖𝑑𝑥𝑖 = 𝑑𝑥𝑖𝑑𝑥𝑗𝛿𝑖𝑗 = 𝑥𝑖,𝛼𝑑ξ𝛼𝑥𝑗,𝛽𝑑ξ𝛽𝛿𝑖𝑗

Their difference is:

- in material coordinates

𝑑𝑠2 − 𝑑𝑠0
2 = 𝑑𝑥𝑖𝑑𝑥𝑖 − 𝑑ξ𝛼𝑑ξ𝛼 = 𝑥𝑖,𝛼𝑥𝑗,𝛽𝛿𝑖𝑗 − 𝛿𝛼𝛽 𝑑ξ𝛼𝑑ξ𝛽

- in spatial coordinates

𝑑𝑠2 − 𝑑𝑠0
2 = 𝑑𝑥𝑖𝑑𝑥𝑖 − 𝑑ξ𝛼𝑑ξ𝛼 = 𝛿𝑖𝑗 − ξ𝛼,𝑖ξ𝛽,𝑗𝛿𝛼𝛽 𝑑𝑥𝑖𝑑𝑥𝑗

By definition, the Lagrange strain tensor is:

𝐸𝛼𝛽 ≝
1

2
𝑥𝑖,𝛼𝑥𝑗,𝛽𝛿𝑖𝑗 − 𝛿𝛼𝛽

and the Euler strain tensor is:

𝑒𝑖𝑗 ≝
1

2
𝛿𝑖𝑗 − ξ𝛼,𝑖ξ𝛽,𝑗𝛿𝛼𝛽

Tensor character of above objects is obvious as an external product of two vectors.



Tensors of finite strain – cont. 
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The tensors may be expressed in terms of the displacement:

- Langrange tensor

𝐸𝛼𝛽 =
1

2
𝑢𝑖,𝛼 + 𝛿𝑖𝛼 𝑢𝑗,𝛽 + 𝛿𝑗𝛽 𝛿𝑖𝑗 − 𝛿𝛼𝛽 = ⋯ =

1

2
𝑢𝛼,𝛽 + 𝑢𝛽,𝛼 + 𝑢𝑘,𝛼𝑢𝑘,𝛽

- Euler tensor

𝑒𝑖𝑗 =
1

2
𝛿𝑖𝑗 − 𝛿𝛼,𝑖 − 𝑢𝛼,𝑖 𝛿𝛽𝑗 − 𝑢𝛽,𝑗 𝛿𝛼𝛽 = ⋯ =

1

2
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 − 𝑢𝛼,𝑖𝑢𝛼,𝑗

non-linear terms



Measures of deformation
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The primitive notions in the continuum mechanics are motion and material.

The one particular measure of strain may be the relative elongation:

λ =
𝑙

𝑙0

The above measure is not suitable for the structural materials, because the results would be within the range:

λ ∈ (0.999 ÷ 1.001)

Another possible choice of the function 𝜀 = 𝑓 λ , is 𝑓 λ = 1 = 0. Developing the function in Taylor series 

about 1, we get:

𝑓 λ = 𝑓 1 +
λ − 1

1!
𝑓′ 1 +

λ − 1 2

2!
𝑓′′ 1 +⋯+

λ − 1 𝑛

𝑛!
𝑓 𝑛 1 +⋯

with the conditions: 

𝑓 1 = 0, 𝑓′ 1 = 1 and ∀λ > 0: 𝑓′ 0 > 0 (function monotonicity)

we get general Hill form:

𝜀 𝑛 = 𝑓 λ =
λ2𝑛 − 1

2𝑛



Measures of deformation – cont. 
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-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2 2,5

n=1
n=1/2

n=0

n=-1

for 𝑛 =
1

2
→ 𝜀 = λ − 1 =

𝑙−𝑙0

𝑙0
(Cauchy (infinitesimal) tensor)

for 𝑛 = 1 → 𝜀 =
λ2−1

2
=

1

2

𝑙2−𝑙0
2

𝑙0
2 (Green (eulerian) tensor)

for 𝑛 = −1 → 𝜀 =
λ2−1

−2
=

1

2

𝑙2−𝑙0
2

𝑙2
(Almansi (lagrangian) tensor)

for 𝑛 = 0 → 𝜀 = lim
𝑛→0

λ2𝑛−1

2𝑛

′

= ln ξ = ln
𝑙

𝑙0
(Hencky measure)



Small derivatives of displacements
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we assume:
𝜕𝑢𝑖
𝜕𝑥𝑗

,
𝜕𝑢𝛼
𝜕ξ𝛽

≪ 1

the nonlinear terms in the Lagrange and Euler tensor vanish

moreover, we equate the actual configuration with the initial configuration

Cauchy tensor of infinitesimal strains:

𝜀𝑖𝑗 =
1

2
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

In engineering notation, the Cauchy equations (the geometric equations) are:

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
𝜀𝑥𝑦 =

1

2

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
𝜀𝑥𝑧 =

1

2

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
𝜀𝑦𝑧 =

1

2

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦



Infinitesimal strain tensor (Cauchy)
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𝑇𝜀 =

𝜀𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧

The strain matrix is symmetric:

𝜀𝑖𝑗 = 𝜀𝑗𝑖
Strain is dimensionless. All values in the above matrix are less than 

𝜀𝑖𝑗 < 0.001

𝜀𝑥 , 𝜀𝑦 , 𝜀𝑧 − linear strains in direction 𝑥, 𝑦, 𝑧, respectively

𝜀𝑥𝑦 , 𝜀𝑥𝑧, 𝜀𝑦𝑧 − angular strains between directions 𝑥𝑦, 𝑥𝑧, 𝑦𝑧, respectively

𝑇𝜀 =

𝜀𝑥
1

2
𝛾𝑥𝑦

1

2
𝛾𝑥𝑧

1

2
𝛾𝑦𝑥 𝜀𝑦

1

2
𝛾𝑦𝑧

1

2
𝛾𝑧𝑥

1

2
𝛾𝑧𝑦 𝜀𝑧

The strain matrix is an image of state of strain

(in an old engineering notation):



Interpretation of Cauchy tensor of strains
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dx
x

u
u




  

u 

x 

y 

dx 

relative elongation; in the direction of axis x:
𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑥
=
𝜕𝑢

𝜕𝑥
= 𝜀𝑥

it is a ratio of an elongation to total length calculated for a segment with direction x

these elements are on the main diagonal of the strain matrix



Interpretation – cont.
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change of shape – the angular strains

it is a half of change of the right angle between two axes

xy
x

v
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Strain matrix
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The strain matrix as an image of the state of strain at a point and  can be determined in an arbitrary coordinate 

set:

- in (𝑥, 𝑦, 𝑧) Cartesian set

𝜀𝑖𝑗 =

𝜀𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦 𝜀𝑦𝑧

𝜀𝑧
- in ξ, η, ζ Cartesian set

𝜀𝑖𝑗 =

𝜀ξ 𝜀ξη 𝜀ξζ
𝜀η 𝜀ηζ

𝜀ζ

- in 𝑥1, 𝑥2, 𝑥3 Cartesian set

𝜀𝑖𝑗 =

𝜀1 𝜀12 𝜀13
𝜀2 𝜀23

𝜀3
The above matrix describe the same strain state at the same material point

A fundamental question arises: what is a coordinate set that gives extreme values of strains?



Strain eigenvalues problem
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The strain matrix is a tensor, so one can use the transformation rule to determine the strain matrix in an arbitrary 

coordinate set, using the transformation matrix. The transformation matrix is ortho-normal (orthogonal and 

normalized).

In the principal coordinate set, the strain matrix reads:

𝑇𝜀 =

𝜀𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦 𝜀𝑦𝑧

𝜀𝑧

→

𝜀1 0 0
0 𝜀2 0
0 0 𝜀3

with the principal directions, given by the transformation matrix

𝑎𝑖𝑗 =

𝑎1𝑥 𝑎1𝑦 𝑎1𝑧
𝑎2𝑥 𝑎2𝑦 𝑎2𝑧
𝑎3𝑥 𝑎3𝑦 𝑎3𝑧

The first invariant of the strain matrix: has an interpretation of a volume change.

Proof:

∆𝑉 = 1 + 𝜀𝑥 1 + 𝜀𝑦 1 + 𝜀𝑧 − 1 = 1 + 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 + ε𝑥𝜀𝑦 + 𝜀𝑥𝜀𝑧 + 𝜀𝑦𝜀𝑧 + 𝜀𝑥𝜀𝑦𝜀𝑧 − 1 ≅ 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧
The change of volume is called dilatation.



Fundamental theorem on deformation
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Any strain state at a point is composed from extensions/shortenings only in three perpendicular directions.

The fundamental theorem on deformation

Any deformation consists of a rigid body translation and rotation of the principal 

axes and of elongations and/or shortenings along these axes

Strain ellipsoid – graphical presentation of the strain state

The principal axes of the strain ellipsoid are the principal extensions.



Compatibility equations
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We assumed that the transformation from initial configuration to the actual 

configuration is continuous and sufficiently smooth:

- curved lines remain curved lines (without a sharp crease nor break)

- every points with their neighborhood transfers with its neighborhood

- no new points arise during the process

- no point vanishes during the process

The above restrictions on the continuity of material have mathematical expression by 

so-called the compatibility equations:

𝜀𝑖𝑗,𝑘𝑙 + 𝜀𝑘𝑙,𝑖𝑗 − 𝜀𝑖𝑘,𝑗𝑙 − 𝜀𝑗𝑙,𝑖𝑘 = 0

(81 equations, but only 6 independent)

Every symmetric matrix may be a strain matrix if and only if the matrix fulfills the compatibility conditions.

The Cauchy geometric equations are the set of differential equations with partial derivatives. With the 

(kinematic) boundary conditions they form a boundary value problem (BVP), called in mathematics the 

Cauchy’s problem.



Strain gage rosettes
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Strain gages – a measurement of strain along some direction (in 2D)

the strain state in 2D: 𝜀𝑖𝑗 =
𝜀𝑥 𝜀𝑥𝑦
𝜀𝑥𝑦 𝜀𝑦

can be the strain state coordinates restored from measurement of linear strain in three different directions?

the transformation rule for arbitrary directions (𝑎, 𝑏, 𝑐) inclined by an angle (𝛼, 𝛽, 𝛾):

ൢ

𝜀𝑎 = 𝑎𝛼𝑥
2 𝜀𝑥 + 2𝑎𝛼𝑥𝑎𝛼𝑦𝜀𝑥𝑦 + aay

2 ε𝑦

𝜀𝑏 = 𝑎𝑏𝑥
2 𝜀𝑥 + 2𝑎𝑏𝑥𝑎𝑏𝑦𝜀𝑥𝑦 + aby

2 ε𝑦

𝜀𝑐 = 𝑎𝑐𝑥
2 𝜀𝑥 + 2𝑎𝑐𝑥𝑎𝑐𝑦𝜀𝑥𝑦 + acy

2 ε𝑦

→ ቑ

𝜀𝑥 = 𝜀𝑥(𝜀𝑎 , 𝜀𝑏 , 𝜀𝑐)
𝜀𝑦 = 𝜀𝑦(𝜀𝑎 , 𝜀𝑏 , 𝜀𝑐)

𝜀𝑥𝑦 = 𝜀𝑥𝑦(𝜀𝑎 , 𝜀𝑏 , 𝜀𝑐)
→ 𝜀1, 𝜀2, 𝛼

so, a measurement of an angular strain is not needed, however such gages also exist
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Thank you for your attention!


