
Strength of Materials 

1. Tension 



Tension – the first experiments 

Leonardo da Vinci (XV cent.) 
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Ropes: lifting heavy elements/stones; ship tackling, etc. 

• Domenico Galileo Galilei (XVI-
XVII cent.) 

𝜎 =
𝑃

𝐴
 

Wires! 



Tension – contemporary experiments 
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general idea 

UTM/UTS 



Tension – steel wire specimen 

several stages: 

• proportionality 

• elasticity (reversibility) 

• plasticity (irreversibility) 

• breaking (max load) 
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Load-extension curve for a steel wire 



Tension – high-strength steel 

axis x – „engineering” strain 
measure 
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Tensile stress-strain for a high-strength steel 



strain measures 
engineering, Cauchy strain 

𝜀 =
𝑙1 − 𝑙0
𝑙0

=
𝑙1
𝑙0
− 1   𝑙1 = 𝜀 + 1 𝑙0 

𝑙 = 𝑙0 1 + 𝜀1 1 + 𝜀2  =?  𝑙0 1 + 𝜀1 + 𝑙0(1 + 𝜀2) 

small strains (≪ 1): 𝜀1  = 0.0002, 𝜀2 = 0.0003 
𝑙 = 1.0002 ∙ 1.0003𝑙0 = 1.00050006𝑙0 ≈ 

1.0002𝑙0 + 1.0003𝑙0 = 1.0005𝑙0 

we observe additivity 

finite strains: 𝜀1 = 0.2, 𝜀2 = 0.3 
𝑙 = 𝑙0 ∙ 1.2 ∙ 1.3 = 1.56𝑙0 

𝑙 = 1.2𝑙0 + 1.3𝑙0 = 1.5𝑙0 (error 4%) 
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strain measures – cont. 
true, Hencky strain 

𝜀𝐻 = ln
𝑙1
𝑙0
= ln

𝑙1 − 𝑙0 + 𝑙0
𝑙0

= ln(𝜀 + 1) 

𝜀 ≪ 1:     𝜀1 = 0.0002, 𝜀2 = 0.0003 

𝜀𝐻 = ln 1.0002 + ln 1.0003 = ln(1.0002 ∙ 1.0003) =0.0004999 

(additivity is obvious) 

finite strains: 
𝜀𝐻 = ln 1.2 + ln(1.3) = ln 1.2 ∙ 1.3 = ln 1.56 = 0.4444685 

(additivity is still valid) 
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Tension – high-strength steel 

axis x – „engineering” strain 
measure 

axis y – „engineering” stress 
(constant area of the cross-section 
has been used) 

E (Young modulus) – tangent of 
the slope angle of the 
proportionality range line 

the modulus indicates the material 
stiffness 
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Tensile stress-strain for a high-strength steel 



Tension – unloading and reloading 

during unloading the elastic strains 
vanish 

only the plastic strains remains 
(there are permanent strains) 

unloading is (almost) elastic 

reloading is (almost) elastic 

yielding point changes during 
loading process – material 
parameters change 
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Unloading and reloading of a material  

in the inelastic range 

𝜀𝑒𝑙 𝜀𝑝𝑙 



Tension and compression of concrete 

the compression strength of 
concrete 

the tensile strength of concrete is 
only about one-tenth of that in 
compression   
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Typical compressive and tensile stress-strains 

curves for concrete 



Tension of annealed mild steel 

slope of 0a is usually about 200 GPa 

𝜎𝑎 ≈ 300 MPa (upper yield point) 

𝜎𝑏 = 𝜎𝑐 (lower yield point) 

𝜀𝑏𝑐 ≈ 40𝜀0𝑎  

cd stage is a strain-hardening 

point d is the ultimate stress point 

df  stage is a necking 
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Tensile stress-strain curve for an annealed mild steel 



Tension – testing specimens failure 
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Necking in tensile failures of ductile materials: 

mild-steel specimen with „cup and cone” (upper) 

and aluminum-alloy specimen with double „cup” 

type of failure 

Failure on a diagonal plane 

Barrel-like failure of compressed  

mild-steel specimen 



Tension – proof stresses 

The proportionality limit is difficult 
to determine experimentally. 

To overcome this problem the proof 
stress is defined on the basis of a 
specific level of the permanent 
strains. 
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Proof stresses of an aluminum-alloy material 



Tension – ductility measurement, toughness 

percentage reduction in area 
𝐴0 − 𝐴1
𝐴0

∙ 100% 

 

percentage increase in length 
𝐿1 − 𝐿0
𝐿0

∙ 100% 

28/02/2019 Adam Paweł Zaborski 14/30 

Work done in stretching a bar through 

a small extension 



Tension - schematizations 

Hooke – material stiffness 

 

 

 

Levy-Mises – material strength 

 

 

 

 

 

Prandtl – material toughness 
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𝛼 

𝐸 = tan𝛼 

𝜎0 

𝜀 

𝜎 𝜎 

𝜎 

𝜎0 

𝜀 

𝜀 

perfectly elastic material 

perfectly plastic material 

perfectly elastic-plastic material 



Tension - creep 

constant stress loading creep curve for a material in 
inelastic range 
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creep – slow increase of strains in time (high stress level, high temperature) 

𝜀 

𝜀 
t 

t 

fluid type, unrestricted 

(asphalt) 

solid body type 

(concrete) 



Tension – BVP solution 
 

Problem formulation 

A straight prismatic bar of an arbitrary cross-section shape, fixed at one point on 
extremity (coordinate set origin), loaded by continuous surface loading with 
constant intensity 

We have 15 algebraic/differential equations, we seek 15 unknown functions. 

Semi-inverse approach – static approach: 

We guess the stress matrix that fulfill Navier’s equations (of internal static balance) 
and static boundary conditions. Next, we calculate (from Hooke’s equations) the 
strain matrix. We check the compatibility equations to make sure there is solution 
for displacements in the class of continuous functions (because we assume 
continuum). Using Cauchy geometrical equations we find displacements, and if the 
displacements fulfill kinematic boundary conditions we have exact mathematical 
solution to the problem.  

𝑇𝜎      𝑇𝜀      𝒖  
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Tension – BVP solution 
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static boundary conditions: 

a) at the bottoms: 𝜎𝑥 = 𝑞 

b) elsewhere: 𝜎𝑖𝑗 = 0 

We try the stress matrix as follows: 

𝑇𝜎 =
𝑞 0 0
0 0 0
0 0 0

 

The stress matrix fulfill the static boundary 

conditions as well as Navier equations if we 

put the mass forces 𝑃𝑖 = 0 

We calculate the strain matrix: 

𝑇𝜀 =

𝑞

𝐸
0 0

0 −υ
𝑞

𝐸
0

0 0 −υ
𝑞

𝐸

 

The compatibility conditions are fulfilled. 

Cauchy equations: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=
𝑞

𝐸
,  

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
= −υ

𝑞

𝐸
, 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
= −υ

𝑞

𝐸
, 

 

𝜀𝑥𝑦 =
1

2

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
= 0, 

𝜀𝑥𝑧 =
1

2

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 0 

𝜀𝑦𝑧 =
1

2

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
= 0 

 

the complementary functions: 

𝑢0 = 𝑎 + 𝛽𝑧 − 𝛾𝑦 

𝑣0 = 𝑏 − 𝛼𝑧 + 𝛾𝑥 

𝑤0 = 𝑐 − 𝛽𝑥 + 𝛼𝑦 

 the particular integral: 

𝑢𝑠 =
𝑞

𝐸
𝑥, 𝑣𝑠 = −υ

𝑞

𝐸
𝑦, 𝑤𝑠 = −υ

𝑞

𝐸
𝑧 

𝑢𝑖 0 = 0; 𝑢𝑖,𝑗 0 = 0 𝑢 = 𝑢0 + 𝑢𝑠 with 



Tension – BVP final solution 

stress matrix 

𝑇𝜎 =
𝑞 0 0
0 0 0
0 0 0

 

strain matrix 

𝑇𝜀 =

𝑞

𝐸
0 0

0 −υ
𝑞

𝐸
0

0 0 −υ
𝑞

𝐸

 

displacement vector 
𝑢 =

𝑞

𝐸
𝑥, 𝑣 = −υ

𝑞

𝐸
𝑦, 𝑤 = −υ

𝑞

𝐸
𝑧 

The stress state is uniaxial 
and uniform (homogeneous). 

The strain state is triaxial and 
uniform (homogeneous). 

The elongation of a bar is 
proportional to the bar length. 

The Poisson’s coefficient is 
the ratio between axial 
elongation and lateral shrink: 
υ = −

𝜀𝑦

𝜀𝑥
= −

𝜀𝑧

𝜀𝑥
 

Plane cross-section remains 
plane. 
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Pure tension versus simple tension 
from de Saint-Venant hypothesis: 
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Solution validity 

range 

instead of 𝑞 we can put: 𝑞 = 𝜎𝑥 =
𝑁

𝐴
  (Galileo’s finding) 

 



Tension – formulae ready to use 
In the case of constant axial force, N=const 

• stress, 𝜎𝑥 =
𝑁

𝐴
  (in [MPa]) 

• strain, 𝜀𝑥 =
𝑁

𝐸𝐴
, 𝐸𝐴 – tension stiffness (in [N]) 

• elongation, ∆𝑙 =
𝑁𝑙

𝐸𝐴
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Compression? 

Yes, if the member is „sufficiently thick”. The rule of thumb: if the slenderness, λ =
𝑙

𝑖𝑚𝑖𝑛
 is less than 10 we can 

safely use the above formulas with the opposite sign. 



Tension – design conditions 
There are two main requirements: of the strength and of the usability. 

The first requirement means that every structure has to sustain the 
applied load.  

The second one consists in several demands of durability, rigidity, 
resistance to severe weather conditions, and so on. 

From the point of view of the strength of materials course, two principal 
design conditions should be listed: 

• the ultimate limit state, 𝜎𝑥 ≤ 𝑅 

• the serviceability limit state, usually the stiffness of the structure; for 
the tension it can be: ∆𝑙 ≤ ∆𝑙𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 
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Tension – breaking length (self support length) 

What is the maximum length of a vertical column of the material 
(assuming a fixed cross-section) that could suspend its own weight 
when supported only at the top? 
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x 

axial force (changes with elevation): 𝑁 𝑥 = 𝐴 ∙ 𝑥 ∙ 𝛾 

normal stress: 𝜎𝑥 =
𝑁

𝐴
= 𝛾 ∙ 𝑥 (doesn’t depend on the cross-section area!) 

max𝜎𝑥 < 𝑅𝑚         𝑥 =
𝑅𝑚
𝛾

 

some typical values: low carbon steel 4.73 km, nylon 7.04 km, aluminum  

alloy 11.7 km, oak 12-13 km, titanium 20 km, balsa 53.2 km, spider silk  

109 km, kevlar 256 km, carbon nanotube 4716 km, fundamental 

(theoretical) limit 9.2 ∙ 1012 km 



Tension – bar structure deformability 
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Problem: Determine needed cross-sectional area of the bars in the truss below. Determine a new position 

of the bottom node and the change of bar angles. Assume E = 210 GPa and R = 300 MPa. 

Solution: 

from statics: 𝑁1 = 46.65 kN, 𝑁2 = 64.62 kN 

needed area of the bars: 

𝐴1 =
𝑁1
𝑅
=
46.65 ∙ 103

300 ∙ 103
= 1.56 ∙ 10−4 m2 = 1.56 cm2 

𝐴2 =
𝑁2
𝑅
=
64.62 ∙ 103

300 ∙ 103
= 2.16 ∙ 10−4 m2 = 2.16 cm2 

elongations of the bars: 

∆𝑙1 =
𝑁1𝑙1
𝐸𝐴1

=
46.65 ∙ 103 ∙ 34

210 ∙ 109 ∙ 1.56 ∙ 10−4
= 8.36 ∙ 10−3  m = 8.36 mm 

∆𝑙2 =
𝑁2𝑙2
𝐸𝐴2

=
64.62 ∙ 103 ∙ 29

210 ∙ 109 ∙ 2.16 ∙ 10−4
= 7.71 ∙ 10−3  m = 7.71 mm 

it can be proved from geometric calculation that angle changes are: 

∆𝛼1= 0.033°,   ∆𝛼2 = 0.049° and can be neglected 

 

8.36 7.71 

3m 2m 

5m 

100kN 

1 2 



1     2     3 

0     1     5 

2     2     2 

2     2     2 

Statically indeterminate structures 
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structure number 

degree of static indeterminacy 

degree of kinematic indeterminacy 

number of degrees of freedom 

The key is the number of degrees of freedom! 

 

7 unknowns => 7 equations => 7 – 2 static eq. 

 => we need 5 additional compatibility equations  

3 DoF 

1 DoF 



Tension – composed members 
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If the bottoms are plane, every cross-section remains plane. 

It means that the strain is constant in the cross-section and the kinematic indeterminacy is one, regardless of 

the number of the materials.  

 

 
The static indeterminacy is equal to the number of materials minus one. 

Example of two materials: a) Compute the maximum axial force that may be applied in the elastic regime. 

b) Compute the axial force which causes yielding of the bar.  

Solution 

𝐴𝑎 = 16cm2, 𝐴𝑏 = 20 𝑐m2, 𝐸𝑎 = 75 GPa, 𝐸𝑏 = 200 GPa 
a) 𝜀𝑎 = 𝜀𝑏 = 0.001  
𝑁 = 𝑁𝑎 + 𝑁𝑏 = 𝜎𝑎𝐴𝑎 + 𝜎𝑏𝐴𝑏 = 0.001 𝐸𝑎𝐴𝑎 + 𝐸𝑏𝐴𝑏 = 
= 0.001 75 ∙ 109 ∙ 16 ∙ 10−4 + 200 ∙ 109 ∙ 20 ∙ 10−4 = 
= 120 + 400 ∙ 103 N = 520 kN 

b) 𝑁 = 300 ∙ 106 ∙ 16 ∙ 10−4 + 200 ∙ 106 ∙ 20 ∙ 10−4 = 
= 400 + 480 ∙ 103 𝑁 = 880 kN 



Tension – prestressing 
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Let’s consider the same materials and the cross-section as in the previous example. 

To maximize the tensile loading capacity in the elastic regime, the bar is prestressed, by applying a tensile force 

to the material a before the connection between the two materials is established. This force is removed after the  

connection’s bonding. 

Compute the value of the prestressing force, which leads to the simultaneous yielding of the two materials. 

Solution 

The strains in each of materials are different, the final values are: 𝜀𝑎 = 0.004, 𝜀𝑏 = 0.001. 

After the connection’s bonding the changes of the strains were equal, but the values of the strains not: 

𝜀𝑏 = 0, 𝜀𝑎 =? The strain in the material b was smaller by 0.001, so the same change was in the material a: 

𝜀𝑎 = 0.004 − 0.001 = 0.003. This strain resulted from the prestressing force: 

𝜀𝑎 =
𝜎𝑎

𝐸𝑎
=

𝑁𝑎

𝐸𝑎𝐴𝑎
= 0.003       𝑁𝑎 = 0.003 ∙ 75 ∙ 109 ∙ 16 ∙ 10−4 = 360000 N = 360 kN  

This prestressing force raises the maximum load in the elastic regime from 520 kN to the value of 880 kN  

and the yielding stress in both materials.  



Tension – temperature variations 
Dimensions of the body can change due to: 

- mechanical loading, ∆𝑙 =
𝑁𝑙

𝐸𝐴
 

- temperature variations, ∆𝑙 = 𝛼𝑙∆𝑡 

- humidity variations (wood) 

- other factors… 

In the case of statically determined structures non-mechanical factors 

don’t change stresses. This is not true for statically indeterminate  

structures. 
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Tension – temperature variations cont. 
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Statically determinate structure: 

the unconstrained elongations match 

Statically indeterminate structure: 

the unconstrained elongations don’t match 

compatibility conditions require different node position 

the constrained elongations result from balanced set of forces 

these forces stem from thermal stresses 

Useful applications of thermal stresses : 

- riveted joints (permanent assembly) 

- heat shrink assembly (steel tire assembly on a wheel of many rail vehicles, ball bearing assembly) 

Is any relation between tension and a ring? Yes! 



Tension – rings and boilers 
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The rotational symmetry of the problem is evident. 

From projection on the vertical axis we get:  2  𝑞𝑟 sin 𝛼 𝑑𝛼
𝜋

0
− 2𝑁 = 2𝑞𝑟 − 2𝑁 = 0 

If the ring thickness is small in comparison to the radius we may assume the normal  

stress constant (the wall is almost in tension). The error is of the order of 5% for 

 ℎ ≤ 𝑟/10. 

𝜎 ≅ const =
𝑁

𝐴
=

𝑞𝑟

𝐴
       ε =

𝑞𝑟

𝐸𝐴
,   so the axis length increases by 2𝜋𝑟𝜀 and radial displacement is 𝑢𝑟 = 𝜀𝑟 =

𝑞𝑟2

𝐸𝐴
 

The problem with the heat shrink assembly of two rings is a one DoF problem. 

The above solution can be adopted for the problem of a boiler with internal pressure. 

The circumferential (hoop) stress is the same as in a ring, 𝜎𝑐𝑖𝑟 =
𝑝𝑟

𝑡
 

The longitudinal stress may be calculated from the projection onto the horizontal axis: 

𝜎𝑙𝑜𝑛 =
𝑁

𝐴
=
𝜋𝑟2𝑝

2𝜋𝑟𝑡
=
𝑝𝑟

2𝑡
=
1

2
𝜎𝑐𝑖𝑟 

This is the cause that a sausage bursts alongside. 



Thank you for your attention! 


