Strength of Materials

2. Bending



Problem formulation

straight, prismatic bar, fixed at a point in origin of aie [
coordinate set, loaded on the bottoms with linearly
distributed surface continuous loading, g = kz, where
(y, z) are principal central inertia axes of the bar cross-section
similarly to the previous problem of tension, we have

15 equations (3+6 partial differential and 6 algebraic) with

static and kinematic boundary conditions

15 unknowns (6 stress coordinates, 6 of strains, 3 of displacements)

we apply semi-inverse method of solution
Ta - Ts — U

g=kz




Solution to the BVVP

static boundary conditions:

a) atthe bottoms: o, = kz

b) elsewhere: g;; =0

We try the stress matrix as follows:

kz 0 O
T, =10 0 O
0O 0 O

The stress matrix fulfill the static boundary
conditions as well as Navier equations if we
put the mass forces P; = 0

We calculate the strain matrix:

K 0 0
EZ
k
Tg= 0 _UEZ 0
0 0 k
UEZ

The compatibility conditions are fulfilled

Cauchy equations:

_OJu W 1 6u+6v _0
T ox T T fry T3 dy ox)
dv ¢ 1/0u oJw
£y=$=—v‘z, Exz=§ E-I_a_x =0
0w ’»’ _1fov ow _0
=%, "l 272\ T 5y) "

general solution = complementary function + particular integral

the complementary functions:
ul=a+pz—yy
vV =b—az+yx
wl=c—pBx+ay
the particular integral:
s _k k

us = Exz,vs = —vEyz,WS = i(—x2 + vy? — vz?)

u = u® + uS with kinematic boundary conditions:
u;(0) = 0; u;;(0) =0

The complementary function vanishes, so

k k k
s _ |k K 2 2 _ y,2
u=u’=|_zxz vEyz,ZE( x*+vys —vz ))



Simple bending — final formulae

_ kz 0 0 stress state is uniaxial, nonhomogeneous

stressmatrixT, =| 0 0 O for z = 0 stress vanishes (it is neutral axis, locus

ko 0 0 in the cross-section where the stress vanishes)

—Z 0 0

E
strain matrix T. = | 0 _Vg Z 0 strain state is triaxial and nonhomogeneous

0 0 —vig
E
displacements .
k k k 5 5 . forx=const: u==>zs0

U=—=xz,v=-v=yzZ,w = — (—x* + vy —vz*) E

E E 2E plane cross-section remains plane



Pure bending — simple bending

de Saint-Venant principle:

Solution validity
range

N\ = -
/ N

: . _ M M
static equivalence: My, = [, o, zdA = [[, (kz-2)dA =k [[, z°dA =kl, - k= I—yy 0, = I_yz
y

. aM
moreover, from statics: Q, = 0 — d—xy = 0 - M,, = const

Simple bending:
Direction of the bending moment vector coincides with direction of a principal central axis.
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Bending — design

Ultimate limit state: max|o,| < R

The maximum absolute value
‘ I z of the stress is attained at the fibers
_ which are the most distant from
. the neutral axis
neutral axis 7
— Zmax

[My] |
Wy

<
IA
~

|M | def Iy 3 —
max|ay| = I_:|Zmax| Wy = [Zmax| ] max] o]

(elastic) section modulus

5|
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Bending — signs, signs, and signs...
What is the sign of the stress above/below the neutral axis?
Statics: the bending moments are drawn from the tensioned side!

Z
compression

|

compression

Z
(right hand rule) tress should be the same!

m) M, <0 M,
(0} VA
Y ) M,>0 =7,
tension Which side is tensioned?  The answer is here! statics!
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Bending — cross-section deformation

: M M M
Slmple u:—yxz,vz——yyz,W=—y(—X2+V}/2—VZZ)
bending EL, El, 2kl

for negative bending moment (M,, < 0, tension at the lower side)

u(xg) = ﬂ XoZ plane cross-section remains plane
EL, b
b My, 5
vly==|=—v Y2, = —az a straight line
2 EL,
B M2
vly=—=|=v Z=az a straight line
r=-3)=+5

R M B )
WX =Xy, Z = E) = —y<—xg _VZ-I_ Vy2> d parab0|a2
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Bending — deformations of the bar axis

X
€ > X — chord, y — sagitta (versine)
-
. 1 W'
y curvature: k = - = ——— = |w"|
P J1+(w')2

| y/x | v | ¢ | i |relativeerror |_spanchange

1/150 18.75 0.05333 0.9989 0.00107 0.00012
1/250 31.25 0.03200 0.9996 0.00038 0.00004
1/500 62.50 0.01600 0.9999 0.00010 0.00001
M M 1M, |
_ Y 2 2 2 nm_ Y _ 17yl i ) )
w = 2E1y( X< +vyc—vze) > w £l K El, El, - bending stiffness
M,, = const, El,, = const > k = const (circular bending)
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Bending — deformations cont.

Z,W My
X=X, tana=w'(xy) =——=—xg
EL,

p

X,U the displacements in the same cross-section are

My

= _E_Iyxo =tanf

M Ju
u(xgy,y,z) = —#xoz - 3,
y

X0

tana =tanf - a=p G H

Theorem (Bernoulli): [’.’.’.’.’.’.ﬁ]leﬁIZJ.[ILLILLZJT.Z’I.’];jfff.'.'j."ljjjffﬁl’.’.‘.‘jff.l[_ffjﬁ;fl
the cross-sections (plane and perpendicular to the beam axis) I K
remain plane and perpendicular to the actual beam axis

R. Hooke, De potentia restitutiva, 1678 A W e Y Y L
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Bending — deformations cont.

- prismatic bar

- Isotropic material

- constant axial force and bending moment
we observe a symmetry plane (symmetry
of geometry and forces)

J. Bernoulli (1705): in a prismatic bar under constant axial force and constant bending moment, the cross-sections
remain plane and perpendicular to the axis of the bar during the deformation.

The above statement was formulated as a hypothesis.

It is not valid for non-symmetrical internal forces resultants, such as varying axial force and bending moment,
shear force and torsional moment.



Bending — deformations cont.

da Silva: Frey:
\/S}'mmetr}' plane a.a. (action axis)

) Tha. (neutral axis)

1. beam axis, 2. neutral axis,
3. neutral surface
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Bending — example

There are three cross-sections with the same height and area. Which section will be
the most useful for the simple bending? Assume the same value of bending moment.

2 3 4
— | - —
1.5
M
6 4 6 4 max(qg.) = =
(0) = 37
1
rectangle I-beam
mmmm
12 6 46 15.33 128 78
12 6 56 18.67 156 64

rectangle flatwise: A = 12,h = 2,1, = 4,W,, = 4,33.33%, 300%
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Bending — standard I-beam, wide flange W-beam




Bending — principal central inertia axes

y —_— M g/ bending of a beam with asymmetric cross-section
i —+ —} e (thin-walled profile)
[ _ ﬂi ;é a) slice (1) — neutral axis, 2) — load plane)
Y 2 | - . — b) elevation and stresses (1) — neutral axis)

AN

HORROR 1
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Bending — different tension/compr. strength

When R; # R,

- don’t use the section modulus (1t a little confuses the 1ssue)

- determine tensioned/compressed side (statics!)
- verify separately safety of both sides
(at extreme fibers)
- when dimensioning adopt greater area
- when assessing bearing capacity adopt lower value
- general rule: always adopt solution from safer side

max |o.| < R,

[[®

—.
—

—
—
—
—
—
—
—
————
[
——
—
E—

T Mmax |lo:| < R



Bending — different elastic materials

when the cross-section is composed from two different materials, both with geometry that does not violate

geometric symmetry, the Bernoulli principle of plane cross-sections remains valid

the strain distribution is linear in the cross-section
the stress distribution is piecewise linear in the cross-section

b,

- tdy b
NI | SO
; _’_\I\ - S _;'f: ) 5 M -
| X ok
. . T
= =
1 . xé i = ﬁ
| & o
3 ®) © @

{a)

Composite cross-section: a) reinforced concrete plate and steel girder,
b) strain distribution, c) stress distribution, d) homogenized cross-section

Homogenization:
E . . . .
let: E—l = n, when we admit homogenized cross-section, made from material 1, we overstate the stresses

2
n times in material 2, so we can correct this making width n times smaller in the overestimated region



Bending — composite material

' material a

1 material b

The neutral surface has an anticlastic shape (saddle shape), and pi = —v i So, if the Poisson coefficient is not
t

the same in both materials, compatibility conditions should be revised and taken into account. It means that
other components of the stress matrix are non-zero.

The error reported for the stresses and curvatures doesn’t exceed 6.7% (for extreme case of 0 and 0.5 values
of Poisson coefficients) and reduces to 0.6% for the curvatures and 1.8% for stresses (for more usual values
0.15 and 0.3).

Usually, the compatibility conditions are not considered and the ,,normal” simple solution is used.
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Bending — non-prismatic members

GX O (2%
n(—sing,0,cosp) n(0,0,1) T =0 00 Y M, Z
| Tox O O, .Iy(X)
P
) @: qi:anij SBC
q( X :quy :qz) qx:OZGX'O+O°O+O°l:O
qy:0ZGX(—SIH¢)+O-O+/9.COS¢¢O
sz TXZ :JX taﬁgp |

szﬁ'_ qz:O:sz(—Sin(0)+0-0+/G,z-COS(p;tO
o, —
o,=tr,tanp =0, tan2¢
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Bending — residual stresses

Prandtl’s model when M > M,; the material response is partially elastic and partially plastic

e
[

A

plastic zones

elastic zone
: . Mg _ __ bh? bh?
max elastic bending moment: W, = 00 = Mg, = oWy, = ——0y My, = —ao = 1.5M,,
when plastic zone area is half of the c-s: My = 2 - (b4—h : % : g - 0o + % : b4—h : % : % : 00) = % - bh? = 1.375M,,
unloading is an elastic process %  1.3750, 0-37500<
0.18750,

residual stresses:
self-equilibrated set 0.18750,
of internal forces

a 1.3750, -~ 0.3750,
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Bending — possible problems

. M M
basic formulae: o, = 2z, max|o,| <R, x =2
I Ely,

1) stress distribution (given: bending moment, cross-section inertia moment; adopt z axis)

2) stress at extreme fibers (given: bending moment, c-s inertia moment; adopt z axis)

3) bearing capacity (given: material R, c-s inertia moment; calculate M)

4) cross-section dimensioning (given: material R, bending moment M,,; calculate inertia moment needed)
1) profile from the catalogue
2) characteristic parameter of the cross-section geometry
3) just the value of the inertia moment needed

5) curvature (given: bending moment, bending stiffness)

6) bending stiffness (given: curvature, bending moment)

7) material (very rarely, given: bending moment, cross-section geometry)



Bending — examples

(da Silva)

A tree trunk with circular cross-section of diameter d is to be cut to a rectangular
cross-section of base b and height h. Determine the dimensions b and h, in order
to maximize: a) the bending stiffness, b) the bending strength.

Solution

a) The bending stiffness depends on the moment of inertia. To maxignize the stiffness, the inertia moment should
bh3 _ b(b?-d?)2
12 12

be maximized. Because: h? + b? = d?, we get: [ = , the extreme is: % =0->d*?—4b*=0-

V3

b=2 s h=4g52=-3~1732
2 2 b

bh? b(d?—-b?
= ( ), and
6 6

b) To obtain the maximum bending strength, the section modulus must be maximized. W, =
awy, V2

2 a2 _ _a _ V2 h _ ~
—2=0-d*-3b _0—>b_ﬁ—>h_ﬁd—>b_\/§~1.414
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Bending — examples cont.

(da Silva)
The prismatic bar with the cross-section made of two materials, a and b, undergoes a uniform temperature increase

At. The materials have linear elastic behavior defined by the parameters:

E,=E E, =2E,a, = a,a, = 2a.
a) Determine the elongation and the curvature introduced by At (the bar has length I)
b) Determine the distribution of stresses in the cross-section.

—(C |

y Y




Bending — examples cont.

Outline of solution
In the problem, the conditions of symmetry haven’t been violated, so the Bernoulli’s hypothesis is still valid. We

can put: € = ¢, + kz. On the other hand, we have: € = % + aAt, so, we arrive at the set of two linear equations

74t a At =L+ q At
— taAt =—+«a
E, ¢ E, P

N = O-aAa-I_O-bAb =0

E =

with two unknowns o, and oy,.

o . EaAt
2 N X=55
a.,C
-
T . —30
5 —— 18
T, C —
bl
- —
':2.
=
z.ﬂ
18






