
Strength of Materials 

2. Bending 



Problem formulation 

straight, prismatic bar, fixed at a point in origin of  

coordinate set, loaded on the bottoms with linearly  

distributed surface continuous loading, 𝑞 = 𝑘𝑧, where  

(𝑦, 𝑧) are principal central inertia axes of the bar cross-section 

similarly to the previous problem of tension, we have 

15 equations (3+6 partial differential and 6 algebraic) with 

static and kinematic boundary conditions 

15 unknowns (6 stress coordinates, 6 of strains, 3 of displacements) 

we apply semi-inverse method of solution 
𝑇𝜎 → 𝑇𝜀 → 𝑢𝑖 
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Solution to the BVP 
static boundary conditions: 

a) at the bottoms: 𝜎𝑥 = 𝑘𝑧 

b) elsewhere: 𝜎𝑖𝑗 = 0 

We try the stress matrix as follows: 

𝑇𝜎 =
𝑘𝑧 0 0
0 0 0
0 0 0

 

The stress matrix fulfill the static boundary 

conditions as well as Navier equations if we 

put the mass forces 𝑃𝑖 = 0 

We calculate the strain matrix: 

 

𝑇𝜀 =

𝑘

𝐸
𝑧 0 0

0 −υ
𝑘

𝐸
𝑧 0

0 0 −υ
𝑘

𝐸
𝑧

 

The compatibility conditions are fulfilled 

Cauchy  equations: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝑘

𝐸
𝑧,  𝜀𝑥𝑦 =

1

2

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= 0, 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
= −ν

𝑘

𝐸
𝑧,    𝜀𝑥𝑧=

1

2

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= 0 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
= −ν

𝑘

𝐸
𝑧,     𝜀𝑦𝑧=

1

2

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
= 0 

general solution =  

the complementary functions: 
𝑢0 = 𝑎 + 𝛽𝑧 − 𝛾𝑦 
𝑣0 = 𝑏 − 𝛼𝑧 + 𝛾𝑥 
𝑤0 = 𝑐 − 𝛽𝑥 + 𝛼𝑦 

the particular integral: 

𝑢𝑠 =
𝑘

𝐸
𝑥𝑧, 𝑣𝑠 = −ν

𝑘

𝐸
𝑦𝑧, 𝑤𝑠 =

𝑘

2𝐸
−𝑥2 + ν𝑦2 − ν𝑧2  

𝑢 = 𝑢0 + 𝑢𝑠 with  kinematic boundary conditions:  
𝑢𝑖 0 = 0;  𝑢𝑖,𝑗 0 = 0 

The complementary function vanishes, so  

𝑢 = 𝑢𝑠 =
𝑘

𝐸
𝑥𝑧,−ν

𝑘

𝐸
𝑦𝑧,

𝑘

2𝐸
−𝑥2 + ν𝑦2 − ν𝑧2  
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complementary function + particular integral 



Simple bending – final formulae 

stress matrix 𝑇𝜎 =
𝑘𝑧 0 0
0 0 0
0 0 0

 

strain matrix 𝑇𝜀 =

𝑘

𝐸
𝑧 0 0

0 −ν
𝑘

𝐸
𝑧 0

0 0 −ν
𝑘

𝐸
𝑧

 

displacements 

𝑢 =
𝑘

𝐸
𝑥𝑧, 𝑣 = −ν

𝑘

𝐸
𝑦𝑧, 𝑤 =

𝑘

2𝐸
−𝑥2 + ν𝑦2 − ν𝑧2  
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stress state is uniaxial, nonhomogeneous 

for z = 0 stress vanishes (it is neutral axis, locus 

in the cross-section where the stress vanishes) 

strain state is triaxial and nonhomogeneous 

for x = const:  𝑢 =
𝑘𝑥0

𝐸
𝑧, so 

plane cross-section remains plane 



Pure bending – simple bending 
de Saint-Venant principle: 
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Solution validity 

range 

static equivalence: 𝑀𝑦 =  𝜎𝑥 ∙ 𝑧dA =
𝐴  (𝑘𝑧 ∙ 𝑧)dA = 𝑘  𝑧2dA = 𝑘𝐼𝑦  →   𝑘 =

𝑀𝑦

𝐼𝑦𝐴𝐴
 𝜎𝑥 =

𝑀𝑦

𝐼𝑦
𝑧  

moreover, from statics: 𝑄𝑧 = 0 → 
𝑑𝑀𝑦

𝑑𝑥
= 0 → 𝑀𝑦 = const 

Simple bending: 

Direction of the bending moment vector coincides with direction of a principal central axis. 



Bending – design 
Ultimate limit state: max 𝜎𝑥 ≤ 𝑅 
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neutral axis 

𝑧 

𝑧 

The maximum absolute value 

of the stress is attained at the fibers 

which are the most distant from 

the neutral axis  

𝑧max 

max 𝜎𝑥 =
𝑀𝑦

𝐼𝑦
𝑧max  Wy ≝

𝐼𝑦

𝑍max
    [m3]    max 𝜎𝑥 =

𝑀𝑦

𝑊𝑦
 

(elastic) section modulus 

𝑀𝑦

𝑊𝑦
≤ 𝑅 



Bending – signs, signs, and signs… 
What is the sign of the stress above/below the neutral axis? 

Statics: the bending moments are drawn from the tensioned side! 
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compression 

tension 

tension 

compression 

(right hand rule) 

𝑦 
𝑀𝑦 < 0 

𝑧 

𝑧 

𝜎𝑥 =
𝑀𝑦

𝐼𝑦
𝑧 

𝑦 𝑦 

𝜎𝑥 = −
𝑀𝑦

𝐼𝑦
𝑧 

Which side is tensioned? The answer is here! statics! 

the sign of the stress should be the same! 



Bending – cross-section deformation 
𝑢 =

𝑀𝑦

𝐸𝐼𝑦
𝑥𝑧, 𝑣 = −

𝑀𝑦

𝐸𝐼𝑦
𝑦𝑧, 𝑤 =

𝑀𝑦

2𝐸𝐼𝑦
−𝑥2 + ν𝑦2 − ν𝑧2  
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simple 

bending 

plane cross-section remains plane 

𝑣 𝑦 =
𝑏

2
= −ν

𝑀𝑦
𝑏
2

𝐸𝐼𝑦
𝑧 = −𝑎𝑧 

𝑣 𝑦 = −
𝑏

2
= ν

𝑀𝑦
𝑏
2

𝐸𝐼𝑦
𝑧 = 𝑎𝑧 

a straight line 

a straight line 

𝑤 𝑥 = 𝑥0, 𝑧 =
ℎ

2
=

𝑀𝑦

2𝐸𝐼𝑦
−𝑥0

2 − ν
ℎ2

4
+ ν𝑦2  a parabola 2° 

for negative bending moment (𝑀𝑦 < 0, tension at the lower side) 

𝑢(𝑥0) =
𝑀𝑦

𝐸𝐼𝑦
𝑥0𝑧 



Bending – deformations of the bar axis 
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x – chord, y – sagitta (versine) 

𝒚/𝒙 𝒓 𝝋 κ relative error span change 

1/150 18.75 0.05333 0.9989 0.00107 0.00012 

1/250 31.25 0.03200 0.9996 0.00038 0.00004 

1/500 62.50 0.01600 0.9999 0.00010 0.00001 

curvature: κ =
1

ρ
=

𝑤′′

1+ 𝑤′ 2
3 ≅ 𝑤′′  

κ =
𝑀𝑦

𝐸𝐼𝑦
 𝐸𝐼𝑦 - bending stiffness 

𝑀𝑦 = const, 𝐸𝐼𝑦 = const →  κ = const    (circular bending) 

𝑤 =
𝑀𝑦

2𝐸𝐼𝑦
−𝑥2 + ν𝑦2 − ν𝑧2  →   𝑤′′ =

𝑀𝑦

𝐸𝐼𝑦
 



Bending – deformations cont. 
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 z,w 

x,u 
 

 

x = x0:       tan 𝛼 = 𝑤′ 𝑥0 = −
𝑀𝑦

𝐸𝐼𝑦
𝑥0 

the displacements in the same cross-section are 

𝑢 𝑥0, 𝑦, 𝑧 = −
𝑀𝑦

𝐸𝐼𝑦
𝑥0𝑧    →    

𝜕𝑢

𝜕𝑧
 
𝑥0

= −
𝑀𝑦

𝐸𝐼𝑦
𝑥0 = tan𝛽 

Theorem (Bernoulli): 

the cross-sections (plane and perpendicular to the beam axis) 

 remain plane and perpendicular to the actual beam axis 

tan 𝛼 = tan𝛽 →   𝛼 = 𝛽 

R. Hooke, De potentia restitutiva, 1678 



Bending – deformations cont. 
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- prismatic bar 

- isotropic material 

- constant axial force and bending moment 

we observe a symmetry plane (symmetry 

of geometry and forces) 

J. Bernoulli (1705): in a prismatic bar under constant axial force and constant bending moment, the cross-sections 

remain plane and perpendicular to the axis of the bar during the deformation. 

The above statement was formulated as a hypothesis. 

It is not valid for non-symmetrical  internal forces resultants, such as varying axial force and bending moment, 

shear force and torsional moment.  



Bending – deformations cont. 
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da Silva: Frey: 

1. beam axis, 2. neutral axis, 

3. neutral surface 



Bending – example 
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4 

4 2 

6 6 

1 

1 

1 

4 

3 

1.5 

rectangle box I-beam 

There are three cross-sections with the same height and area. Which section will be  

the most useful for the simple bending? Assume the same value of bending moment. 

area height inertia m. s.modulus s.m. in % max 𝝈𝒙 in % 

12 6 36 12 100 100 

12 6 46 15.33 128 78 

12 6 56 18.67 156 64 

max(𝜎𝑥) =
𝑀𝑦

𝑊𝑦
 

rectangle flatwise: 𝐴 = 12, ℎ = 2, 𝐼𝑦 = 4, 𝑊𝑦 = 4, 33.33%, 300% 



Bending – standard I-beam, wide flange W-beam 
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Bending – principal central inertia axes 
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bending of a beam with asymmetric cross-section  

(thin-walled profile) 

a) slice (1) – neutral axis, 2) – load plane) 

b) elevation and stresses  (1) – neutral axis) 



Bending – different tension/compr. strength 
When 𝑅𝑡 ≠ 𝑅𝑐 

- don’t use the section modulus (it a little confuses the issue) 

- determine tensioned/compressed side (statics!) 

- verify separately safety of both sides 

   (at extreme fibers) 

- when dimensioning adopt greater area 

- when assessing bearing capacity adopt lower value 

- general rule: always adopt solution from safer side 
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max |𝜎𝑐| < 𝑅𝑐 

max |𝜎𝑡| < 𝑅𝑡 



Bending – different elastic materials 
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when the cross-section is composed from two different materials, both with geometry that does not violate 

geometric symmetry, the Bernoulli principle of plane cross-sections remains valid 

the strain distribution is linear in the cross-section 

the stress distribution is piecewise linear in the cross-section 

Composite cross-section: a) reinforced concrete plate and steel girder, 

b) strain distribution, c) stress distribution, d) homogenized cross-section 

Homogenization: 

let: 
𝐸1

𝐸2
= 𝑛, when we admit homogenized cross-section, made from material 1, we overstate the stresses 

n times in material 2, so we can correct this making width n times smaller in the overestimated region 



Bending – composite material 
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The neutral surface has an anticlastic shape (saddle shape), and 
1

ρ𝑡
= −υ

1

ρ
. So, if the Poisson coefficient is not  

the same in both materials, compatibility conditions should be revised and taken into account. It means that 

other components of the stress matrix are non-zero. 

The error reported for the stresses and curvatures doesn’t exceed 6.7% (for extreme case of 0 and 0.5 values 

of Poisson coefficients) and reduces to 0.6% for the curvatures and 1.8% for stresses (for more usual values  

0.15 and 0.3). 

Usually, the compatibility conditions are not considered and the „normal” simple solution is used. 



Bending – non-prismatic members 
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Bending – residual stresses 
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Prandtl’s model when 𝑀 > 𝑀𝑒𝑙 the material response is partially elastic and partially plastic 

plastic zones 

elastic zone 

max elastic bending moment: 
𝑀𝑒𝑙

𝑊𝑦
= 𝜎0 → 𝑀𝑒𝑙 = 𝜎0𝑊𝑦 =

𝑏ℎ2

6
𝜎0 

𝜎0 

𝜎0 

when plastic zone area is half of the c-s: 𝑀0.5 = 2 ∙
𝑏ℎ

4
∙
3

4
∙
ℎ

2
∙ 𝜎0 +

1

2
∙
𝑏ℎ

4
∙
2

3
∙
ℎ

4
∙ 𝜎0 =

22

96
∙ 𝑏ℎ2 = 1.375𝑀𝑒𝑙 

𝑀𝑝𝑙 =
𝑏ℎ2

4
𝜎0 = 1.5𝑀𝑒𝑙   

unloading is an elastic process 

+ = 

0.375𝜎0 

0.1875𝜎0 

𝜎0 

𝜎0 

1.375𝜎0 

1.375𝜎0 0.375𝜎0 

0.1875𝜎0 

residual stresses: 

self-equilibrated set 

of internal forces 



Bending – possible problems 
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basic formulae: σ𝑥 =
𝑀𝑦

𝐼𝑦
𝑧, max 𝜎𝑥 < 𝑅, κ =

𝑀𝑦

𝐸𝐼𝑦
 

1) stress distribution (given: bending moment, cross-section inertia moment;  adopt z axis) 

2) stress at extreme fibers (given: bending moment, c-s inertia moment; adopt z axis) 

3) bearing capacity (given: material R, c-s inertia moment; calculate 𝑀𝑦) 

4) cross-section dimensioning (given: material R, bending moment 𝑀𝑦; calculate inertia moment needed) 

1) profile from the catalogue 

2) characteristic parameter of the cross-section geometry 

3) just the value of the inertia moment needed 

5) curvature (given: bending moment, bending stiffness) 

6) bending stiffness (given: curvature, bending moment) 

7) material (very rarely, given: bending moment, cross-section geometry) 



Bending – examples 
(da Silva) 

A tree trunk with circular cross-section of diameter d is to be cut to a rectangular  
cross-section of base b and height h. Determine the dimensions b and h, in order  
to maximize: a) the bending stiffness, b) the bending strength. 

Solution  

a) The bending stiffness depends on the moment of inertia. To maximize the stiffness, the inertia moment should 

be maximized. Because: ℎ2 + 𝑏2 = 𝑑2, we get: 𝐼 =
𝑏ℎ3

12
=

𝑏 𝑏2−𝑑2
3
2

12
, the extreme is: 

𝑑𝐼

𝑑𝑏
= 0 → 𝑑2 − 4𝑏2 = 0 →

𝑏 =
𝑑

2
→ ℎ =

3

2
𝑑 →

ℎ

𝑏
= 3 ≈ 1.732 

b) To obtain the maximum bending strength, the section modulus must be maximized. 𝑊𝑦 =
𝑏ℎ2

6
=

𝑏 𝑑2−𝑏2

6
, and 

𝑑𝑊𝑦

𝑑𝑏
= 0 → 𝑑2 − 3𝑏2 = 0 → 𝑏 =

𝑑

3
→ ℎ = 

2

3
𝑑 →

ℎ

𝑏
=  2 ≈ 1.414 
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Bending – examples cont. 
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(da Silva) 

The prismatic bar with the cross-section made of two materials, a and b, undergoes a uniform temperature increase 

∆𝑡. The materials have linear elastic behavior defined by the parameters: 

𝐸𝑎 = 𝐸, 𝐸𝑏 = 2𝐸, 𝛼𝑎 = 𝛼, 𝛼𝑏 = 2𝛼. 
a) Determine the elongation and the curvature introduced by ∆𝑡 (the bar has length l) 

b) Determine the distribution of stresses in the cross-section. 

 



Bending – examples cont. 
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Outline of solution 

In the problem, the conditions of symmetry haven’t been violated, so the Bernoulli’s hypothesis is still valid. We 

can put: 𝜀 = 𝜀0 + κ𝑧. On the other hand, we have: 𝜀 =
𝜎𝑥

𝐸
+ 𝛼∆𝑡, so, we arrive at the set of two linear equations 

𝜀 =
𝜎𝑎

𝐸𝑎
+ 𝛼𝑎∆𝑡 =

𝜎𝑏

𝐸𝑏
+ 𝛼𝑏∆𝑡 

𝑁 = 𝜎𝑎𝐴𝑎 + 𝜎𝑏𝐴𝑏 = 0 

with two unknowns 𝜎𝑎 and 𝜎𝑏. 



That’s all, folks! 


