Strength of Materials

2. Bending

Problem formulation

straight, prismatic bar, fixed at a point in origin of q=-kz coordinate set, loaded on the bottoms with linearly distributed surface continuous loading, q = kz, where (y, z) are principal central inertia axes of the bar cross-section similarly to the previous problem of tension, we have 15 equations (3+6 partial differential and 6 algebraic) with static and kinematic boundary conditions 15 unknowns (6 stress coordinates, 6 of strains, 3 of displacements) we apply semi-inverse method of solution

$$T_{\sigma} \to T_{\varepsilon} \to u_i$$

Solution to the BVP

static boundary conditions:

- a) at the bottoms: $\sigma_x = kz$
- b) elsewhere: $\sigma_{ij} = 0$

We try the stress matrix as follows:

$$T_{\sigma} = \begin{pmatrix} kz & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

The stress matrix fulfill the static boundary conditions as well as Navier equations if we put the mass forces $P_i = 0$ We calculate the strain matrix:

$$T_{\varepsilon} = \begin{pmatrix} \frac{k}{E}z & 0 & 0\\ 0 & -\upsilon\frac{k}{E}z & 0\\ 0 & 0 & -\upsilon\frac{k}{E}z \end{pmatrix}$$

The compatibility conditions are fulfilled

Cauchy equations:

general solution = complementary function + particular integral the complementary functions:

$$u^{0} = a + \beta z - \gamma y$$

$$v^{0} = b - \alpha z + \gamma x$$

$$w^{0} = c - \beta x + \alpha y$$

the particular integral:

$$u^{s} = \frac{k}{E}xz, v^{s} = -v\frac{k}{E}yz, w^{s} = \frac{k}{2E}(-x^{2} + vy^{2} - vz^{2})$$

 $u = u^{0} + u^{s}$ with kinematic boundary conditions: $u_{i}(0) = 0; \ u_{i,j}(0) = 0$

The complementary function vanishes, so

$$u = u^{s} = \left(\frac{k}{E}xz, -\nu\frac{k}{E}yz, \frac{k}{2E}(-x^{2}+\nu y^{2}-\nu z^{2})\right)$$

Simple bending – final formulae

stress matrix
$$T_{\sigma} = \begin{pmatrix} kz & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

strain matrix $T_{\varepsilon} = \begin{pmatrix} \frac{k}{E}z & 0 & 0\\ 0 & -\nu\frac{k}{E}z & 0\\ 0 & 0 & -\nu\frac{k}{E}z \end{pmatrix}$

displacements

$$u = \frac{k}{E}xz, v = -v\frac{k}{E}yz, w = \frac{k}{2E}(-x^{2} + vy^{2} - vz^{2})$$

stress state is uniaxial, nonhomogeneous for z = 0 stress vanishes (it is neutral axis, locus in the cross-section where the stress vanishes)

strain state is triaxial and nonhomogeneous

for
$$x = \text{const:} \ u = \frac{kx_0}{E}z$$
, so plane cross-section remains plane

Pure bending – simple bending

de Saint-Venant principle:

static equivalence:
$$M_y = \iint_A \sigma_x \cdot z dA = \iint_A (kz \cdot z) dA = k \iint_A z^2 dA = kI_y \rightarrow k = \frac{M_y}{I_y}$$

$$\sigma_x = \frac{M_y}{I_y} z$$

moreover, from statics: $Q_z = 0 \rightarrow \frac{dM_y}{dx} = 0 \rightarrow M_y = \text{const}$

Simple bending:

Direction of the bending moment vector coincides with direction of a principal central axis.

Bending – design

Ultimate limit state: $\max |\sigma_x| \leq R$

Bending – signs, signs, and signs...

What is the sign of the stress above/below the neutral axis?

Statics: the bending moments are drawn from the tensioned side!

Bending – cross-section deformation

simple bending

$$u = \frac{M_y}{EI_y} xz, v = -\frac{M_y}{EI_y} yz, w = \frac{M_y}{2EI_y} (-x^2 + vy^2 - vz^2)$$

for negative bending moment $(M_y < 0$, tension at the lower side) $u(x_0) = \frac{M_y}{EI_y} x_0 z$ plane cross-section remains plane $v\left(y = \frac{b}{2}\right) = -v \frac{M_y \frac{b}{2}}{EI_y} z = -az$ a straight line $v\left(y = -\frac{b}{2}\right) = v \frac{M_y \frac{b}{2}}{EI_y} z = az$ a straight line $w\left(x = x_0, z = \frac{h}{2}\right) = \frac{M_y}{2EI_y} \left(-x_0^2 - v \frac{h^2}{4} + vy^2\right)$ a parabola 2°

Bending – deformations of the bar axis

x – chord, y – sagitta (versine)

curvature:
$$\kappa = \frac{1}{\rho} = \frac{|w''|}{\sqrt{1 + (w')^2}} \cong |w''|$$

	y/x	r	φ	к	relative error	span change
	1/150	18.75	0.05333	0.9989	0.00107	0.00012
	1/250	31.25	0.03200	0.9996	0.00038	0.00004
	1/500	62.50	0.01600	0.9999	0.00010	0.00001
$w = \frac{M_y}{2EI_y}(-x)$	$z^2 + vy^2$	$-\nu z^2)$	$\rightarrow w'' =$	$\frac{M_y}{EI_y}$	$\kappa = \frac{\left M_{\mathcal{Y}} \right }{EI_{\mathcal{Y}}}$	E

 $M_y = \text{const}, EI_y = \text{const} \rightarrow \kappa = \text{const}$ (circular bending)

Bending – deformations cont.

$$\mathbf{x} = \mathbf{x}_0: \quad \tan \alpha = w'(x_0) = -\frac{M_y}{EI_y}x_0$$

the displacements in the same cross-section are

$$u(x_0, y, z) = -\frac{M_y}{EI_y} x_0 z \quad \rightarrow \quad \frac{\partial u}{\partial z} \Big|_{x_0} = -\frac{M_y}{EI_y} x_0 = \tan \beta$$

$$\tan \alpha = \tan \beta \rightarrow \ \alpha = \beta$$

Theorem (Bernoulli):

the cross-sections (plane and perpendicular to the beam axis) remain plane and perpendicular to the actual beam axis

R. Hooke, De potentia restitutiva, 1678

Bending – deformations cont.

- prismatic bar
- isotropic material
- constant axial force and bending moment we observe a symmetry plane (symmetry of geometry and forces)

J. Bernoulli (1705): in a prismatic bar under constant axial force and constant bending moment, the cross-sections remain plane and perpendicular to the axis of the bar during the deformation.

The above statement was formulated as a hypothesis.

It is not valid for non-symmetrical internal forces resultants, such as varying axial force and bending moment, shear force and torsional moment.

Bending – deformations cont.

da Silva:

beam axis, 2. neutral axis,
 neutral surface

Bending – example

There are three cross-sections with the same height and area. Which section will be the most useful for the simple bending? Assume the same value of bending moment.

area	height	inertia m.	s.modulus	s.m. in %	$\max \sigma_x$ in %			
12	6	36	12	100	100			
12	6	46	15.33	128	78			
12	6	56	18.67	156	64			
rectangle flatwise: $A = 12$, $h = 2$, $I_y = 4$, $W_y = 4$, 33.33%, 300%								

rectangle

Bending – standard I-beam, wide flange W-beam

Bending – principal central inertia axes

bending of a beam with asymmetric cross-section (thin-walled profile)

- a) slice (1) neutral axis, 2) load plane)
- b) elevation and stresses (1) neutral axis)

Bending – different tension/compr. strength

When $R_t \neq R_c$

- don't use the section modulus (it a little confuses the issue)
- determine tensioned/compressed side (statics!)
- verify separately safety of both sides (at extreme fibers)
- when dimensioning adopt greater area
- when assessing bearing capacity adopt lower value
- general rule: always adopt solution from safer side

Bending – different elastic materials

when the cross-section is composed from two different materials, both with geometry that does not violate geometric symmetry, the Bernoulli principle of plane cross-sections remains valid the strain distribution is linear in the cross-section the stress distribution is piecewise linear in the cross-section

Composite cross-section: a) reinforced concrete plate and steel girder, b) strain distribution, c) stress distribution, d) homogenized cross-section

Homogenization:

let: $\frac{E_1}{E_2} = n$, when we admit homogenized cross-section, made from material *1*, we overstate the stresses *n* times in material 2, so we can correct this making width *n* times smaller in the overestimated region

Bending – composite material

The neutral surface has an anticlastic shape (saddle shape), and $\frac{1}{\rho_t} = -\upsilon \frac{1}{\rho}$. So, if the Poisson coefficient is not the same in both materials, compatibility conditions should be revised and taken into account. It means that

other components of the stress matrix are non-zero.

The error reported for the stresses and curvatures doesn't exceed 6.7% (for extreme case of 0 and 0.5 values of Poisson coefficients) and reduces to 0.6% for the curvatures and 1.8% for stresses (for more usual values 0.15 and 0.3).

Usually, the compatibility conditions are not considered and the "normal" simple solution is used.

Bending – non-prismatic members

Bending – residual stresses

Bending – possible problems

basic formulae: $\sigma_x = \frac{M_y}{I_y} z$, max $|\sigma_x| < R$, $\kappa = \frac{M_y}{EI_y}$

- 1) stress distribution (given: bending moment, cross-section inertia moment; adopt z axis)
- 2) stress at extreme fibers (given: bending moment, c-s inertia moment; adopt z axis)
- 3) bearing capacity (given: material R, c-s inertia moment; calculate M_y)
- 4) cross-section dimensioning (given: material *R*, bending moment M_{γ} ; calculate inertia moment needed)
 - 1) profile from the catalogue
 - 2) characteristic parameter of the cross-section geometry
 - 3) just the value of the inertia moment needed
- 5) curvature (given: bending moment, bending stiffness)
- 6) bending stiffness (given: curvature, bending moment)
- 7) material (very rarely, given: bending moment, cross-section geometry)

Bending – examples

(da Silva)

A tree trunk with circular cross-section of diameter d is to be cut to a rectangular cross-section of base b and height h. Determine the dimensions b and h, in order to maximize: a) the bending stiffness, b) the bending strength.

Solution

a) The bending stiffness depends on the moment of inertia. To maximize the stiffness, the inertia moment should

be maximized. Because: $h^2 + b^2 = d^2$, we get: $I = \frac{bh^3}{12} = \frac{b(b^2 - d^2)^{\frac{3}{2}}}{12}$, the extreme is: $\frac{dI}{db} = 0 \rightarrow d^2 - 4b^2 = 0 \rightarrow b = \frac{d}{2} \rightarrow h = \frac{\sqrt{3}}{2}d \rightarrow \frac{h}{b} = \sqrt{3} \approx 1.732$

b) To obtain the maximum bending strength, the section modulus must be maximized. $W_y = \frac{bh^2}{6} = \frac{b(d^2 - b^2)}{6}$, and $\frac{dW_y}{db} = 0 \rightarrow d^2 - 3b^2 = 0 \rightarrow b = \frac{d}{\sqrt{3}} \rightarrow h = \frac{\sqrt{2}}{\sqrt{3}}d \rightarrow \frac{h}{b} = \sqrt{2} \approx 1.414$

Bending – examples cont.

(da Silva)

The prismatic bar with the cross-section made of two materials, a and b, undergoes a uniform temperature increase Δt . The materials have linear elastic behavior defined by the parameters:

$$E_a = E, E_b = 2E, \alpha_a = \alpha, \alpha_b = 2\alpha.$$

a) Determine the elongation and the curvature introduced by Δt (the bar has length *l*)

b) Determine the distribution of stresses in the cross-section.

Bending – examples cont.

Outline of solution

In the problem, the conditions of symmetry haven't been violated, so the Bernoulli's hypothesis is still valid. We can put: $\varepsilon = \varepsilon_0 + \kappa z$. On the other hand, we have: $\varepsilon = \frac{\sigma_x}{E} + \alpha \Delta t$, so, we arrive at the set of two linear equations

$$\varepsilon = \frac{\sigma_a}{E_a} + \alpha_a \Delta t = \frac{\sigma_b}{E_b} + \alpha_b \Delta t$$
$$N = \sigma_a A_a + \sigma_b A_b = 0$$

with two unknowns σ_a and σ_b .

That's all, folks!