Strength of Materials

2. Bending

Problem formulation

straight, prismatic bar, fixed at a point in origin of coordinate set, loaded on the bottoms with linearly distributed surface continuous loading, $q=k z$, where
 (y, z) are principal central inertia axes of the bar cross-section similarly to the previous problem of tension, we have 15 equations ($3+6$ partial differential and 6 algebraic) with static and kinematic boundary conditions
15 unknowns (6 stress coordinates, 6 of strains, 3 of displacements)
we apply semi-inverse method of solution

$$
T_{\sigma} \rightarrow T_{\varepsilon} \rightarrow u_{i}
$$

Solution to the BVP

static boundary conditions:
a) at the bottoms: $\sigma_{x}=k z$
b) elsewhere: $\sigma_{i j}=0$

We try the stress matrix as follows:

$$
T_{\sigma}=\left(\begin{array}{ccc}
k z & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The stress matrix fulfill the static boundary conditions as well as Navier equations if we put the mass forces $P_{i}=0$
We calculate the strain matrix:

$$
T_{\varepsilon}=\left(\begin{array}{ccc}
\frac{k}{E} Z & 0 & 0 \\
0 & -v \frac{k}{E} Z & 0 \\
0 & 0 & -v \frac{k}{E} Z
\end{array}\right)
$$

The compatibility conditions are fulfilled

Cauchy equations:

$$
\begin{array}{ll}
\varepsilon_{x}=\frac{\partial u}{\partial x}= \\
\varepsilon_{y}=\frac{\partial v}{\partial y}=-v & \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=0, \\
\varepsilon_{z}=\frac{\partial w}{\partial z}=-v, & \varepsilon_{x z}=\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)=0 \\
z, & \varepsilon_{y z}=\frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)=0
\end{array}
$$

general solution $=$ complementary function + particular integral the complementary functions:

$$
\begin{aligned}
u^{0} & =a+\beta z-\gamma y \\
v^{0} & =b-\alpha z+\gamma x \\
w^{0} & =c-\beta x+\alpha y
\end{aligned}
$$

the particular integral:

$$
u^{s}=\frac{k}{E} x z, v^{s}=-v \frac{k}{E} y z, w^{s}=\frac{k}{2 E}\left(-x^{2}+v y^{2}-v z^{2}\right)
$$

$u=u^{0}+u^{s}$ with kinematic boundary conditions:

$$
u_{i}(0)=0 ; \quad u_{i, j}(0)=0
$$

The complementary function vanishes, so

$$
u=u^{s}=\left(\frac{k}{E} x z,-v \frac{k}{E} y z, \frac{k}{2 E}\left(-x^{2}+v y^{2}-v z^{2}\right)\right)
$$

Simple bending - final formulae

stress matrix $T_{\sigma}=\left(\begin{array}{ccc}k z & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
strain matrix $T_{\varepsilon}=\left(\begin{array}{ccc}\frac{k}{E} Z & 0 & 0 \\ 0 & -v \frac{k}{E} Z & 0 \\ 0 & 0 & -v \frac{k}{E} Z\end{array}\right)$
displacements
$u=\frac{k}{E} x z, v=-v \frac{k}{E} y z, w=\frac{k}{2 E}\left(-x^{2}+v y^{2}-v z^{2}\right)$
stress state is uniaxial, nonhomogeneous for $z=0$ stress vanishes (it is neutral axis, locus in the cross-section where the stress vanishes)
strain state is triaxial and nonhomogeneous
for $x=$ const: $u=\frac{k x_{0}}{E} z$, so
plane cross-section remains plane

Pure bending - simple bending

de Saint-Venant principle:

static equivalence: $M_{y}=\iint_{A} \sigma_{x} \cdot z \mathrm{dA}=\iint_{A}(k z \cdot z) \mathrm{dA}=k \iint_{A} z^{2} \mathrm{dA}=k I_{y} \rightarrow k=\frac{M_{y}}{I_{y}} \quad \sigma_{x}=\frac{M_{y}}{I_{y}} z$
moreover, from statics: $Q_{z}=0 \rightarrow \frac{d M_{y}}{d x}=0 \rightarrow M_{y}=\mathrm{const}$
Simple bending:
Direction of the bending moment vector coincides with direction of a principal central axis.

Bending - design

Ultimate limit state: $\max \left|\sigma_{\chi}\right| \leq R$

Bending - signs, signs, and signs...

What is the sign of the stress above/below the neutral axis?
Statics: the bending moments are drawn from the tensioned side!

Bending - cross-section deformation

simple bending
$u=\frac{M_{y}}{E I_{y}} x z, v=-\frac{M_{y}}{E I_{y}} y z, w=\frac{M_{y}}{2 E I_{y}}\left(-x^{2}+v y^{2}-v z^{2}\right)$

for negative bending moment ($M_{y}<0$, tension at the lower side)

$$
u\left(x_{0}\right)=\frac{M_{y}}{E I_{y}} x_{0} z \quad b \quad \text { plane cross-section remains plane }
$$

$$
v\left(y=\frac{b}{2}\right)=-v \frac{M}{y} \frac{b}{2}_{E I_{y}}^{z}=-a z \quad \text { a straight line }
$$

$$
v\left(y=-\frac{b}{2}\right)=v \frac{M_{y} \frac{b}{2}}{E I_{y}} z=a z
$$

$$
w\left(x=x_{0}, z=\frac{h}{2}\right)=\frac{M_{y}}{2 E I_{y}}\left(-x_{0}^{2}-v \frac{h^{2}}{4}+v y^{2}\right) \quad \text { a parabola } 2^{\circ}
$$

Bending - deformations of the bar axis

$$
x \text { - chord, } y \text { - sagitta (versine) }
$$

$$
\text { curvature: } \kappa=\frac{1}{\rho}=\frac{\left|w^{\prime \prime}\right|}{{\sqrt{1+\left(w^{\prime}\right)^{2}}}^{3}} \cong\left|w^{\prime \prime}\right|
$$

y / x	r	φ	κ	relative error	span change
$1 / 150$	18.75	0.05333	0.9989	0.00107	0.00012
$1 / 250$	31.25	0.03200	0.9996	0.00038	0.00004
$1 / 500$	62.50	0.01600	0.9999	0.00010	0.00001

$$
\begin{array}{r}
\left.w=\frac{M_{y}}{2 E I_{y}}\left(-x^{2}+v y^{2}-v z^{2}\right) \rightarrow w^{\prime \prime}=\frac{M_{y}}{E I_{y}} \quad \kappa=\frac{\left|M_{y}\right|}{E I_{y}} \right\rvert\, \\
M_{y}=\mathrm{const}, E I_{y}=\mathrm{const} \rightarrow \kappa=\mathrm{const} \quad(\text { circular bending })
\end{array}
$$

$$
E I_{y} \text { - bending stiffness }
$$

Bending - deformations cont.

$$
\mathrm{x}=\mathrm{x}_{0}: \quad \tan \alpha=w^{\prime}\left(x_{0}\right)=-\frac{M_{y}}{E I_{y}} x_{0}
$$

the displacements in the same cross-section are

$$
\begin{array}{ll}
u\left(x_{0}, y, z\right)=-\frac{M_{y}}{E I_{y}} x_{0} z & \left.\rightarrow \frac{\partial u}{\partial z}\right|_{x_{0}}=-\frac{M_{y}}{E I_{y}} x_{0}=\tan \beta \\
\tan \alpha=\tan \beta \rightarrow \alpha=\beta & \quad G \\
\text { r to the beam axis) } & \mathbf{I}
\end{array}
$$

Theorem (Bernoulli):
the cross-sections (plane and perpendicular to the beam axis) remain plane and perpendicular to the actual beam axis
R. Hooke, De potentia restitutiva, 1678

Bending - deformations cont.

- prismatic bar
- isotropic material
- constant axial force and bending moment we observe a symmetry plane (symmetry of geometry and forces)
J. Bernoulli (1705): in a prismatic bar under constant axial force and constant bending moment, the cross-sections remain plane and perpendicular to the axis of the bar during the deformation.
The above statement was formulated as a hypothesis.
It is not valid for non-symmetrical internal forces resultants, such as varying axial force and bending moment, shear force and torsional moment.

Bending - deformations cont.

da Silva:

Frey:

1. beam axis, 2. neutral axis, 3. neutral surface

Bending - example

There are three cross-sections with the same height and area. Which section will be the most useful for the simple bending? Assume the same value of bending moment.

$$
\max \left(\sigma_{x}\right)=\frac{M_{y}}{W_{y}}
$$

area	height	inertia m.	s.modulus	s.m. in \%	max σ_{x} in \%
12	6	36	12	100	100
12	6	46	15.33	128	78
12	6	56	18.67	156	64

rectangle flatwise: $A=12, h=2, I_{y}=4, W_{y}=4,33.33 \%, 300 \%$

Bending - standard I-beam, wide flange W-beam

Bending - principal central inertia axes

Bending - different tension/compr. strength

When $R_{t} \neq R_{c}$

- don't use the section modulus (it a little confuses the issue)
- determine tensioned/compressed side (statics!)
- verify separately safety of both sides (at extreme fibers)
- when dimensioning adopt greater area
- when assessing bearing capacity adopt lower value
- general rule: always adopt solution from safer side

Bending - different elastic materials

when the cross-section is composed from two different materials, both with geometry that does not violate geometric symmetry, the Bernoulli principle of plane cross-sections remains valid the strain distribution is linear in the cross-section
the stress distribution is piecewise linear in the cross-section

Composite cross-section: a) reinforced concrete plate and steel girder, b) strain distribution, c) stress distribution, d) homogenized cross-section

Homogenization:
let: $\frac{E_{1}}{E_{2}}=n$, when we admit homogenized cross-section, made from material l, we overstate the stresses n times in material 2 , so we can correct this making width n times smaller in the overestimated region

Bending - composite material

The neutral surface has an anticlastic shape (saddle shape), and $\frac{1}{\rho_{t}}=-v \frac{1}{\rho}$. So, if the Poisson coefficient is not the same in both materials, compatibility conditions should be revised and taken into account. It means that other components of the stress matrix are non-zero.
The error reported for the stresses and curvatures doesn't exceed 6.7% (for extreme case of 0 and 0.5 values of Poisson coefficients) and reduces to 0.6% for the curvatures and 1.8% for stresses (for more usual values 0.15 and 0.3).

Usually, the compatibility conditions are not considered and the „normal" simple solution is used.

Bending - non-prismatic members

Bending - residual stresses

Prandtl's model

when $M>M_{e l}$ the material response is partially elastic and partially plastic unloading is an elastic process
residual stresses:
self-equilibrated set
of internal forces

max elastic bending moment: $\frac{M_{e l}}{W_{y}}=\sigma_{0} \rightarrow M_{e l}=\sigma_{0} W_{y}=\frac{b h^{2}}{6} \sigma_{0} \quad M_{p l}=\frac{b h^{2}}{4} \sigma_{0}=1.5 M_{e l}$ when plastic zone area is half of the c-s: $M_{0.5}=2 \cdot\left(\frac{b h}{4} \cdot \frac{3}{4} \cdot \frac{h}{2} \cdot \sigma_{0}+\frac{1}{2} \cdot \frac{b h}{4} \cdot \frac{2}{3} \cdot \frac{h}{4} \cdot \sigma_{0}\right)=\frac{22}{96} \cdot b h^{2}=1.375 M_{e l}$

$$
M_{p l}=\frac{b h^{2}}{4} \sigma_{0}=1.5 M_{e l}
$$

$$
0.375 \sigma_{0} \nabla
$$

$$
0.1875 \sigma_{0}
$$

Bending - possible problems

basic formulae: $\sigma_{x}=\frac{M_{y}}{I_{y}} z, \max \left|\sigma_{x}\right|<R, \kappa=\frac{M_{y}}{E I_{y}}$

1) stress distribution (given: bending moment, cross-section inertia moment; adopt z axis)
2) stress at extreme fibers (given: bending moment, c-s inertia moment; adopt z axis)
3) bearing capacity (given: material R, c-s inertia moment; calculate M_{y})
4) cross-section dimensioning (given: material R, bending moment M_{y}; calculate inertia moment needed)
5) profile from the catalogue
6) characteristic parameter of the cross-section geometry
7) just the value of the inertia moment needed
8) curvature (given: bending moment, bending stiffness)
9) bending stiffness (given: curvature, bending moment)
10) material (very rarely, given: bending moment, cross-section geometry)

Bending - examples

(da Silva)
A tree trunk with circular cross-section of diameter d is to be cut to a rectangular cross-section of base b and height h. Determine the dimensions b and h, in order to maximize: a) the bending stiffness, b) the bending strength.

Solution

a) The bending stiffness depends on the moment of inertia. To maximize the stiffness, the inertia moment should be maximized. Because: $h^{2}+b^{2}=d^{2}$, we get: $I=\frac{b h^{3}}{12}=\frac{b\left(b^{2}-d^{2}\right)^{\frac{3}{2}}}{12}$, the extreme is: $\frac{d I}{d b}=0 \rightarrow d^{2}-4 b^{2}=0 \rightarrow$ $b=\frac{d}{2} \rightarrow h=\frac{\sqrt{3}}{2} d \rightarrow \frac{h}{b}=\sqrt{3} \approx 1.732$
b) To obtain the maximum bending strength, the section modulus must be maximized. $W_{y}=\frac{b h^{2}}{6}=\frac{b\left(d^{2}-b^{2}\right)}{6}$, and $\frac{d W_{y}}{d b}=0 \rightarrow d^{2}-3 b^{2}=0 \rightarrow b=\frac{d}{\sqrt{3}} \rightarrow h=\frac{\sqrt{2}}{\sqrt{3}} d \rightarrow \frac{h}{b}=\sqrt{2} \approx 1.414$

Bending - examples cont.

(da Silva)
The prismatic bar with the cross-section made of two materials, a and b, undergoes a uniform temperature increase Δt. The materials have linear elastic behavior defined by the parameters:

$$
E_{a}=E, E_{b}=2 E, \alpha_{a}=\alpha, \alpha_{b}=2 \alpha .
$$

a) Determine the elongation and the curvature introduced by Δt (the bar has length l)
b) Determine the distribution of stresses in the cross-section.

Bending - examples cont.

Outline of solution
In the problem, the conditions of symmetry haven't been violated, so the Bernoulli's hypothesis is still valid. We can put: $\varepsilon=\varepsilon_{0}+\kappa z$. On the other hand, we have: $\varepsilon=\frac{\sigma_{x}}{E}+\alpha \Delta t$, so, we arrive at the set of two linear equations

$$
\begin{gathered}
\varepsilon=\frac{\sigma_{a}}{E_{a}}+\alpha_{a} \Delta t=\frac{\sigma_{b}}{E_{b}}+\alpha_{b} \Delta t \\
N=\sigma_{a} A_{a}+\sigma_{b} A_{b}=0
\end{gathered}
$$

with two unknowns σ_{a} and σ_{b}.

That's all, folks!

