Strength of Materials

4. Composed bending, eccentric tension, cross-section core

Composed bending

(y, z) - principal central inertia axes
cross-sectional forces:

$\mathbb{N} \neq \mathbb{M} y+\mathbb{M} \pi$

stress distribution: $\sigma_{x}=\frac{N}{A}+\frac{M_{y}}{I_{y}} z-\frac{M_{z}}{I_{z}} y$
surface equation
stress solid is limited by two surfaces: the cross-section surface and stress surface these surfaces intersect at the neutral axis, where $\sigma_{x}=0$ $z=-\frac{N}{A} \frac{I_{y}}{M_{y}}-\frac{M_{z}}{I_{z}} \frac{I_{y}}{M_{y}} y$, the neutral axis is a straight line it doesn't pass through the cross-section centroid

Composed bending - limit stress state

where is the maximum value of stress?
at the points the furthest from the neutral axis, of course!
does any method exist to check the calculated position of the neutral axis?

usually the influence of axial force is not predominant

Composed bending - limit stress state cont.

P - the most distant point from the neutral axis

$$
\sigma_{x}=\frac{N}{A}+\frac{M_{y}}{I_{y}} z_{P}-\frac{M_{z}}{I_{z}} y_{P}, \quad \max \left|\sigma_{x}\right| \leq R
$$

Calculations efficiency

search the most distant point or just check the stress at some points?
Problem:

$$
\begin{aligned}
& \text { A rectangular cross-section } 2 \mathrm{a} \times a, A=2 a^{2}, I_{y}=\frac{2}{3} a^{4}, I_{z}=\frac{1}{6} a^{4}, y_{p}=\frac{a}{2}, z_{p}=a \\
& \qquad \sigma_{x}=\frac{N}{2 a^{2}}+\frac{3 M_{y}}{2 a^{3}}-\frac{3 M_{z}}{a^{3}} \leq R
\end{aligned}
$$

The unknown parameter occurs several times in the above formula solve the cubical equation or use trial and error method

analytically: Cardano's formulae; on computer: fast plot of the function for roots assessment on calculator: break the formula up, next trial and error

$$
\frac{N}{2 a^{2}} \leq R \rightarrow a_{1} \quad \frac{3 M_{y}}{2 a^{3}} \leq R \rightarrow a_{2} \quad\left|-\frac{3 M_{z}}{a^{3}}\right| \leq R \rightarrow a_{3} \quad \rightarrow a \approx \max \left(a_{1}, a_{2}, a_{3}\right)+\delta
$$

Keep in mind: the (very) precise values are not needed !

Eccentric tension - definition

$$
\begin{aligned}
& M_{y}=N z_{N} \quad M_{z}=-N y_{N} \quad N \\
& \sigma_{x}=\frac{N}{A}+\frac{M_{y}}{I_{y}} z-\frac{M_{z}}{I_{z}} y=\frac{N}{A}+\frac{N z_{N}}{A i_{y}^{2}} z+\frac{N y_{N}}{A i_{z}^{2}} y=\frac{N}{A}\left(1+\frac{z_{N} z}{i_{y}^{2}}+\frac{y_{N} y}{i_{z}^{2}}\right)
\end{aligned}
$$

$$
\text { neutral axis: } \sigma_{x}=0 \rightarrow 1+\frac{z_{N} z}{i_{y}^{2}}+\frac{y_{N} y}{i_{z}^{2}}=0 \quad \text { not depends on the force value }
$$

$$
b \stackrel{\text { def }}{=}-\frac{i_{z}^{2}}{y_{N}}, c \stackrel{\text { def }}{=}-\frac{i_{y}^{2}}{z_{N}} \rightarrow \frac{y}{b}+\frac{z}{c}=1
$$ the intercept form of the neutral axis

eccentricities

a line through the points 1 and 2

$$
\begin{aligned}
& y=\left(y_{2}-y_{1}\right) t+y_{1} \\
& z=\left(z_{2}-z_{1}\right) t+z_{1} \\
& z=0 \rightarrow t=-\frac{z_{1}}{z_{2}-z_{1}} \rightarrow y=b=-\frac{y_{2}-y_{1}}{z_{2}-z_{1}} z_{1}+y_{1} \\
& y=0 \rightarrow t=-\frac{y_{1}}{y_{2}-y_{1}} \rightarrow z=c=-\frac{z_{2}-z_{1}}{y_{2}-y_{1}} y_{1}+z_{1}
\end{aligned}
$$

Eccentric tension - neutral axis position

Eccentric tension - neutral axis position

> Neutral axis in an „infinity"

Eccentric tension - neutral axis position

Neutral axis already being „seen"

Eccentric tension - neutral axis position

Eccentric tension - neutral axis position

Neutral axis touching cross-section contour

Eccentric tension - neutral axis position

Neutral axis within cross-section

Eccentric tension - resultant force position

medieval cathedrals - aisle height:
Wien (Austria) - 22.4 m
Burgos (Spain) - 25 m
Mariacki (Cracow) - 28 m
York Minster (York) - 31 m
Notre Dame (Paris) - 32.5 m
Notre Dame (Chartres) - 36.55 m
Notre Dame (Reims) - 38 m
St. Peter \& SM (Koln) - 43.35 m
Santa Maria (Milan) - 45 m
Santa Maria di Fiore - 43 m (70 m with dome)

Eccentric tension - example

Eccentric tension - neutral axis position

$1+\frac{z z_{N}}{i_{y}^{2}}+\frac{y y_{N}}{i_{z}^{2}}=0$
Dual interpretation of neutral axis equation
(y, z) - regards the neutral axis
$\left(y_{N}, z_{N}\right)$ - regards the acting force
if the point of the force position is known - we get the neutral axis equation

```
point (force) }\quad\mathrm{ ) line (n.a.)
```

if the point of the neutral axis is known - we get the line of the applied force action
point (n.a.)
line (force)

Eccentric tension - cross-section core

ceramic materials:
very good strength in compression (breaking height in compression: steel 5.6 km , granite over 8 km) very poor strength in tension, so:
the part of the cross-section in tension is unused usually this part is visibly cracked it is susceptible to humidity intrusion and subsequent bursting due to freezing soil under footing is not consolidated
it is highly desirable the whole cross-section works; the problem is: where the force should be applied to avoid tension stress
this happen when the neutral axis will be outside of the cross-section or at least touching the cross-section outlined (the cross-section outline: the smallest convex figure containing entire cross-section)
a cross-section core: a locus of the eccentric force position causing a stress of one sign in the cross-section
The cross-section core is limited from without by a core curve and corresponds to the all neutral axes touching the cross-section (cross-section outlined)

Cross-section core - example

calculations
cross-section characteristics: $A=84, C(4.0,7.222)$,

$$
I_{1}=861.19, I_{2}=470.67, i_{y}^{2}=10.25, i_{z}^{2}=5.603
$$

given $(b, c) \rightarrow y_{N}=-\frac{i_{z}^{2}}{b}, z_{N}=-\frac{i_{y}^{2}}{c}$
line $z=6.778$:

$$
b \rightarrow \infty, y_{N}=0, c=6.778, z_{N}=-1.512
$$

line $1(1,6.778), 2(4,4.778)$
$y=(4-1) t+1, y=0 \rightarrow t=-\frac{1}{3}=-0.3333$,
$z=(-2)(-0.3333)+6.778=7.445=c, z_{N}=-\frac{10.25}{7.445}=-1.377$
$z=0 \rightarrow t=3.389 \rightarrow y=3 \cdot 3.389+1=11.167=b \rightarrow y_{N}=-0.5717$
line $y=4$:

$$
c \rightarrow \infty, z_{N}=0, b=4, y_{N}=-1.401
$$

line $z=-7.222$:

$$
b \rightarrow \infty, y_{N}=0, c=-7.222, z_{N}=1.419
$$

Cross-section core - example cont.

The solution from the famous program ,,section":

Cross-section core - examples

the cross-section core is always convex
it surrounds the centroid
when the cross-section is n-polygon, the core is an n-polygon also
never exceeds the cross-section outline
the core is a purely geometric feature of the cross-section

That's all, folks!

