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5. Transverse bending



Transverse bending - definition
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simple bending is relatively rare loading condition – it implies constant value of bending moment

usually, the bending moment is not constant, we call that case:

- transverse bending loads

- transverse bending

- non-uniform bending

we know from the statics course, that

𝑀 ≠ const → 𝑄 ≠ 0
it means, that there are two cross-sectional forces in the same time: bending moment and shear force

we have to consider simultaneous actions of these forces

action of bending moment were already discussed, but it is not clear the presence of shear force changes or 

modifies the previous results

there are:

- pure shear

- shear(ing) (in general)



Shear - definition
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Mx = 0, My = 0, Mz = 0

Qx=N= 0, Qy ≠ 0, Qz = 0

Qx=N=0, Qy= 0, Qz ≠ 0
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the set of cross-sectional forces reduces solely to 

the shear force vector perpendicular  to the bar axis

or
Shear is associated with bending !

NON-UNIFORM BENDING
PURE SHEAR

Mx = 0, My ≠ 0, Mz = 0

Qx= N=0, Qy= 0, Qz ≠ 0



Shear – pure shear explication
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Pure shear
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Transverse bending – cross-section warping
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a) before loading, 

b) circular bending (all angles remain right, no shear strains and stress),

c) all angles alike (constant shear strains and stress, not allowed at the top/bottom)

d) right angles at top/bottom, shear strain and stress between 

it can be proved that on the free boundary stress vector should be tangent to the boundary;

no shear stress perpendicular to the boundary allowed
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Transverse bending – cross-section warping
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Bernoulli hypothesis as well as 

symmetry conditions of plane 

cross-sections do not hold!!

For ℎ/𝑙 ≪ 1 distortion  is small 

and we will use the formula for 

normal stress derived from this 

assumption :
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Transverse bending – shear stress
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Transverse bending – mean shear stress
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Transverse bending – shear stress distribution
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Static Boundary Conditions in A and B:

𝑞𝑥 = 0 = 𝜎𝑥 ∙ 0 + 𝜏𝑥𝑦 ∙ 0 + Ƹ𝜏𝑥𝑧 ∙ 1→ Ƹ𝜏𝑥𝑧 = 0

𝑞𝑦 = 0 = 𝜏𝑥𝑦 ∙ 0 + 𝜎𝑦 ∙ 0 + 𝜏𝑦𝑧 ∙ 1→ 𝜏𝑦𝑧 = 0

𝑞𝑧 ≠ 0 = Ƹ𝜏𝑥𝑧 ∙ 0 + 𝜏𝑦𝑧 ∙ 0 + 𝜎𝑧 ∙ 1→𝜎𝑧 = 𝑞𝑧

𝑞𝑖 = 𝜎𝑖𝑗𝑛𝑗



Transverse bending – stress distribution cont.
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Mean shear stress – some results
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Transverse bending – stress trajectories
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Transverse bending – stress trajectories cont.
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Transverse bending – stress trajectories cont.
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Transverse bending – normal stress 𝜎𝑧
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Transverse bending – shear flow
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a)

b)

dimensions (total): 𝑏 × ℎ × 𝑙

a) w = idem → κ = idem → 𝑀 = idem =
1

2
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Transverse bending – shear flow (general)
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same procedure as previously, but with arbitrary cutting surface

𝑑𝑇 =
−𝑄𝑆

𝐼𝑦
𝑑𝑥, 𝜏 =

−𝑄𝑆

𝐼𝑦𝑡

the shear flow makes the tendency to longitudinal slide 

between fibers

sign „-” means that for growing bending moment M the shear 

force is negative and the shear flow resultant is positive

t – the wall thickness

for thin-walled profiles we assume constant

value of shear and shear flow stresses

along metal sheet thickness

and in direction of the central line (a line

that bisects the wall thickness)



Shear stress – examples 
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Kirchhoff rule for the stress flows in the „nodes”: inflow = outflow

the web transmits ≈ 95 % of the total shear force in the cross-section

shear stress in the web is almost rectangular

steel structures course: 𝜏𝑤𝑚 = 𝑄/𝐴𝑤𝑒𝑏

a) we change a closed profile into opened by cutting 

AA, we calculate shear stresses along the central 

line of profile

c) the stresses cause some relative longitudinal

displacement

b) we apply such shear flow f that resets the

longitudinal displacement; the shear flow causes

a constant shear stress along the central line

total shear stress = a) + b)



Shear center
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OK

torsional moment ≠ 0

shear center shear center = torsion center



Shear center – cont. 
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The shear center plays similar role to the transversal forces, as the centroid in relation to the longitudinal (axial) 

forces. If the resultant axial force passes through the centroid, it will not induce bending. In the  same way, if the 

resultant of the shear forces does not pass through the shear center, it will introduce a torsional moment. The 

computation of the torsional moment must be made in relation to the shear center, while the bending moment is 

computed with respect to the centroid. 

Parallel displacement of the action axis does not change the normal stresses induced by the bending moment. 

However, the equilibrium condition requires that the action axis of the shear force has a position which coincides 

with the line of action of the resultant of the shearing stresses. The position of the action axis of the shear force is 

therefore not arbitrary.

The shear center should be computed with the use of principal central axes. For the profiles with central lines 

concurrent at one point however, the position of the shear center is already known and coincides with that point.



Shear center experiment
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