
Strength of Materials 

6. Beams deflections 
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Beams deflections – normal stress & curv. 
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Beams deflections – differential equation 
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1. Curvature-bending moment relationship: 
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2. Formula for curvature in mathematics: 

3. Differential equation for beam deflection w(x) 
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The signs of   w(x), w’(x) and w’’(x) depend upon co-ordinate system: 

w(x) 

x 

w(x) 

x 

w>0, w’<0, w’’>0 

w(x) 

x 

w(x) x 

w>0, w’>0, w’’>0 

w>0, w’>0, w’’>0 w<0, w’<0, w’’<0 
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The sign of M(x) follows adopted convention (M is positive when „undersides” are under tension): 

M>0 

M>0 

M<0 

M<0 
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Combination of the previous two conventions will result in following form  of the bending deflection equation: 

 
 xw

EJ

xM

y

y
"

PROVIDED that the  positive direction of w axis will coincide with positive direction of bending moment axis 

pointing towards „undersides”: 

The direction of x-axis only does not change the sign in the equation of deflection. 

However, one has to remember that in this case the first derivative of  deflection w’  will change the sign! 

In the opposite case of the two directions discordance the minus sign in the bending equation has to be replaced 

by the positive sign 

w(x) 
x 

My 

w(x) 

x 

My 

or 



Beams deflections – diff. eq. integration 
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To find beam deflection one has to integrate the deflection equation twice. 

The first integration yields a tangent to the beam axis and, therefore, 

rotation of the beam cross-section 
Cdx

EJ

M
w

y

y
 '

DCxdxdx
EJ

M
w

y

y
  )(

The next integration results in finding beam deflection: 

y

y

EJ

M
w "



w(x) 

x 

)'(warctg

w 

To determine the values of integration constants C and D we need to formulate boundary conditions 
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The boundary conditions have to represent supports of a beam: 

w=0 w=0 w=0 w=0 w=0 w=0 

A 

w=0   

w’=0 

w=0    

w’=0 

w=0    

w’=0 

B 

NOTICE: As we do not take into account normal forces all three cases shown in the row A are equivalent 

with respect to deflections calculation. The same is true for the row B. 
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In a general case, when moment bending equation cannot be given by in the analytical form for the whole beam, 

it has to be formulated and integrated for all characteristic intervals of a beam 

As a consequence we need to find  2n constants of integration (where n denotes number of characteristic 

intervals) and to write down  2n-2  (2 boundary conditions correspond to beam supports) additional 

compatibility conditions at the neighboring characteristic intervals 

This procedure yields the set of 2n linear algebraic equations. The solution of this set can be cumbersome and it is 

advisable only if an analytical form of  a bending deflection for the whole beam is needed. 

n characteristic intervals  2𝑛 integration constants 

2𝑛 boundary conditions: 2 kinematic boundary conditions + 2(𝑛 − 1) compatibility conditions 

The kinematic conditions depend on the supports. The compatibility conditions relate to the deflections  

and to the rotations compatibility. 



Beams deflections – compatibility  
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n 1 2 3 4 5 6 

w1=w2 

w’1=w’2 

w2=w3 

w’6=0 

w4=w5 w5=w6 w6=0 

w’2=w’3 w’5=w’6 w’3=w’4 

w3=w4 

w1=0 

Independent integration 

Adjustment of first derivatives 

Adjustment of the deflections 



Beams deflections – Mohr method 
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STATICS DEFLECTIONS 

 
 xQ

dx

xdM
z

 
 xq

dx

xdQz 

This equation (*)  is „integrated” on the basis of 

M(x) i Q(x) definitions when external loading 

q(x) and boundary conditions are known 

   
EJ

xM

dx

xwd


2

2

Why not to use the same method 

to determine the deflections?   

 xq
dx

xMd


2

2 )(

Mohr method; conjugate beam method; fictitious weights method; Mohr fictitious beam method 

? 

? 

(*) 



Mohr method 
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STATICS - Fictitious domain DEFLECTIONS - Real domain 
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CF = CR  ,  DF =DR  

wR(x)MF(x)  ,  w’R  QF(x)  



Mohr method 
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wR(x)  MF(x)  ,  w’R  QF(x)  

From the condition: 𝑞𝐹 𝑥 =
𝑀𝑅 𝑥

𝐸𝐼
 [1/m] follows, that the only loading of the fictitious beams will be continuous 

loading of the dimension  [Nm/(Nm-2m4)] = [ m-1] distributed exactly like bending moment distribution for the 

real beam. Therefore, the bending moment and shear force distributions in the fictitious beams cannot contain any 

discontinuities (no loading in form of concentrated moments exists and point forces can appear only at the points 

with articulation ).  

 CF  = CR  ,  DF  = DR  To satisfy the conditions: 

the static conditions have to bet set upon the fictitious beam in such a way  that in characteristic points will be: 

So, if for the real beam wR=0 in a given point, then  for the fictitious beam has to be  MF=0 in this point. 

Similarly if w’R =0 then QF =0 etc.  

Fundamental requirement to be satisfied is that fictitious and  real beams have the same length 

(0 ≤ xR ≤ l, 0 ≤ xF ≤ l). 

Summing up, the static boundary conditions for the fictitious beam should correspond to the kinematic  

boundary conditions of the real beam  
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Mohr method – an example  
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4/04/2019 Adam Paweł Zaborski 18/40 

B
en

d
in

g
 m

o
m

en
ts

 u
si

n
g
 t

h
e 

su
p
er

p
o
si

ti
o
n
 p

ri
n
ci

p
le

  



Mohr method – cont. 

4/04/2019 Adam Paweł Zaborski 19/40 

Bending moment diagram for 

fictitious beam 

Real beam 

Bending moment for the real beam 

Fictitious beam loading  

Elementary but troublesome ! 

Fictitious beam 

w 

≡ deflections of the real beam 
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Mohr method applied to the evaluation of deflections and rotations in chosen points 

l 

a 

w 

EI 

B A 

Pa 
Bending moments for the fictitious beam 

MB
F=wB= 

2a/3 a/3 

(Pa/EI)(a/2) l-a/3 

wA= 

w’B= 

w’A= 

wB= 

MA
F=wA= 

QA
F=QB

F=w’A=w’B= 

Shear forces for the fictitious beam: 

(Pa/EI)(a/2)(2a/3)= Pa3/3EI 

(Pa/EI)(a/2)[l-a/3]= [Pa2/2EI][l-a/3] 

(Pa/EI)(1/2Ia= Pa2/2EI 

Pa3/3EI Pa2/2EI 

[Pa2/2EI][l-a/3] Pa2/2EI 

straight line 

3rd order parabola 

P 

Pa/EI 

w 



Mohr method – example 
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EI 
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Pl 

Bending moment for the fictitious beam 

MB
F=wB= 

l/3 2l/3 

Pl/(EI)(1/2)l 

w’B= Pl2/2EI 

QB
F=w’B= 

Shear forces for  the fictitious beam 

Pl/(EJ)(1/2)l[2l/3]= Pl3/3EI 

Pl/(EI)(1/2)l= Pl2/2EI 

a = l 

P 

wB= Pl3/3EI = wmax 

Pl/EI 

Special case: a = l 
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[Pa2/2EJ][l-a/3] 

x 

l 

a 

w 

EI 

B A 

P 

w 
wB= 

0,5 0,25 

0,75 

1,0 



 f

0,25 

0,75 

0,5 

1,0 

0,01 

0,31 

0,63 

0,61 

Special example: end beam deflection as the function of 

force position 

wmax 

  maxwfwB  
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Area and center of gravity for parabolic shapes Parabola of nth degree 

Horizontal tangent 
a 

b 

c 

Area:   𝐴 =
𝑎𝑏

𝑛+1
 

Position of the center of gravity: 𝑐 =
𝑏

𝑛+2
 

𝐧 𝐀 c 

0 𝑎𝑏 𝑏/2 

1 𝑎𝑏/2 𝑏/3 

2 𝑎𝑏/3 𝑏/4 

3 𝑎𝑏/4 𝑏/5 

⋯ ⋯ ⋯ 
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Parabola of 2nd degree 

Horizontal tangent a 

b 

c 

Area:   𝐴 =
2

3
𝑎𝑏 

Position of the center of gravity: 𝑐 =
5

8
𝑏 
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Let us differentiate twice the equation: 
𝑑2𝑤

𝑑𝑥2 = −
𝑀𝑦

𝐸𝐼𝑦
 making use of relationships  

𝑑𝑀𝑦

𝑑𝑥
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The first differentiation yields: 
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The second differentiation: 
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Double integration of the equation w”= -  M/EI allows for finding rotations and deflections: 



Beams deflections – overall picture of the problem 
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   
 xEI

xM

dx

xwd


2

2

Therefore the points in which bending stiffness 

sharply changes are also characteristic points.  

If 𝐸𝐼 changes along beam axis, 𝐸𝐼(𝑥), then differential equation for displacement becomes: 
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{Pa2} {1-I2/I1} 

Pa2/EI2 

Pa2/EI1 

l 

{Pl/EI2} {1-I2/I1} 

wK= ? 

Pl/EI2 

Pl 

Pl/EI1 

Pl/EI2 

OR… 

EI2 
{Pa2/EI2} {1-I2/I1} 

{Pl/EI2} {1-I2/I1} 

a1 

{P(l-a2)/a1} {1-I2/I1} 

x 

l 

EI1 

K 

w 

P 

a1 a2 

> EI2 



{Pa2} {1-I2/I1} 
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Pa2/EI2 

Pa2/EI1 

wK= Pl3/3EI 
l 

{Pl/EI2} {1-I2/I1} 

Pl 

Pl/EI2 

x 
EI 

l 
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K 
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Pl 

Pl/EJ1 

Pl/EI2 

OR… 

EI2 
{Pa2/EI2} {1-I2/I1} 

{Pl/EI2} {1-I2/I1} 

a1 

{P(l-a2)/a1} {1-I2/I1} 

Pl/EI 

x 
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EJ1 
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a1 a2 

> EJ2 
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The method is based on the concept of discontinuity functions (sometimes called as half-range functions or  

generalized functions or distribution functions). 

The Dirac delta function: 𝛿 𝑥 − 𝑎 =< 𝑥 − 𝑎 >−1=  
0, 𝑥 ≠ 𝑎
∞, 𝑥 → 𝑎

  ,   < 𝑥 − 𝑎 >−1 𝑑𝑥 = 1
𝑥

−∞
 

The Heaviside step function: 𝐻 𝑥 − 𝑎 = 𝑥 − 𝑎 0 =  < 𝑥 − 𝑎 >−1 𝑑𝑥 =  
0, 𝑥 < 𝑎
1, 𝑥 > 𝑎

𝑥

−∞
 

The ramp function: < x − a >1=  < 𝑥 − 𝑎 >0 𝑑𝑥 =  
0, 𝑥 < 𝑎

𝑥 − 𝑎, 𝑥 > 𝑎
𝑥

−∞
 

and similarly: < 𝑥 − 𝑎 >𝑛=  
0, 𝑥 ≤ 𝑎

𝑥 − 𝑎 𝑛 𝑥 > 𝑎
,         < 𝑥 − 𝑎 >𝑛 𝑑𝑥 =

(𝑥−𝑎>𝑛+1

𝑛+1
,   𝑛 ≥ 0

𝑥

−∞
 

𝑥 𝑎 

< 𝑥 − 𝑎 >−1 

𝑥 𝑎 

< 𝑥 − 𝑎 >0 

𝑥 𝑎 

< 𝑥 − 𝑎 >1 

𝑥 𝑎 

< 𝑥 − 𝑎 >2 
delta step ramp 
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𝑀 𝑥 = 𝑅𝐴 < 𝑥 − 0 >1 −
𝑞 < 𝑥 − 𝑎 >2

2
+

𝑞 < 𝑥 − 𝑏 >2

2
+ 𝑀0 < 𝑥 − 𝑐 >0 −𝑃 < 𝑥 − 𝑑 >1 

𝐸𝐼𝑤′′ 𝑥 = −𝑀 𝑥 = −𝑅𝐴𝑥 +
𝑞 < 𝑥 − 𝑎 >2

2
−

𝑞 < 𝑥 − 𝑏 >2

2
− 𝑀0 < 𝑥 − 𝑐 >0 +𝑃 < 𝑥 − 𝑑 > 

𝐸𝐼𝑤′ 𝑥 = 𝐶 −
1

2
𝑅𝐴𝑥2 +

𝑞 < 𝑥 − 𝑎 >3

6
−

𝑞 < 𝑥 − 𝑏 >3

6
− 𝑀0 < 𝑥 − 𝑐 > +

1

2
𝑃 < 𝑥 − 𝑑 >2 

𝐸𝐼𝑤 𝑥 = 𝐶𝑥 + 𝐷 −
1

6
𝑅𝐴𝑥3 +

𝑞 < 𝑥 − 𝑎 >4

24
−

𝑞 < 𝑥 − 𝑏 >4

24
−

1

2
𝑀0 < 𝑥 − 𝑐 >2 +

1

6
𝑃 < 𝑥 − 𝑑 >3 

KBC: 𝑤 0 = 0 → 0 = 𝐷 − 0 + 0 − 0 − 0 + 0 = 𝐷 → 𝐷 = 0 

𝑤 𝑙 = 0 → 0 = 𝐶𝑙 −
1

6
𝑅𝐴𝑙3 +

𝑞 𝑙 − 𝑎 4

24
−

𝑞 𝑙 − 𝑏 4

24
−

1

2
𝑀0 𝑙 − 𝑐 2 +

1

6
𝑃 𝑙 − 𝑑 3 → 𝐶 = ⋯ 

𝑤 𝑐 < 𝑥1 < 𝑑 =
1

𝐸𝐼
𝐶𝑥1 −

1

6
𝑅𝐴𝑥1

3 +
𝑞 𝑥1 − 𝑎 4

24
−

𝑞 𝑥1 − 𝑏 4

24
−

1

2
𝑀0 𝑥1 − 𝑐 2 + 0 = ⋯ 

𝑑 𝑐 𝑙 𝑎 𝑥 𝑏 

𝑞 
𝑀0 

𝑃 
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𝑀 𝑥 = 𝑅𝐴 < 𝑥 − 0 >1 −
𝑞 < 𝑥 − 𝑎 >2

2
+

𝑞 < 𝑥 − 𝑏 >2

2
+ 𝑀0 < 𝑥 − 𝑐 >0 −𝑃 < 𝑥 − 𝑑 >1 

what it means really?  Five equations in one! 

𝑀 𝑥 = 𝑅𝐴𝑥 
𝑎

−
𝑞(𝑥 − 𝑎)2

2
 
𝑏

+
𝑞(𝑥 − 𝑏)2

2
 
c

+ 𝑀0 𝑥 − 𝑐 0 
𝑑

− 𝑃(𝑥 − 𝑑) 
𝑙
 

alternative notation: Clebsch’s method 

student’s slang: a barrier 

 

If you see a bar set down, you should stop! If the current coordinate is less than the value written at the bar, you stop. 

 

If the value is greater than the bar value, you can cross the bar. 
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𝑀 𝑥 = 𝑅𝐴𝑥 
𝑎

−
𝑞(𝑥 − 𝑎)2

2
 
𝑏

+
𝑞(𝑥 − 𝑏)2

2
 
c

+ 𝑀0 𝑥 − 𝑐 0 
𝑑

− 𝑃(𝑥 − 𝑑) 
𝑙
 

𝑀 𝑥 = 𝑅𝐴𝑥 𝑎   →    for the first characteristic interval, 𝑥 ≤ 𝑎 

𝑀 𝑥 = 𝑅𝐴𝑥 𝑎 −
𝑞 𝑥−𝑎 2

2
 
𝑏
   →    for the second characteristic interval, 𝑥 ≤ 𝑏 

𝑀 𝑥 = 𝑅𝐴𝑥 𝑎 −
𝑞(𝑥−𝑎)2

2
 
𝑏

+
𝑞(𝑥−𝑏)2

2
 
c
  →    for the third characteristic interval, 𝑥 ≤ 𝑐 

𝑀 𝑥 = 𝑅𝐴𝑥 𝑎 −
𝑞(𝑥−𝑎)2

2
 
𝑏

+
𝑞(𝑥−𝑏)2

2
 
c
+ 𝑀0 𝑥 − 𝑐 0 𝑑   →    for the fourth characteristic interval, 𝑥 ≤ 𝑑 

𝑀 𝑥 = 𝑅𝐴𝑥 𝑎 −
𝑞(𝑥−𝑎)2

2
 
𝑏

+
𝑞(𝑥−𝑏)2

2
 
c
+ 𝑀0 𝑥 − 𝑐 0 𝑑 − 𝑃(𝑥 − 𝑑) 𝑙  →   for the last characteristic interval 

it means: 

the method can be viewed as a smart way to write down several equations in the form of general one equation 

to avoid possible errors, the integration constants are written first, from the beginning of equation (because  

they are common for all equations), e.g.: 

𝐸𝐼𝑤 𝑥 = 𝐶𝑥 + 𝐷 −
1

6
𝑅𝐴𝑥3 

𝑎
−

𝑞(𝑥 − 𝑎)4

24
 
𝑏

+
𝑞(𝑥 − 𝑏)4

24
 
c

+
1

2
𝑀0 𝑥 − 𝑐 2 

𝑑
−

1

6
𝑃 𝑥 − 𝑑 3 

𝑙
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The principle of virtual works (virtual displacements, real forces) 

balance of a set of real forces or stresses  

 𝒖 𝑻𝑻 dS

𝑆𝑡

+  𝒖 𝑻𝒇dV

𝑉

=  𝜺 𝑻𝝈dV

𝑉

 

𝑆𝑡 – boundary with the static conditions, T – external forces, f – mass forces, ε, σ – strain and stress tensors, the bar 

means virtual quantity 

The principle of complementary virtual works (virtual forces, real displacements) 

 𝒖𝑻𝑻  dS

𝑆𝑡

+  𝒖𝑻𝒇 dV

𝑉

=  𝜺𝑻𝝈 dV

𝑉

 

valid for any constitutive equation and finite displacements 
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prismatic bars:  

correspondence between each cross-sectional force and one degree of freedom: 

elongation 

transverse displacement 

rotation angle 

Cross-sectional force stress strain displacement 

N 𝜎 =
𝑁

𝐴
 𝜀 =

𝑑𝑢

𝑑𝑥
 𝑑𝑢 = 𝜀𝑑𝑥 

Q 𝜏 =
𝑄𝑆

𝐼𝑏
 𝛽 =

𝑑𝑣

𝑑𝑥
 𝑑𝑣 = 𝛽𝑑𝑥 

𝑀𝑦 𝜎 =
𝑀

𝐼𝑦
𝑧 𝜅 =

𝑑2𝑤

𝑑𝑥2
 𝑑2𝑤 = 𝜅𝑑𝑥2 

𝑀𝑥 𝜏 =
𝑀𝑥

𝐼𝑥
𝑡,

𝑀𝑥

2𝛺𝛿
, … 𝜑 =

𝑑𝜃

𝑑𝑥
 𝑑𝜃 = 𝛼𝑑𝑥 

virtual work: 

𝑊 𝑤 =  𝑁 𝜀 + 𝑄 𝛽 + 𝑀𝑦𝜅

𝐿

𝑑𝑥 

or 

𝑊 𝑤 =  𝑁𝜀 + 𝑄𝛽 + 𝑀𝑦𝜅 

𝐿

𝑑𝑥 
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1 𝑢𝐴 =  𝑁 1𝜀 + 𝑄 1𝛽 + 𝑀 1𝜅

𝐿

𝑑𝑥 

virtual work of a unit force on the direction of the force 

usually the displacements are produced by bending, the influence of other cross-sectional forces can be neglected 

𝜅 =
𝑀

𝐸𝐼
 1 𝑢𝐴 =  

𝑀 1𝑀

𝐸𝐼
𝐿

𝑑𝑥 → 

statically indeterminate structures: two theorems of reduction 

1st – for real bending moments and virtual bending moments of fundamental statically determined state 

2nd – for virtual bending moments and real bending moments of fundamental statically determined state 
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Determine the displacement at the middle of the span BC of the beam in 

Figure; the flexural stiffness is constant. The diagram of the bending 

moments is given. 

The virtual work of the redundant reactions on their displacements, all are 

zero, is equal to zero. 

Assuming each of reaction as redundant, we get three schemes of virtual 

bending moments. 

𝑤 = −
1

2
∙
𝑙

4
∙
𝑙

2
∙

1

2
+

1

3
∙
1

2

𝑞𝑙2

16𝐸𝐼
−

1

2
∙
𝑙

4
∙
𝑙

2
∙
2

3
∙
1

2
∙

𝑞𝑙2

16𝐸𝐼
= −

𝑞𝑙4

256𝐸𝐼
 

w=
2

3
∙

𝑞𝑙2

8𝐸𝐼
∙ 𝑙 ∙

𝑙

2
∙

𝑙

4
−

1

2
∙

𝑞𝑙2

16𝐸𝐼
∙ 𝑙 ∙

2

3
∙

𝑙

4
−

1

2
∙

𝑞𝑙2

16𝐸𝐼
∙

l

2
∙

2

3
∙

𝑙

4
+

1

3
∙
3

8
∙ 𝑙 −

1

2
∙

𝑞𝑙2

32𝐸𝐼
∙

𝑙

2
∙

2

3
∙
3

8
∙ 𝑙 +

1

3
∙

𝑙

4
−

1

2
∙

𝑞𝑙2

32𝐸𝐼
∙

𝑙

2
∙
2

3
∙
3

8
∙ 𝑙 = −

𝑞𝑙4

256𝐸𝐼
 

𝑤 =
𝑞𝑙2

16𝐸𝐼
∙
1

2
∙ 𝑙 ∙

2

3
∙
𝑙

2
−

2

3
∙
𝑞𝑙2

8𝐸𝐼
∙ 𝑙 ∙

𝑙

4
+

𝑙

2
∙
𝑙

2
∙
1

2
∙

𝑞𝑙2

16𝐸𝐼
∙

1

2
+

2

3
∙
1

2
= −

𝑞𝑙4

256𝐸𝐼
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a) cross-section and stress distribution 

b) distortion of sections 

c) angle of average slip 

the average slip angle cannot be easily calculated -  the deformations deduced from the shear stress lead to  

kinematic incompatibility, see a cantilever below 

numerical solution to the cantilever: constant 

 shear force but cross-section distortions vary 

conclusion: the deformation due to shear cannot be deduced independently of 

the bending moments 

a) infinitesimal element, b) real kinematics, c) virtual statics 

𝛾 =
𝜏

𝐺
;      𝑑𝑤 = 𝛽𝑑𝑥 
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virtual works: 1𝑑𝑤 = 𝑑𝑤 =  𝛿𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉
𝑉

=  𝛿𝜏 ∙ 𝛾
𝐴

𝑑𝐴 𝑑𝑥 →
𝑑𝑤

𝑑𝑥
= 𝛽 =

1

𝐺
 𝛿𝜏 ∙ 𝜏𝑑𝐴
𝐴

 

𝑄 = 1 →  𝛿𝜏 = 𝜏1;  𝜏 = 𝑄𝜏1 →
𝑑𝑤

𝑑𝑥
= 𝛽 =

𝑄

𝐺
 𝜏1

2𝑑𝐴 =

𝐴

𝑄

𝐺
 

𝑆2

𝐼2𝑏2 𝑑𝐴

𝐴

=
𝑄

𝐺𝐴

𝐴

𝐼2  
𝑆2

𝑏2 𝑑𝐴

𝐴

=
𝑄

𝐺𝐴
𝜇 =

Q

GAr
 

𝜇 − energy shear coefficient (pure geometry); 𝐴𝑟 ≝
𝐴

𝜇
 − reduced area  𝜇 ≝

𝐴

𝐼2  
𝑆2

𝑏2 𝑑𝐴

𝐴

 

web area 
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prismatic homogeneous bar: 𝐺𝐴𝑟 = const 

𝑑𝑤

𝑑𝑥
= 𝛽 =

𝑄

𝐺𝐴𝑟
→

𝑑2𝑤

𝑑𝑥2 =
1

𝐵𝐴𝑟
∙
𝑑𝑄

𝑑𝑥
= −

𝑞

𝐺𝐴𝑟
= −

1

𝐺𝐴𝑟

𝑑2𝑀

𝑑𝑥2  

𝑤total = 𝑤bending + 𝑤shear 

curvature due to  

shear action 

but the integration of bending-dependent and shear-dependent equations should be performed separately  

because of different nature of the boundary conditions 

for simply supported one-span beam numerical values of shear and bending deflections ratios: 

𝒉/𝑳 1/20 1/15 1/10 1/8 

𝑤𝑞/𝑤𝑀 

(%) 

rectangular section 0.8 1.3 3.0 4.7 

web-flange profile 22 30 45 56 

here  values for maximal stress in web, 

usually, these values are 3-5 times smaller 

Final remarks: the beams displacements due to the shear force are negligible.  




