
Strength of Materials 

7. Torsion 



Problem formulation 
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straight, prismatic bar with bottom surfaces perpendicular to the bar axis, cross-section of 

arbitrary shape 

distributed loads on bottom that yields torque as only cross-sectional force, side surface 

free of loads, no volume forces (neglected) 

kinematic boundary conditions: bar fixed at one point (all displacements and their 

derivatives vanish there), the rest part of the bottom can deform freely  

(with use of de Saint-Venant principle the distributed loads can be replaced by a torque) 

(this is the case of not constricted torsion in contrast to a constricted torsion 

where the whole bottom surface is fixed) 

x 

y 

z 



come back to BVP 
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Semi-inversed methods 
Kinematic approach: 3 functions  ui  satisfying KBC are proposed, and then the strains are 

found by differentiation according to CE, and inserted into algebraic  HE to obtain stresses 

which have to satisfy NE and SBC 

ui + KBC ij 
σij SBC? 

Substitution Differentiation Differentiation 

CE HE NE? 

Substitution 

 
ijjiij uu ,,

2

1
 ijkkijij G   2

CE (Cauchy) NE (Navier) HE (Hooke) 

...
uSiu

jiji nq  SBC KBC 

𝜎𝑖𝑗 ,𝑗 + 𝑃𝑖= 0 



Definitions 
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prism before loading 

prism after loading 

shear stress 
x 

y 

z 

𝛼 

𝜃 

𝛼 – torsion (twist) angle, in [rd]  

𝜃 – unit torsion angle, in [rd/m] 

 

distortion (warping) – a change 

of the cross-section plane into 

some deformed surface 



de Saint-Venant kinematic approach 
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de Saint-Venant assumptions: 

 

- the projection of the cross-section onto its initial plane remains unchanged (as the rigid membrane)  

- the cross-section distortion consists in the movement “out-of-plane” only and is the same for all cross-sections 

the displacement components can be written: 

A 

A’ 

𝜌 

𝜌′ 

𝛼 𝛽 𝑦, 𝑣 

𝑧, 𝑤 

𝜌 ≈ 𝜌′,    sin 𝛼 ≈ 𝛼,          cos 𝛼 ≈ 1,        𝛼 = 𝜃𝑥 

𝑣 = −𝜌𝛼 sin 𝛽 = −𝜃𝑥𝑧,         𝑤 = 𝜌𝛼 cos𝛽 = 𝜃𝑥𝑦, 

distortion function:  𝑢 = 𝜃𝜑(𝑦, 𝑧)  (no dependence on x) 

SBC: 𝑣 0,0,0 = 𝑤 0,0,0 = 0, (𝑢 0,0,0 = 0 not yet satisf.) 

similarly:  𝑣,𝑥 0,0,0 = 𝑣,𝑧 0,0,0 = 𝑤,𝑥 0,0,0 = 𝑤,𝑦 0,0,0 = 0 

(and 𝑢,𝑦 0,0,0 = 𝑢,𝑧 0,0,0 = 0 not yet satisfied) 



Boundary value problem solution 
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𝑢 = 𝜃𝜑 𝑦, 𝑧 ,       𝜑 − distortion function 

𝑣 = −𝜃𝑥𝑧,  
𝑤 = 𝜃𝑥𝑦  

strains 

휀𝑥 =
𝜕𝑢

𝜕𝑥
= 0 

휀𝑦 =
𝜕𝑣

𝜕𝑦
= 0 

휀𝑧 =
𝜕𝑤

𝜕𝑧
= 0 

휀𝑥𝑦 =
1

2
𝜃
𝜕𝜑

𝜕𝑦
− 𝜃𝑧  

휀𝑥𝑧 =
1

2
𝜃
𝜕𝜑

𝜕𝑧
+ 𝜃𝑦  

휀𝑦𝑧 =
1

2
−𝜃𝑥 + 𝜃𝑥 = 0 

the strain matrix 𝑇 =
0
1

2
𝜃
𝜕𝜑

𝜕𝑦
− 𝑧

1

2
𝜃
𝜕𝜑

𝜕𝑧
+ 𝑦

0 0
0

 

the stress matrix 𝑇𝜎 =
0 𝐺𝜃

𝜕𝜑

𝜕𝑦
− 𝑧 𝐺𝜃

𝜕𝜑

𝜕𝑧
+ 𝑦

0 0
0

 

Navier equations 

the first: 

 
1

2
𝐺𝜃
𝜕2𝜑

𝜕𝑦2
+
1

2
𝐺𝜃
𝜕2𝜑

𝜕𝑧2
= 0 → 𝛻2𝜑 = 0 (1) 

Laplace equation – 𝜑 is the harmonic function 

another notation:  ∆𝜑 = 0, ∆  − Laplacian 

the second and the third are fulfilled because the distortion 

function doesn’t depend on x 



BVP solution – cont. 
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SBC  

on the side surface, 𝑛(0,𝑚, 𝑛):  
𝜕𝜑

𝜕𝑦
− 𝑧 𝑚 +

𝜕𝜑

𝜕𝑧
+ 𝑦 𝑛 = 0,    (the second and the third are identically fulfilled)      (2) 

on the bottoms, 𝑛 ±1,0,0 :  

𝑞𝑦 = 𝐺𝜃
𝜕𝜑

𝜕𝑦
− 𝑧 ±1 , 𝑞𝑧 = 𝐺𝜃

𝜕𝜑

𝜕𝑧
+ 𝑦 ±1 ,   (the first equation is identically fulfilled)        (3)  

KBC 

𝜑 0,0,0 = 0, 𝜑,𝑦 0,0,0 = 𝜑,𝑧 0,0,0 = 0       (4) 

Neumann problem: 

the equation (1) with the boundary conditions (2); single solution exists accurate to within a constant 

so, we can fulfill the condition 41 
if the cross-section have at least one symmetry axis,  the conditions 42, 43 will be fulfilled, and also, for 

other shape of the cross-section with good precision 

only the conditions (3) remain, thus we admit the loading in the form: 

𝑞𝑦 = 𝐺𝜃
𝜕𝜑

𝜕𝑦
− 𝑧 ±1 , 𝑞𝑧 = 𝐺𝜃

𝜕𝜑

𝜕𝑧
+ 𝑦 ±1  



BVP solution – final remarks 
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statically equivalent torque 

𝑀𝑥 = 𝑞𝑧𝑦 − 𝑞𝑦𝑧 𝑑𝐴 = 𝐺𝜃
𝜕𝜑

𝜕𝑧
+ 𝑦 𝑦 − 𝐺𝜃

𝜕𝜑

𝜕𝑦
− 𝑧 𝑧 𝑑𝐴 = 𝐺𝜃 

𝜕𝜑

𝜕𝑧
𝑦 −
𝜕𝜑

𝜕𝑦
𝑧 + 𝑦2 + 𝑧2 𝑑𝐴

𝐴𝐴𝐴

 

torsion inertia moment, 𝐼𝑥 

   𝐼𝑥 ≝  
𝜕𝜑

𝜕𝑧
𝑦 −
𝜕𝜑

𝜕𝑦
𝑧 + 𝑦2 + 𝑧2 𝑑𝐴

𝐴
,   [m4] 

finally: 

 
𝑀𝑥 = 𝜃𝐺𝐼𝑥 𝐺𝐼𝑥  −  torsional stiffness 𝜃 =

𝑀𝑥
𝐺𝐼𝑥

 



Solid circular shaft 
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for the circular cross-section, the static boundary conditions on the side surface 𝑛(0, cos 𝛽, sin 𝛽): 
𝜕𝜑

𝜕𝑦
𝑦 +
𝜕𝜑

𝜕𝑧
𝑧 = 0  and 𝜑 0,0,0 = 0 

because of the homogeneity of the equations, i.e. Laplace equation and the boundary conditions,  

the distortion function vanishes: 

𝜑(𝑦, 𝑧) ≡ 0 

The torsion inertia moment becomes the polar inertia moment 𝐼𝑥 =  𝑦2 + 𝑧2 𝑑𝐴 =
𝐴

𝐼0 

the shear stresses 

𝜏𝑥𝑦 = −
𝑀𝑥
𝐼0
𝑧, 𝜏𝑥𝑧 =

𝑀𝑥
𝐼0
𝑦 

the stress vector is perpendicular to the radius and its length is 

𝜏 = 𝜏𝑥𝑦
2 + 𝜏𝑥𝑧

2 =
𝑀𝑥

𝐼0
𝑦2 + 𝑧2 =

𝑀𝑥

𝐼0
𝑟 

 

z 

y 

xy  

xz  

max 𝜏 =
𝑀𝑥
𝐼0
𝑅 =
𝑀𝑥
𝑊0

 𝑊0 ≝
𝐼0
𝑅

 
torsional (twist) 

section factor 

𝐼0 =
𝜋𝑑4

32
=
𝜋𝑟4

2
,   𝑊0 =

𝜋𝑑3

16
=
𝜋𝑟3

2
 



Torsion of circular shaft – design  
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The carrying capacity limit state max 𝜏 =
𝑀𝑥
𝑊0
≤ 𝑅𝑡 𝑅𝑡 − shear stress calculation limit 

𝜃 =
𝑀𝑥

𝐺𝐼0
≤ 𝜃allowable,    

rd
m

=
1
m

   The usability limit state 

or 
if 𝑀𝑥 = const:   𝛼 = 𝜃𝑙 =

𝑀𝑥𝑙

𝐺𝐼0
≤ 𝛼allowable, 𝑟𝑑 = 1  

(not in degrees!) 

if 𝑀𝑥 ≠ const:   𝛼 =  𝜃𝑑𝑥 =  
𝑀𝑥

𝐺𝐼0
𝑑𝑥

𝑙𝑙
 

Transmission shafts 

transmitted power: 𝑃 = 𝑀𝑥𝜔 = 𝑀𝑥2𝜋𝑓,  

𝑀𝑥 − torque, 𝜔 − (angular) velocity 
rd
s

, 𝑓 − rotation frequency (a number of revolutions per second) 

high-speed/low-speed engines 

Hollow shafts 

inertia moment  𝐼0 =
𝜋𝐷4

32
−
𝜋𝑑4

32
=
𝜋

32
𝐷4 − 𝑑4  

cross-section torsion factor  𝑊0 =
𝐼0

𝐷/2
=
𝜋

16𝐷
𝐷4 − 𝑑4  



Prandtl function – another solution 
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homogeneous Laplace equation and non-homogeneous boundary conditions – the Neumann problem 

nonhomogeneous Poisson equation and homogeneous boundary conditions – the Dirichlet problem 

Prandtl function, ψ :   

 𝜏𝑥𝑦 = 𝐺𝜃
𝜕ψ

𝜕𝑧
, 𝜏𝑥𝑧 = −𝐺𝜃

𝜕ψ

𝜕𝑦
 

𝑀𝑥 = 2𝐺𝜃 ψ𝑑𝐴

𝐴

 

Prandtl’s analogy, soap bubble (membrane) analogy, Greenhill’s hydrodynamic analogy 

𝜕2ψ

𝜕𝑦2
+
𝜕2ψ

𝜕𝑧2
= −2 

on the contour ψ=const, usually 0 is admitted 



Prandtl’s analogy 
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the volume of the solid between the Prandtl’s function  

and the cross-section plane is proportional to the torque 

the slope is proportional to the resultant shear stress 𝜏  
for multiply connected cross-sections the additional  

conditions of displacements compatibility is required, and 

leads to the conditions that circulation of the shear stress  

over the hole contour is proportional to the hole area: 

 𝜏𝑑𝑠 = 2𝐺𝜃𝐴 



Rectangular cross-section 
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trigonometric series expansion for the distortion function 𝜑 =  𝑓𝑘(𝑦) cos
𝑘𝜋𝑦

𝑎

1,3,5…
𝑘  

and right side of the Poison equation in Fourier series −2𝐺𝜃 =  𝐴𝑘 cos
𝑘𝜋𝑦

𝑎

1,3,5,…
𝑘  

we get differential equation 𝑓𝑘
′′ 𝑦 −

𝑘𝜋

𝑎

2
𝑓𝑘 𝑦 = 𝐴𝑘 with the solution 

𝜑 = 𝐺𝜃
𝑎

2

2

− 𝑦2 −
8𝐺𝜃𝑎2

𝜋3
 
−1
𝑘−1
2

𝑘3
∙
cosh
𝑘𝜋𝑧
𝑎

cosh
𝑘𝜋𝑏
2𝑎

cos
𝑘𝜋𝑦

𝑎

1,3,5,…

𝑘

 

tabulated solutions: 𝑊𝑥 ≝ 𝛼𝑏
2ℎ; 𝐼𝑥 ≝ 𝛽𝑏

3ℎ, 𝜃 =
𝑀𝑥

𝐺𝐼𝑥
, 𝜏max =

𝑀𝑥

𝑊𝑥
 , 𝛾 = 𝜏

𝑏

2
/𝜏max  

h/b 1 1.5 2 3 4 6 8 10 ∞ 

𝛼 0.208 0.231 0.246 0.267 0.282 0.299 0.307 0.312 1/3 

𝛽 0.141 0.196 0.229 0.263 0.281 0.299 0.307 0.312 1/3 

𝛾 1 0.859 0.795 0.753 0.745 0.743 0.742 0.742 



Thin-walled profiles 
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developable profiles (C-channels, Z-sections, angle sections, etc.) 

may be substituted by a rectangle with the same area and a height equal to the length of the middle line 

example: C-channel profile 300×10 (web) and 90×16 (flanges) → a rectangle ℎ = 2 × 85 + 284 = 454 mm and  

average width 𝑏 = 12.25 mm 

not developable profiles (I-beams, W-beams, T-beams, etc., the middle-line bifurcates) 

may be cut into simple rectangles, provided that: 

-  𝑀𝑥𝑖 = 𝑀𝑥 

- 𝜃𝑖 = 𝑖𝑑𝑒𝑚 →
𝑀𝑥𝑖

GIxi
=
Mx i+1

GIx i+1
, i = 1,⋯ , 𝑛 − 1  

hence 𝑀𝑥𝑖 and the common unit torsion angle 𝜃 of every rectangle and the whole section 

the smaller is the connection zone, the smaller will be an error 

if the thickness is constant, we can use one rectangle instead 



1

ds
2

hollow structural sections 

from the hydrodynamic analogy: 𝜏1𝛿1 = 𝜏2𝛿2 = const 

Bredt’s first formula: 𝜏max =
𝑀𝑥

2𝐴𝛿min
 

Bredt’s second formula: 𝐼𝑥 =
4𝐴2

 
𝑑𝑠

𝛿𝑐

 , 𝛿 = const → 𝐼𝑥 =
4𝐴2𝛿

𝑐
 



Applicability of Bredt’s formula 
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comparison with exact solution to tubular cross-section (instead of linear stress distribution, the Bredt’s formula 

contains constant, rectangular distribution) 

𝛽 =
𝜏max
𝑒𝑥

𝜏max
𝐵 =

4+2𝛼

4+𝛼2
,  𝛾 =

𝜃𝑒𝑥

𝜃𝐵
=
4

4+𝛼2
,   𝛼 =

𝛿

𝑟𝑚
 

𝜶 0 0.05 0.1 0.15 0.25 0.5 1 

𝛽 1.0000 1.0244 1.0474 1.0690 1.1077 1.1765 1.2000 

𝛾 1.0000 0.9994 0.9975 0.9944 0.9846 0.9412 0.8000 

stress concentration inside the angles, in the round off; greater round offs produce greater twisting inertia moment 

(up to 25%)  

r/t 2.0 1.0 0.5 0.3 

𝜏𝑟/𝜏max ~1.0 ~1.4 ~1.8 ~2.1 



Torsion - complements 
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The bearing capacity of thin-walled closed profile is much greater than those with similar dimensions but open 

for the ring  
𝛿

𝑟
= 0.1 → the torsional stiffness of the open section is about 260 times smaller and the bearing  

capacity is about 26 times smaller when compared with the closed section  

correction of the Bredt’s formulas by breaking 

cross-section into closed and open parts 

revolved section of the Prandtl’s function: 

closed 
open 



Torsion of composite section  
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The Bredt’s formulas can be generalized to composite beams made of two linear elastic materials 

(a) tubular cross-section with homogeneous wall  

Comparing the work of the internal forces with the work of the external forces, we get 

1

2
 𝜏𝛾𝑑𝑐 =

1

2
 
𝜏2

𝐺
𝑑𝑐 =
1

2
 
𝜏2

𝐺𝑎
𝛿𝑑𝑐 +  

𝜏2

𝐺𝑏
𝛿𝑑𝑐

𝑐𝑐

=
1

2

𝑀𝑥
2

4𝐴2
1

𝐺𝑎
 
𝑑𝑐

𝛿
+
1

𝐺𝑏
 
𝑑𝑐

𝛿
𝑏𝑎𝑐𝑐

=
1

2
𝑀𝑥𝜃 

From this comparison we get: 

𝜃 =
𝑀𝑥
4𝐴2

1

𝐺𝑎
 
𝑑𝑐

𝛿
+

𝑎

1

𝐺𝑏
 
𝑑𝑐

𝛿
𝑏

→  𝜃 =
𝑀𝑥
4𝐴2𝐺𝑎

 
𝑑𝑐

𝛿
+

𝑎

 
𝐺𝑎
𝐺𝑏

𝑑𝑐

𝛿
𝑏

=
𝑀𝑥
4𝐴2𝐺𝑏

 
𝐺𝑏
𝐺𝑎

𝑑𝑐

𝛿
+

𝑎

 
𝑑𝑐

𝛿
𝑏

 

homogenization in material a homogenization in material b 



Torsion of composite section 
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(b) tubular cross-section with composite wall 

The Bredt’s formula is valid only in terms of stress flow: 𝑓 = 𝜏𝑎𝛿𝑎 + 𝜏𝑏𝛿𝑏 =
𝑀𝑥

2𝐴
, A – area limited by the center line 

of the composite section. As the distortion must be the same in the two materials, we have: 

𝛾 =
𝜏𝑎
𝐺𝑎
=
𝜏𝑏
𝐺𝑏
→ 𝜏𝑏 =

𝐺𝑏
𝐺𝑎
𝜏𝑎 → 𝜏𝑎 = 𝐺𝑎

𝑀𝑥
2𝐴 𝐺𝑎𝛿𝑎 + 𝐺𝑏𝛿𝑏

, 𝜏𝑏 = 𝐺𝑏
𝑀𝑥

2𝐴 𝐺𝑎𝛿𝑎 + 𝐺𝑏𝛿𝑏
 

comparing the works 
1

2
 
𝜏𝑎
2

𝐺𝑎
𝛿𝑎 +

𝜏𝑏
2

𝐺𝑏
𝛿𝑏 𝑑𝑐 =

1

2
𝑀𝑥𝜃 →  𝜃 =

𝑀𝑥

4𝐴2
 
𝐺𝑎𝛿𝑎+𝐺𝑏𝛿𝑏

𝐺𝑎𝛿𝑎+𝐺𝑏𝛿𝑏
2 𝑑𝑐 =

𝑀𝑥

4𝐴2
 

𝑑𝑐

𝐺𝑎𝛿𝑎+𝐺𝑏𝛿𝑏
 

and, using the homogenization concept to the expression of unit twist angle: 

𝜃 =
𝑀𝑥
4𝐴2𝐺𝑎

 
𝑑𝑐

𝛿𝑎 +
𝐺𝑎
𝐺𝑏
𝛿𝑏

=
𝑀𝑥
4𝐴2𝐺𝑏

 
𝑑𝑐

𝐺𝑎
𝐺𝑏
𝛿𝑎 + 𝛿𝑏

 

homogenization 

in material a 

homogenization 

in material b 



Torsion of composite section 
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the equivalence ratio: 𝑚 =
𝐺𝑎

𝐺𝑏
 

similar procedure as for bending of composite beam – we introduce an equivalent cross-section: 

for open cross-section we divide by m the length of rectangle b 

for closed cross-section we divide the thickness of the wall by m 

 

Equivalent cross-sections for the composite beams made from materials a and b 

a) open section, b) closed  section (flange overhangs neglected) 



Torsion - examples 
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(da Silva) The beam in the Figure below is loaded in the plane shown as the action axis (a.a.). Determine the  

rotation of cross-section A around the beam’s axis. 

Solution 

the load per unit length: 𝑞 𝑥 =
𝑝

400𝑎
𝑥 

the shear force: 𝑄 𝑥 =  𝑞𝑑𝑥 =
𝑝

800𝑎
𝑥2 

the twisting moment (against the shear center): 𝑀𝑥 𝑥 =
𝑝

800𝑎
𝑥2 ∙ 16𝑎 =

𝑝

50
𝑥2 

the twist inertia moment (using the Bredt’s second formula): 𝐼𝑥 =
4𝐴2𝛿

𝑐
=
4 16𝑎∙8𝑎 2𝑎

48𝑎
= 1365𝑎4 

the twist angle: 𝛼 =  𝜃𝑑𝑥 =  
𝑀𝑥(𝑥)

𝐺𝐼𝑥
𝑑𝑥

𝑙

0
=
1

𝐺𝐼𝑥
∙
𝑝

150
400𝑎 3 = 312.6

𝑝

𝐺𝑎

𝑙

0
 



Torsion – example 
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(da Silva) The cantilever beam in the Figure below is made of a material with a shear modulus G. Determine the  

rotation of the right cross-section around the bar axis, caused by uniformly distributed loading p. 

Solution 

the shear force: 𝑄 𝑥 = 𝑝
𝑥
200

2002+202

= 1.005𝑝𝑥 

the lever of shear force (vanishes at the fixed end): 

  𝑑 𝑥 = 10𝑎 −
𝑥

20
 

the twist inertia moment (as one rectangle): 

𝐼𝑥 =
1

3
20𝑎 + 9𝑎 ∙ 2𝑎 3 =

232

3
𝑎4 

the rotation angle of the free end: 

𝛼 =
1
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=
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 1.005𝑝𝑥 10𝑎 −

𝑥

20
𝑑𝑥 =
25000 ∙ 1.005
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