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Thermodynamics – definitions 
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A thermodynamic system can be: 

- closed (isolated), exchanges neither matter nor energy (ex.: the Universe viz. cosmos) 

- semi-permeable, exchanges only energy (ex.: flatiron) 

- permeable (open), exchanges matter and energy with surroundings (ex.: making jam) 

The system is enclosed by walls, fixed or movable: 

- adiabatic (ideal thermal isolation, no energy exchange through it, ex.: vacuum bottle) 

- diathermal (ideal permeability for temperature exchange – zeroth law of thermodynamics and the  

 temperature measurement) 

The first law of thermodynamics – two postulates 

1) The principle of energy conservation: total energy quantity is constant, 𝑑𝐸 = 0 

    The total energy is composed from: 

- potential energy (resulting from externally imposed force field, like gravity) 

- kinetic energy (resulting from the system motion as a whole) 

- the remainder of energy constitutes internal energy (elastic, irradiation, chemical, thermal, magnetic and 

many others) 

𝐸 = 𝐸𝑝 + 𝐸𝑘 + 𝑊 

 



Energy – the first law of thermodynamics 
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2) The internal energy can be exchanged in two ways: by work or by heat 

𝑑𝑊 = 𝛿𝐿 + 𝛿𝑄 

𝛿 − diminutives (in general not a differential) 

this means that the internal energy is an exact differential and that it doesn’t depend on the path (only actual 

and initial states count) 

and that work and heat depend on the path (not only on the initial and actual states) 

The principle of virtual works 

𝛿𝑊𝑖𝑛𝑡 = 𝛿𝑊𝑒𝑥𝑡 

 𝑞𝑖𝛿𝑢𝑖𝑑𝐴 =  𝑞𝑖𝛿𝑢𝑖𝑑𝐴
𝐴𝜎

+  𝑞𝑖𝛿𝑢𝑖𝑑𝐴 =  𝑞𝑖𝛿𝑢𝑖𝑑𝐴
𝐴𝜎𝐴𝑢𝐴

 

 𝜎𝑖𝑗𝛿휀𝑖𝑗𝑑𝑉 =  𝑏𝑖𝛿𝑢𝑖𝑑𝑉 +  𝑞𝑖𝛿𝑢𝑖𝑑𝐴
𝐴𝜎𝑉𝑉

 

     (internal + external) 

For an adiabatic process (without heat exchange and production): 

𝑑𝑊 = 𝛿𝐿 



Potential and complementary energy 
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The principle of complementary virtual works 

 𝛿𝜎𝑖𝑗휀𝑖𝑗𝑑𝑉 =
𝑉

 𝛿𝑏𝑖𝑢𝑖𝑑𝑉
𝑉

+  𝛿𝑞𝑖𝑢𝑖𝑑𝐴
𝐴

 

linear material nonlinear material 

virtual 

virtual complementary 

virtual 

virtual complementary 

For a linearly elastic body, the path of the work is uniquely defined and the diminutive of work becomes an 

exact differential: 

𝑑𝑊 = 𝑑𝐿 

Clapeyron’s theorem:  

The elastic energy of a body is equal to one half of the products of all generalized 

forces and respective generalized displacements: 

𝐿 =  𝑃𝛿𝑘𝑑𝑘 = 𝑃𝛿  𝑘𝑑𝑘 =
1

2
𝑃𝛿 = 𝑊𝑒𝑙

1

0

1

0

 

 

k=1 

*  k=0 

P* 

P 

displacement 

force 

(internal + external) 

𝑢 

𝑃 𝑃 

𝑢 



Betti reciprocal work theorem 
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=  𝐷𝑘𝑙𝑖𝑗휀𝑖𝑗
′ 휀𝑘𝑙𝑑𝑉

𝑉

=  𝜎𝑘𝑙
′ 휀𝑘𝑙𝑑𝑉

𝑉

  𝜎𝑖𝑗휀𝑖𝑗
′

𝑉

𝑑𝑉 =  𝐷𝑖𝑗𝑘𝑙휀𝑘𝑙휀𝑖𝑗
′

𝑉

𝑑𝑉  

 

 𝑏𝑖𝑢𝑖
′

𝑉

𝑑𝑉 +  𝑞𝑖𝑢𝑖
′𝑑𝐴 =  𝑏𝑖

′𝑢𝑖
𝑉

𝑑𝑉 +  𝑞𝑖
′𝑢𝑖𝑑𝐴

𝐴𝜎𝐴𝜎

 

for a linear elastic structure subject to two sets of forces 𝑃𝑖 and 𝑄𝑖 the work done by the set P through the 

displacements produced by the set Q is equal to the work done by the set Q through the displacements produced 

by the set P 

 𝑃𝑢′ = 𝑃′𝑢 

Particular case: Maxwell’s theorem 

1𝑢𝐴𝐵 + 0𝑢𝐵𝐵 = 0𝑢𝐴𝐴 + 1𝑢𝐵𝐴 

so: 

𝑢𝐴𝐵 = 𝑢𝐵𝐴 

(influence lines, boundary 

element method) 



Variational principles 
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when an exact solution of BVP is not known, we can seek an approximate solution yet 

the idea of variational methods consists in looking up for integral terms, determined for a specific class function, 

with the stationary conditions equivalent with the solution to the BVP 

we admit the static and kinematic fields as an independent variables set to characterize energies: potential and 

complementary 

these functionals become ordinary functions of variables: kinematic and static 

Lagrange principle of minimum total potential energy: 

𝛿 𝑈 − 𝐿 = 0 

a structure deforms to a position that (locally) minimizes the total potential energy 

Castigliano’s principle of minimum total complementary energy: 

𝛿 𝑈𝑐 − 𝐿𝑐 = 0 

Castigliano’s theorem: 
𝜕𝑈𝑐

𝜕𝐹
= 𝑢 

the partial derivative of the strain energy, considered as a function of the applied forces acting on a linearly 

elastic structure, with respect to one of these forces, is equal to the displacement in the direction of the force at 

its point of application 



Elastic energy 
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For a prismatic bar: 



Elastic Energy – cont. 
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A – mean hydrostatic tensor 

D – deviator  

𝐿 =  𝑃𝑖𝑢 𝑖𝑑𝑉 +  𝑝𝑖𝑢 𝑖𝑑𝑆

𝑆𝑉

 =  𝑃𝑖𝑢 𝑖𝑑𝑉 +  𝜎𝑖𝑗𝑛𝑗𝑢 𝑖𝑑𝑆

𝑆𝑉

= ⋯ 

=  𝑃𝑖𝑢 𝑖𝑑𝑉 +  𝜎𝑖𝑗𝑢 𝑖 ,𝑗
𝑑𝑉

𝑉𝑉

 =  𝑃𝑖𝑢 𝑖 + 𝜎𝑖𝑗,𝑗𝑢 𝑖 + 𝜎𝑖𝑗𝑢 𝑖,𝑗 𝑑𝑉 = ⋯

𝑉

 

=  𝑃𝑖 + 𝜎𝑖𝑗,𝑗 𝑢 𝑖 + 𝜎𝑖𝑗𝑢 𝑖,𝑗 𝑑𝑉

𝑉

 =  𝜎𝑖𝑗휀 𝑖𝑗𝑑𝑉

𝑉

 =  𝑇𝜎𝑇𝜀 𝑑𝑉

𝑉

= 𝐿 = 𝑊 
𝑝 

𝑊 
𝑝 =  𝐴𝜎 + 𝐷𝜎 𝐴𝜀 + 𝐷𝜀 𝑑𝑉

𝑉

 =  𝐴𝜎𝐴𝜀 + 𝐷𝜎𝐷𝜀 + 𝐴𝜎𝐷𝜀 + 𝐷𝜎𝐴𝜀 𝑑𝑉

𝑉

 

AσD𝜀 = σ𝑚𝛿𝑖𝑗 휀 𝑖𝑗 − 휀 𝑚𝛿𝑖𝑗  = σ𝑚휀 𝑖𝑗𝛿𝑖𝑗 − 𝜎𝑚휀 𝑖𝑗𝛿𝑖𝑗𝛿𝑖𝑗 = 𝜎𝑚휀 𝑖𝑖 − 𝜎𝑚휀 𝑚𝛿𝑖𝑖 = 𝜎𝑚3휀 𝑚 − 𝜎𝑚휀 𝑚3 = 0 

𝑊 
𝑝 =  𝐴𝜎𝐴𝜀 𝑑𝑉 +  𝐷𝜎𝐷𝜀 𝑑𝑉

𝑉𝑉

 



Energy – cont.  
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For Hooke materials: 

Specific volumetric energy 

Specific distortion energy 

𝑊 
𝑝 =  𝐴𝜎𝐴𝜀 𝑑𝑉 +  𝐷𝜎𝐷𝜀 𝑑𝑉

𝑉𝑉

 

Aσ = 3𝐾Aε  
Aσ = 3𝐾Aε  

𝐷𝜎 = 2𝐺𝐷𝜀 
𝐷𝜎 = 2𝐺𝐷𝜀  
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Decomposition of the specific energy 
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Specific energy is a potential energy 

A general form of specific energy for beams: 
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F – cross-sectional force 

S – beam stiffness 

μ – shape coefficient 
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Energy – components of the formula 
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Components of elastic energy formula 

 

Specific case 

Cross-sectional force 

F 

Beam stiffness 

S 

Shape coefficient 

μ 

Tension N EA 1 

Bending M EI 1 

Shear Q GA 
 
𝜇 

Torsion Mx GIx 
 

𝜇𝑡 



Generalized forces and displacements 
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Definitions of generalised force and generalized displacement: 

Generalized force is any external loading in the form of point force, point moment, 

distributed loading etc.  

Generalized displacement corresponding to a given generalized force is any 

displacement for which the work of this force can be performed. 

The dimension of generalized displacement has to follow the rules of dimensional 

analysis taking into account that the dimension of work is [Nm]. 

dt

dW

dt

dL p
 dt 

Corresponding 

elastic energy 

External work: function of 

loading and displacement 

pWL 





Generalized forces and displacements – cont. 
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Generalized 

displacement 

Displacement 

dimension 

Generalized force 

dimension 

[1] 

P 

[Nm] 

q 

M 

[N] u [m] 

[N/m] [m2] 

dw/dx 

udx 

But also: 

Corresponding generalized displacement is 

the sum of displacements u1+u2 

P2 P1 

u1 u2 

M2 M1 

 

Corresponding generalized displacement is the 

sum of rotation angles of neighbouring cross-

sections 𝜑 

Generalized force 



Betti principle 
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For linear elasticity the principle of superposition obeys: 
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n
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ji uP or 

where αij   βij  are influence coefficients  for which Betti principle holds: 

 αij = αji    and  i  βij =βji  

The work of external forces (generalized) Pi performed on  displacements 

(generalized) ui is: 
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After expansion of the first term we have: 
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Castigliano theorem 
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taking into account that: inniiij
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=
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𝑃1𝑢1 + 𝑃2𝑢2 + 𝑃3𝑢3 + ⋯+ 𝑃𝑛𝑢𝑛 = 



Unit force theorem 

25/04/2019 Adam Paweł Zaborski 16/17 

Therefore, for any displacement we have: 

i

i

u
P

L





pWL and since 

 
u

P

PPW

P

ip






0

,

To find an arbitrary generalized displacement 𝑢  of any point of the structure one has to apply the corresponding 

generalized force at this point, and 

calculate internal energy associated with all loadings (real and generalized), 

take derivative of this energy with respect to generalized force,  

and finally set its true value equal to 0: 

i

i

p
u

P

W
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2
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1


Where Fi is cross-sectional force for each case 

of internal forces reduction (normal force, shear 

force, bending moment, torsion moment) 



Potential energy for bar structures 

25/04/2019 Adam Paweł Zaborski 17/17 

Making use of superposition principle we have:  

         ipipp PFPPFWPFPFWW  1

where:   FPF 1

 Ppp FPFWW 

  PFPF 

dx
S

F
W

l

p 
0

2

2

1
With general formula for potential energy: 
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1


or 

we have: 

where index i has been added 

for different reduction cases  

𝑥  denotes here function of  𝑥 




