## Strength of Materials

8. Energy

## Thermodynamics - definitions

A thermodynamic system can be:

- closed (isolated), exchanges neither matter nor energy (ex.: the Universe viz. cosmos)
- semi-permeable, exchanges only energy (ex.: flatiron)
- permeable (open), exchanges matter and energy with surroundings (ex.: making jam)

The system is enclosed by walls, fixed or movable:

- adiabatic (ideal thermal isolation, no energy exchange through it, ex.: vacuum bottle)
- diathermal (ideal permeability for temperature exchange - zeroth law of thermodynamics and the temperature measurement)

The first law of thermodynamics - two postulates

1) The principle of energy conservation: total energy quantity is constant, $d E=0$

The total energy is composed from:

- potential energy (resulting from externally imposed force field, like gravity)
- kinetic energy (resulting from the system motion as a whole)
- the remainder of energy constitutes internal energy (elastic, irradiation, chemical, thermal, magnetic and many others)

$$
E=E_{p}+E_{k}+W
$$

## Energy - the first law of thermodynamics

2) The internal energy can be exchanged in two ways: by work or by heat

$$
d W=\delta L+\delta Q
$$

$\delta$ - diminutives (in general not a differential)
this means that the internal energy is an exact differential and that it doesn't depend on the path (only actual and initial states count)
and that work and heat depend on the path (not only on the initial and actual states)
For an adiabatic process (without heat exchange and production):

$$
d W=\delta L
$$

The principle of virtual works

$$
\begin{gathered}
\delta W_{\text {int }}=\delta W_{\text {ext }} \\
\int_{A} q_{i} \delta u_{i} d A=\int_{A_{\sigma}} q_{i} \delta u_{i} d A+\int_{A_{u}} q_{i} \delta u_{i} d A=\int_{A_{\sigma}} q_{i} \delta u_{i} d A \\
\int_{V} \sigma_{i j} \delta \varepsilon_{i j} d V=\int_{V} b_{i} \delta u_{i} d V+\int_{A_{\sigma}} q_{i} \delta u_{i} d A \\
\text { (internal + external) }
\end{gathered}
$$

## Potential and complementary energy

The principle of complementary virtual works

$$
\int_{V} \delta \sigma_{i j} \varepsilon_{i j} d V=\int_{V} \delta b_{i} u_{i} d V+\int_{A} \delta q_{i} u_{i} d A \quad \text { (internal }+ \text { external) }
$$

linear material

nonlinear material


For a linearly elastic body, the path of the work is uniquely defined and the diminutive of work becomes an exact differential:

$$
d W=d L
$$

Clapeyron's theorem:
The elastic energy of a body is equal to one half of the products of all generalized forces and respective generalized displacements:

$$
L=\int_{0}^{1} P \delta k d k=P \delta \int_{0}^{1} k d k=\frac{1}{2} P \delta=W_{e l}
$$



## Betti reciprocal work theorem

$$
\begin{gathered}
\int_{V} \sigma_{i j} \varepsilon_{i j}^{\prime} d V=\int_{V} D_{i j k l} \varepsilon_{k l} \varepsilon_{i j}^{\prime} d V=\int_{V} D_{k l i j} \varepsilon_{i j}^{\prime} \varepsilon_{k l} d V=\int_{V} \sigma_{k l}^{\prime} \varepsilon_{k l} d V \\
\int_{V} b_{i} u_{i}^{\prime} d V+\int_{A_{\sigma}} q_{i} u_{i}^{\prime} d A=\int_{V} b_{i}^{\prime} u_{i} d V+\int_{A_{\sigma}} q_{i}^{\prime} u_{i} d A
\end{gathered}
$$

for a linear elastic structure subject to two sets of forces $P_{i}$ and $Q_{i}$ the work done by the set $P$ through the displacements produced by the set $Q$ is equal to the work done by the set $Q$ through the displacements produced by the set $P$

$$
\sum P u^{\prime}=\sum P^{\prime} u
$$

(influence lines, boundary element method)

Particular case: Maxwell's theorem



(c)

$$
\begin{aligned}
& 1 u_{A B}+0 u_{B B}=0 u_{A A}+1 u_{B A} \\
& \text { so: } \\
& \quad u_{A B}=u_{B A}
\end{aligned}
$$

## Variational principles

when an exact solution of BVP is not known, we can seek an approximate solution yet
the idea of variational methods consists in looking up for integral terms, determined for a specific class function, with the stationary conditions equivalent with the solution to the BVP
we admit the static and kinematic fields as an independent variables set to characterize energies: potential and complementary
these functionals become ordinary functions of variables: kinematic and static
Lagrange principle of minimum total potential energy:

$$
\delta[U-L]=0
$$

a structure deforms to a position that (locally) minimizes the total potential energy
Castigliano's principle of minimum total complementary energy:

$$
\delta\left[U_{c}-L_{c}\right]=0
$$

Castigliano's theorem:

$$
\frac{\partial U_{c}}{\partial F}=u
$$

the partial derivative of the strain energy, considered as a function of the applied forces acting on a linearly elastic structure, with respect to one of these forces, is equal to the displacement in the direction of the force at its point of application

## Elastic energy



External work
$L=\frac{1}{2} P \cdot \Delta l$
$=W_{p}=\int_{V} \frac{1}{2} \sigma \cdot \varepsilon d V=\int_{V} \frac{1}{2} \sigma \cdot \frac{\sigma}{E} d V=\int_{V} \frac{\sigma^{2}}{2 E} d V$
For a prismatic bar:

$$
\sigma=\frac{N}{A}=\frac{P}{A} \quad V=A \cdot l
$$

$$
\Delta l=\frac{P \cdot l}{E A}
$$

$$
W_{p}=\int_{V} \frac{N^{2}}{2 A^{2} E} d V=\frac{P^{2}}{2 A^{2} E} A \cdot l=\frac{P^{2} l}{2 A E}
$$

## Elastic Energy - cont.

$$
\begin{aligned}
& \dot{L}=\int_{V} P_{i} \dot{u}_{i} d V+\int_{S} p_{i} \dot{u}_{i} d S=\int_{V} P_{i} \dot{u}_{i} d V+\int_{S} \sigma_{i j} n_{j} \dot{u}_{i} d S=\cdots \\
&=\int_{V} P_{i} \dot{u}_{i} d V+\int_{V}\left(\sigma_{i j} \dot{u}_{i}\right)_{, j} d V=\int_{V}\left(P_{i} \dot{u}_{i}+\sigma_{i j, j} \dot{u}_{i}+\sigma_{i j} \dot{u}_{i, j}\right) d V=\cdots \\
&=\int_{V}\left[\left(P_{i}+\sigma_{i j, j}\right) \dot{u}_{i}+\sigma_{i j} \dot{u}_{i, j}\right] d V=\int_{V} \sigma_{i j} \dot{\varepsilon}_{i j} d V=\int_{V} T_{\sigma} T_{\dot{\varepsilon}} d V=\dot{L}=\dot{W}_{p} \\
& \dot{W}_{p}=\int_{V}\left(A_{\sigma}+D_{\sigma}\right)\left(A_{\dot{\varepsilon}}+D_{\dot{\varepsilon}}\right) d V=\int_{V}\left(A_{\sigma} A_{\dot{\varepsilon}}+D_{\sigma} D_{\dot{\varepsilon}}+A_{\sigma} D_{\dot{\varepsilon}}+D_{\sigma} A_{\dot{\varepsilon}}\right) d V \\
& \mathrm{~A}_{\sigma} D_{\dot{\varepsilon}}=\sigma_{m} \delta_{i j}\left(\dot{\varepsilon}_{i j}-\dot{\varepsilon}_{m} \delta_{i j}\right)=\sigma_{m} \dot{\varepsilon}_{i j} \delta_{i j}-\sigma_{m} \dot{\varepsilon}_{i j} \delta_{i j} \delta_{i j}=\sigma_{m} \dot{\varepsilon}_{i i}-\sigma_{m} \dot{\varepsilon}_{m} \delta_{i i}=\sigma_{m} 3 \dot{\varepsilon}_{m}-\sigma_{m} \dot{\varepsilon}_{m} 3=0 \\
& \dot{W}_{p}=\int_{V} A_{\sigma} A_{\dot{\varepsilon}} d V+\int_{V} D_{\sigma} D_{\dot{\varepsilon}} d V A-\text { mean hydrostatic tensor } \\
& D-\text { deviator }
\end{aligned}
$$

## Energy - cont.

For Hooke materials:

$$
\dot{W}_{p}=\int_{V} A_{\sigma} A_{\dot{\varepsilon}} d V+\int_{V} D_{\sigma} D_{\dot{\varepsilon}} d V
$$

$$
\begin{gathered}
\left.\mathrm{A}_{\sigma}=3 K \mathrm{~A}_{\varepsilon} \quad \begin{array}{l}
D_{\sigma}=2 G D_{\varepsilon} \\
\mathrm{A}_{\dot{\sigma}}=3 K \mathrm{~A}_{\dot{\varepsilon}} \\
D_{\dot{\sigma}}=2 G D_{\dot{\varepsilon}}
\end{array} \quad\right\} \frac{d}{d t} \\
\dot{W}_{p}=\int_{V} \frac{1}{3 K} A_{\sigma} A_{\dot{\sigma}} d V+\int_{V} \frac{1}{2 G} D_{\sigma} D_{\dot{\sigma}} d V \\
W_{\mathrm{p}}=\int_{V} \dot{W}_{p} d t=\int_{V} \frac{1}{6 K}\left(A_{\sigma}\right)^{2} d V+\int_{V} \frac{1}{4 G}\left(D_{\sigma}\right)^{2} d V
\end{gathered} \quad \mathrm{~A}_{\sigma} \mathrm{A}_{\dot{\sigma}}=\frac{1}{2} \frac{d}{d t}\left(A_{\sigma}\right)^{2}=\frac{1}{2} 2 A_{\sigma} \frac{d}{d t} \frac{d}{d t}\left(A_{\sigma}\right)^{2} d V+\int_{V} \frac{1}{4 G} \frac{d}{d t}\left(D_{\sigma}\right)^{2} d V
$$

$$
\Phi_{V}=\frac{1}{6 K} A_{\sigma}^{2}=\frac{1}{2} A_{\sigma} A_{\varepsilon}=\frac{3 K}{2} A_{\varepsilon}^{2}
$$

Specific volumetric energy

$$
\Phi_{f}=\frac{1}{4 G} D_{\sigma}^{2}=\frac{1}{2} D_{\sigma} D_{\varepsilon}=G D_{\varepsilon}^{2}
$$

Specific distortion energy

## Decomposition of the specific energy

$$
\begin{gathered}
\Phi=\Phi_{v}+\Phi_{f}=\frac{1}{2 E}\left[(1+v) \sigma_{i j} \sigma_{i j}-v \sigma_{k k}^{2}\right] \\
\frac{\partial \Phi}{\partial \sigma_{i j}}=\frac{1}{2 E}\left[2(1+v) \sigma_{i j}-2 v \sigma_{k k} \delta_{i j}\right]=\frac{1}{E}\left[(1+v) \sigma_{i j}-v \sigma_{k k} \delta_{i j}\right]=\varepsilon_{i j}
\end{gathered}
$$

Specific energy is a potential energy
A general form of specific energy for beams:

$$
W_{p}=\frac{P^{2} l}{2 A E}=\frac{1}{2} \int_{0}^{l} \frac{N^{2}}{E A} d x
$$

$$
W_{p}=\frac{1}{2} \int_{0}^{l} \frac{F^{2}}{S} \mu d x \quad \begin{aligned}
& F_{- \text {cross-sectional force }} \\
& S_{- \text {beam stiffness }} \\
& \mu-\text { shape coefficient }
\end{aligned}
$$

## Energy - components of the formula

Components of elastic energy formula

| Specific case | Cross-sectional force <br> $\boldsymbol{F}$ | Beam stiffness <br> $\boldsymbol{S}$ | Shape coefficient <br> $\mu$ |
| :---: | :---: | :---: | :---: |
| Tension | $N$ | $E A$ | 1 |
| Bending | $M$ | $E I$ | 1 |
| Shear | $Q$ | $G A$ | $\mu$ |
| Torsion | $M_{x}$ | $G I_{x}$ | $\mu_{t}$ |

## Generalized forces and displacements

$$
\begin{array}{lll}
\int \frac{d L}{d t}=\frac{d W_{p}}{d t} \mathrm{dt} & \boldsymbol{L} & =\boldsymbol{W}_{p} \\
\begin{array}{lll}
\text { External work: function-of } \\
\text { loading and displacement }
\end{array} & & \\
\end{array}
$$

Definitions of generalised force and generalized displacement:
Generalized force is any external loading in the form of point force, point moment, distributed loading etc.

Generalized displacement corresponding to a given generalized force is any displacement for which the work of this force can be performed.

The dimension of generalized displacement has to follow the rules of dimensional analysis taking into account that the dimension of work is [ Nm ].

## Generalized forces and displacements - cont.

| Generalized force | Generalized force <br> dimension | Displacement <br> dimension | Generalized <br> displacement |
| :---: | :---: | :---: | :---: |
| P | $[\mathrm{N}]$ | $[\mathrm{m}]$ | u |
| M | $[\mathrm{Nm}]$ | $[1]$ | $\mathrm{dw} / \mathrm{dx}$ |
| q | $[\mathrm{N} / \mathrm{m}]$ | $\left[\mathrm{m}^{2}\right]$ | Judx |

But also:


Corresponding generalized displacement is the sum of displacements $u_{1}+u_{2}$

Corresponding generalized displacement is the sum of rotation angles of neighbouring crosssections $\varphi$

## Betti principle

For linear elasticity the principle of superposition obeys:

$$
u_{i}=\sum_{j}^{n} P_{j} \alpha_{i j} \quad \text { or } \quad P_{i}=\sum_{j}^{n} u_{j} \beta_{i j}
$$

where $\alpha_{i j} \beta_{i j}$ are influence coefficients for which Betti principle holds: $\alpha_{i j}=\alpha_{j i}$ and i $\beta_{i j}=\beta_{j i}$

The work of external forces (generalized) $P_{i}$ performed on displacements (generalized) $u_{i}$ is:

$$
L=\frac{1}{2} \sum_{i=1}^{n} P_{i} u_{i}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i} P_{j} \alpha_{i j}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} u_{j} \beta_{i j}
$$

After expansion of the first term we have:

$$
L=\frac{1}{2} \sum_{i=1}^{n} P_{i} u_{i}=\frac{1}{2}\left(P_{1} u_{1}+P_{2} u_{2}+P_{3} u_{3}+\ldots P_{n} u_{n}\right)
$$



## Castigliano theorem

$$
\begin{gathered}
\frac{\partial}{\partial P_{1}}\left[L=\frac{1}{2} \sum_{i=1}^{n} P_{i} u_{i}=\frac{1}{2}\left(P_{1} u_{1}+P_{2} u_{2}+\ldots P_{n} u_{n}\right)\right] \\
u_{i}=\sum_{j}^{n} P_{j} \alpha_{i j}=P_{1} \alpha_{i 1}+P_{2} \alpha_{i 2}+\ldots P_{n} \alpha_{i n}
\end{gathered}
$$

taking into account that:
which after expansion reads:

$$
\begin{aligned}
& u_{1}=P_{1} \alpha_{11}+P_{2} \alpha_{12}+\ldots+P_{n} \alpha_{1 n}, \quad u_{2}=P_{1} \alpha_{21}+P_{2} \alpha_{22}+\ldots+P_{n} \alpha_{2 n} \ldots u_{n}=P_{1} \alpha_{n 1}+P_{2} \alpha_{n 2}+\ldots+P_{n} \alpha_{n n} \\
& \frac{\partial L}{\partial P_{1}}=\frac{\partial}{\partial P_{1}} \frac{1}{2} \sum_{i=1}^{n} P_{i} n_{i}=\frac{1}{2} \frac{\partial}{\partial P_{1}}\left(P_{1} u_{1}+P_{2} u_{2}+P_{3} u_{3}+\cdots+P_{n} u_{n}\right)= \\
&=\frac{1}{2}\left(u_{1}+P_{1} \frac{\partial u_{1}}{\partial P_{1}}+0+P_{2} \frac{\partial u_{2}}{\partial P_{1}}+\ldots+0+P_{n} \frac{\partial u_{n}}{\partial P_{1}}\right)= \\
&=\frac{1}{2}(u_{1}+\underbrace{P_{1} \alpha_{11}+P_{2} \alpha_{21}+\ldots+P_{n} \alpha_{n 1}}_{u_{1}})=u_{1}=\alpha_{12} \\
& \alpha_{i 1}=\alpha_{1 i}
\end{aligned}
$$

## Unit force theorem

Therefore, for any displacement we have:

$$
\frac{\partial L}{\partial P_{i}}=u_{i} \quad \text { and since } \quad L=W_{p} \quad \frac{\partial W_{p}}{\partial P_{i}}=u_{i}
$$

To find an arbitrary generalized displacement $\bar{u}$ of any point of the structure one has to apply the corresponding generalized force at this point, and
calculate internal energy associated with all loadings (real and generalized),
take derivative of this energy with respect to generalized force, and finally set its true value equal to 0 :

$$
\left.\frac{\partial W_{p}\left(P_{i}, \bar{P}\right)}{\partial \bar{P}}\right|_{\bar{P}=0}=\bar{u}
$$

$$
W_{p}=\frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{F_{i}^{2}}{S} \mu d x
$$

Where $F_{i}$ is cross-sectional force for each case of internal forces reduction (normal force, shear force, bending moment, torsion moment)

## Potential energy for bar structures

Making use of superposition principle we have:

$$
W_{p}=W_{p}\left[F(\bar{P})+F\left(P_{i}\right)\right]: W_{p}\left[F(\bar{P}=1) \cdot \bar{P}+F\left(P_{i}\right)\right]
$$

Or

$$
W_{p}=W_{p}\left[\bar{F} \cdot \bar{P}+F_{P}\right]
$$

[ $x$ ] denotes here function of $x$
where:

$$
F(\bar{P}=1)=\bar{F} \quad F(P)=F_{P}
$$

With general formula for potential energy:

$$
W_{p}=\frac{1}{2} \int_{0}^{l} \frac{F^{2}}{S} \mu d x
$$

we have:

$$
W_{p}=\frac{1}{2} \sum_{j=1}^{n} \sum_{i}^{4} \int_{0}^{l} \frac{\left(\overline{F_{i}} \cdot \bar{P}+F_{P i}\right)^{2}}{S_{i}} \mu_{i} d x
$$

where index $i$ has been added for different reduction cases

## Thank you for your attention!

