9. Stability



A breaking length — length of a bar that can be self-supported

Steel in tension: with R = 350 MPaand y = 7.8 - 10*N/m3, [ = 4.5 km (the result doesn’t depend on the

Cross-section area)

In compression, the calculation strength of steel is almost the same, but the same result is not acceptable

(possible) due to stability loss

The phenomenon of the stability loss can be explained in two ways:

- using potential energy
The system is in a stable state if and only if its potential energy

attains minimum.
- using Lapunov’s stability theory

a main criterion of a system stability is its response after an

infinitesimal stimulus’ action:

- In the stable state the system returns to its original position

- 1n the neutral equilibrium state the system doesn’t return to its
original position from a neighborhood

- in the unstable state the system buckles significantly and
doesn’t return to its original position
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Why the phenomenon is so dangerous?

- there is no sign of approaching disaster (conf. the diagram on the previous slide), and there is not possibility
to make a move

- phenomenon duration is very short (in a split second)

- usually, the loss of stability is catastrophic (important deformations, collapse of whole system and fatalities)

STABILITY — a state of permanent equilibrium of a structural member
BUCKLING — a law of a structure movement during or after stability loss

Deformations during the stability loss:

- before — only axial (the state of simple compression)

- during — undetermined (but bending deflections are observed)

- after —a new state of stability can be observed with important deformations

For a solution in the deformed state, the principle of solidification cannot be used any more, due to important
deformations of the system. It means, that there always is nonlinear geometry.
In the actual (deformed) configuration, bending moments arise, resulting from eccentric action of axial force and
from boundary conditions:

M(x) = Pw(x) + My(x)
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In the linear elastic state

EIw"(x) = —M(x)
EIw" (x) + Pw(x) = My(x)

' P My (x)
w (x)+ﬁw(x) =
2 ger -
ke = El
My (x)

w'(x) + k*w(x) = —

El

This is an Euler’s equation.
The complementary function is:
Weomp(x) = Asinkx + B cos kx

The particular integral depends on the form of the right hand side of the Euler’s equation.
The integral constants as well as the right hand side of the Euler’s equation should be determined taking into
account the boundary conditions:

w(x) = Asinkx + B cos kx + Wpart(x)
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Mo(x) = 0 > wpart(x) =0
w(x) = Asinkx + B cos kx

the boundary conditions:
w(0)=0->0=4-0+B-1-B=0

n=1
n=2 w(l)=0->0=Asinkl > A=0 or sinkl=0
n=3 A=0- w(x)=0 notacceptable trivial solution
_ , n°m? n?m?El
sinkl=0->kl=nn - k* = B - P.,. = B
. : m°Elin
minimum value is approached forn = 1and I = i, For = 12
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Mo(x) = 0 = wpart(x) =0

- w(x) = Asinkx + B cos kx
v
l the boundary conditions:
' w(0)=0->0=A4-0+B-1->B=0
f W) =0-0=Akcoskl=0->A=0 or coskl =0
A=0-w(x) =0 notacceptable trivial solution
. T i , T m?El
cos kl =0—>kl=§+nn—>kl=§—>k =E—>Pcr= VE
. . m*Elmin
minimum value is approached for I = I ,,;,, For =—17
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Mo(6) = R wpar(s) = —
. w(x)=Asinkx+Bcoskx—Fx
ﬁ_YQI the boundary conditions:
.:::'f.r w0)=0-0=4-0+B-1-0->B=0

R
w{l)=0-0 =Akcoskl—F= 0 > R = APEIk coskl

APk cos kl
w(l) =0->0=Asinkl + P [ > tankl =kl » kl = 4.493

P_20.19n251_ m2E]
— B 12 ~ (0.69910)2

_ m?Elgin
~ (0.6991)2

minimum value is approached for I = I ,,,i Fer
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minimum value is approached for I = I ;i P.,

Mo(x) = Rx — M )= -2y M
= —_— - e —

oX X 1 Wpartx P.X' p

. R M,

w(x) =Asmkx+Bcoskx—Fx+?

l| the boundary conditions:

M
W(O)=0—>0=A-o+B-1—0+71—>M1=—BP

R
w'(0) =O—>0=AkcosO—Bksin0—F=0—>R = APk

(coskl—1)
sin kl

R M
w(l) = 0—>Asinkl+Bcoskl—Fl+?1= 0 - 1—coskl = klsinkl

w'(l) =0—-> 0= Akcoskl —Bksinkl —Ak - B=A

ATT?E]
2

kl=2m - P, =

_ 2El i
(0.51)2
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min

m2E]

l2

M) = M (x) = -2
= - P
oX 1 7 WpartX p
Pi w(x) =Asinkx+Bcoskx—?1
the boundary conditions:
sl w(0)=0->0=Akcos0—Bksin0=0-4=0
: M
z W(l)=0—>0=Asinkl+Bcoskl—?1—>M1=BPcoskl
w' () =0->0=Akcoskl — Bksinkl - sinkl=0-kl=m
n2El
P = 2
minimum value is approached for I = I ,i, P, =
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the effective length:

where [ is the actual bar length and the parameter a depends on the static scheme

- a = 1 for a pin-ended element
- a = 0.5 for apole
- a = 0.699 for a supported pole

- «a = 0.5 for a bilaterally fixed beam
- «a = 1 for a pole with guided support

the slenderness ratio:

The Euler’s formula for the (Euler’s) critical force in a general form:
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linear
elastic
range

Alim A

\4

The Euler’s formula is valid for linearly elastic material

T2E

; P
it means, that ¢ < Ry — 7’5 <Ry > 57— < Ry, s0:

max
E
MNim =T E

steel: Ajjy; = 65 + 90
aluminum: Ag;q = 46 + 64
oak: }‘lim ~ 55

concrete: A, = 85
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Tetmeyer-Jasinski formula:

o JO O-T_] =a— b)\
Re 1 T where:
Ry oo 3 . or—;(0) =R, » a =R,, .
‘ . __ DNe H
elastic or-J (Amin) = Ry = b = Amin
range
Johnson-Ostenfeld formula:
‘ > O-]—O = A — B)\z
Alim A
where:
0/—0(0) =R, > C =R,
PT_]ZAO'T_] Re_RH

0j-0(Mim) = Ru — B = Z
P]—O = AO-]_O lim

if A < 10, the danger of the stability loss may be neglected
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a) plane buckling or buckling by bending
b) torsional buckling
c) spatial buckling or buckling by bending and torsion

local buckling
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Keep in mind, that the accident risk is always present in compression!

Because of catastrophic consequences of the stability loss, the safety coefficients are really huge: from 1.5 for
small values of the slenderness ratio, to even 7 for great values of the slenderness ratio.

Despite great safety coefficients, the slenderness ratio is usually limited from 10 to 350 about.

O
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Rankine-Gordon formula:
x 10° 1 1 1

=+
Prc Pz AR,

_ m’ER,
9R~6C TR N2 + n2E

Pr_c = ARe 5 Ac =T E
1+<A) Re
Ac
0 50 100 150 200 250 300 350 400 450 500 mild steel 87 300
wrought iron 89 250
cast iron 135 560
timber 31 35
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Imperfections: 7\
a) tube eccentricity \ )
b) rolling tolerance Nt
c) welding distortions @ b) (d) @

d) rebars shifted positions
e) material parameters variations

Fi

Real member behavior:
a) buckling
b) plastic zone localization

il

(a) (b}
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The buckling curves of industrial steel members

General rule of thumb: the higher slenderness , the greater bearing capacity loss
adopted)

(and the greater safety coefficients should be

e bottom curve refers to the members with the

greatest imperfections

i
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Determine the critical load of the structure ABCDEF in the Fig. below, composed of one fixed-end column and
several bi-articulated beams and columns. Compare the effective length of the fixed column with the regular
value of the basic case. Determine the critical load in the case of one-bay ABCD frame.

v | I* N I L Solution
X W Y INan . . . .
B oy gl B in actual configuration (Fig. b):
x M(x) = Nw + 2Nxtan 0
L { using EIw" (x) = —M(x) and k? & %
’ we get the Euler’s equation:
L "A A = w' + k?w = —2k?xtan 8

with the complementary and particular functions:
w(x) = Asinkx + B coskx — 2x tan @

KBC:w(0) =0;w'(L) =0—-> B =0,4AkcoskL —2tan8 =0
and withw(L) = w; > AsinkL — 2Ltanf = Ltanf — tanf = %sin kL, we get:

2 0.9359E1
kL cos kL — §sin kL =0- kL =0.9674 - (kL)* = 0.9359 > N, = P - l, = 3.247L » 2L
For the one bay frame, using the same method, the resultis N, = 1'3586'51, - l, = 2.695L > 2L

LZ
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The energy method is based on the first law of thermodynamics. The increase in internal energy is equal to the
change in strain energy. For an adiabatic elastic column:

SW = 8U
The column may buckle when the load first reaches a value for which the above equality is fulfilled.

o) external work variation

1
ds? = dx? +dz? > ds =1+ W) 2dx = (1 +E(W’)2 + ) dx

Lp |} Buckled b 1 w 1 f
» position L= j (1 + E(W’)2> dx=0>b +Ef(w’)2dx =~ p +Ef(w’)2dx
0 0 0

1

L
SW = P(L — b) =§j(w')2 dx
0

internal energy variation

L L L

Mz 1 [FEIw)2dx
5U=U1—U0=U1=f_dx=_jEI(W”)2dx PCT‘= I
J, (w")2dx

2E] 2
0 0
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Let us assume w(x) in the Fourier series:

(0 ]
. nnx
w(x) = z @ Sin——
n=1
then we get
T[ZEI Z??:lnél-a%
12 ¥ n%a?
for:
2EI
- a, #0,othera; =0—> P ="
L

- a, #0,othera; =0—-> P =

- (and so on...)
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Determine the Euler’s critical force for a two-story prismatic column in the Fig. below; [; = 4 m, [, = 2 m.

I Solution
IN P,=P1=2P lN The first approximation: w(x) = a(x3 + bx? + cx + d)
> 1, «-1 KBC: w(0) =w(ly)) =w(, +1,) =0
l, %t w(x) = a(x3® — 10x? + 24x)
N.- = 1458 EIl
™ 3_P' The 2" approximation: w(x) = a(x> + bx* + cx3 + dx? + ex + f)
1, KBC: w(0) =w(l)) =w(; +1,) =0
. . fx SBC: w"(0) = w" (I; + 1,) = 0
A 4—1 w(x) = ---
N, = 0.952 EI

The exact solution
Using the complementary and particular functions for both equations 1 and 2 we get:

w;(xq) = Asinkyx; + Bcoskyx; — %xl, wy(x,) = Csink,x, + D cosk,x, — %xz

KBC: w;(0) = w;(l;) = 0,w,(0) = w,(l,) = 0, the compat. conditions: w;(l;) = —w5(l,), w; (1) = wy'(1,)

and finally we get o CosKh  coskly | _ b+l 59642 5 Ner=K2EJ = 0.930E)
sinkl,  sinkl, I1,
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