
Strength of Materials 

9. Stability 



Definitions 
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A breaking length – length of a bar that can be self-supported 

Steel in tension: with 𝑅 = 350 MPa and 𝛾 = 7.8 ∙ 104N/m3 , 𝑙 = 4.5 km  (the result doesn’t depend on the 

cross-section area) 

In compression, the calculation strength of steel is almost the same, but the same result is not acceptable 

(possible) due to stability loss  

The phenomenon of the stability loss can be explained in two ways: 

- using potential energy 

       The system is in a stable state if and only if its potential energy 

        attains minimum.  

- using Lapunov’s stability theory 
stable 

state 

neutral 

state 

unstable 

state 

a main criterion of a system stability is its response after an 

infinitesimal stimulus’ action:  

-    in the stable state the system returns to its original position  

- in the neutral equilibrium state the system doesn’t return to its 

     original position from a neighborhood  

- in the unstable state the system buckles significantly and 

     doesn’t return to its original position  



Definitions – cont. 
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Why the phenomenon is so dangerous? 

- there is no sign of approaching disaster (conf. the diagram on the previous slide), and there is not possibility 

to make a move 

- phenomenon duration is very short (in a split second) 

- usually, the loss of stability is catastrophic (important deformations, collapse of whole system and fatalities) 

For a solution in the deformed state, the principle of solidification cannot be used any more, due to important 

deformations of the system. It means, that there always is nonlinear geometry. 

In the actual (deformed) configuration, bending moments arise, resulting from eccentric action of axial force and 

from boundary conditions: 

𝑀 𝑥 = 𝑃𝑤 𝑥 +𝑀0 𝑥  

STABILITY – a state of permanent equilibrium of a structural member  

BUCKLING – a law of a structure movement during or after stability loss 

Deformations during the stability loss: 

- before – only axial (the state of simple compression) 

- during – undetermined (but bending deflections are observed) 

- after – a new state of stability can be observed with important deformations  



Solution in the linear elastic state 
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𝐸𝐼𝑤′′ 𝑥 = −𝑀 𝑥  

𝐸𝐼𝑤′′ 𝑥 + 𝑃𝑤 𝑥 = 𝑀0 𝑥  

𝑤′′ 𝑥 +
𝑃

𝐸𝐼
𝑤 𝑥 =

𝑀0 𝑥

𝐸𝐼
 

𝑘2 ≝
𝑃

𝐸𝐼
 

In the linear elastic state 

This is an Euler’s equation. 

The complementary function is: 

𝑤comp 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 

The particular integral depends on the form of the right hand side of the Euler’s equation. 

The integral constants as well as the right hand side of the Euler’s equation should be determined taking into 

account the boundary conditions: 

𝑤 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 + 𝑤part(𝑥) 

𝑤′′ 𝑥 + 𝑘2𝑤 𝑥 = −
𝑀0(𝑥)

𝐸𝐼
 



Solution to a pin-ended strut 
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𝑀0 𝑥 = 0 → 𝑤part 𝑥 = 0 

𝑤 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 

the boundary conditions: 

𝑤 0 = 0 → 0 = 𝐴 ∙ 0 + 𝐵 ∙ 1 → 𝐵 = 0 

𝑤 𝑙 = 0 → 0 = 𝐴 sin 𝑘𝑙 → 𝐴 = 0   or   sin 𝑘𝑙 = 0 

𝐴 = 0 → 𝑤(𝑥) ≡ 0  not acceptable trivial solution 

sin 𝑘𝑙 = 0 → 𝑘𝑙 = 𝑛𝜋 → 𝑘2 =
𝑛2𝜋2

𝑙2
→ 𝑃𝑐𝑟 =

𝑛2𝜋2𝐸𝐼

𝑙2
 

minimum value is approached for 𝑛 = 1 and 𝐼 = 𝐼min 𝑃𝑐𝑟 =
𝜋2𝐸𝐼min
𝑙2

 

𝑛 = 1 

𝑛 = 2 

𝑛 = 3 



Solution to a pole 
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𝑀0 𝑥 = 0 → 𝑤part 𝑥 = 0 

𝑤 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 

the boundary conditions: 

𝑤 0 = 0 → 0 = 𝐴 ∙ 0 + 𝐵 ∙ 1 → 𝐵 = 0 

𝑤′ 𝑙 = 0 → 0 = 𝐴𝑘 cos 𝑘𝑙 = 0 → 𝐴 = 0   or   cos 𝑘𝑙 = 0 

𝐴 = 0 → 𝑤(𝑥) ≡ 0  not acceptable trivial solution 

cos 𝑘𝑙 = 0 → 𝑘𝑙 =
𝜋

2
+ 𝑛𝜋 → 𝑘𝑙 =

𝜋

2
→ 𝑘2 =

𝜋2

4𝑙2
→ 𝑃𝑐𝑟 =

𝜋2𝐸𝐼

4𝑙2
 

minimum value is approached for 𝐼 = 𝐼min 𝑃𝑐𝑟 =
𝜋2𝐸𝐼min
4𝑙2

 



Solution to a supported pole 
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𝑀0 𝑥 = 𝑅𝑥 → 𝑤part 𝑥 = −
𝑅

𝑃
𝑥 

𝑤 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 −
𝑅

𝑃
𝑥 

the boundary conditions: 

𝑤 0 = 0 → 0 = 𝐴 ∙ 0 + 𝐵 ∙ 1 − 0 → 𝐵 = 0 

𝑤′ 𝑙 = 0 → 0 = 𝐴𝑘 cos 𝑘𝑙 −
𝑅

𝑃
= 0 → 𝑅 = 𝐴𝑃𝐸𝐼𝑘 cos 𝑘𝑙 

minimum value is approached for 𝐼 = 𝐼min 𝑃𝑐𝑟 =
𝜋2𝐸𝐼min
(0.699𝑙)2

 

𝑤 𝑙 = 0 → 0 = 𝐴 sin 𝑘𝑙 +
𝐴𝑃𝑘 cos 𝑘𝑙

𝑃
𝑙 →   tan 𝑘𝑙 = 𝑘𝑙 → 𝑘𝑙 = 4.493 

𝑃 =
20.19𝜋2𝐸𝐼

𝑙2
=
𝜋2𝐸𝐼

0.699𝑙 2
 



Solution to the bilaterally fixed beam 
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𝑀0 𝑥 = 𝑅𝑥 −𝑀1 → 𝑤part 𝑥 = −
𝑅

𝑃
𝑥 +
𝑀1
𝑃

 

𝑤 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 −
𝑅

𝑃
𝑥 +
𝑀1
𝑃

 

the boundary conditions: 

𝑤 0 = 0 → 0 = 𝐴 ∙ 0 + 𝐵 ∙ 1 − 0 +
𝑀1
𝑃
→ 𝑀1 = −𝐵𝑃 

𝑤′ 0 = 0 → 0 = 𝐴𝑘 cos 0 − 𝐵𝑘 sin 0 −
𝑅

𝑃
= 0 → 𝑅 = 𝐴𝑃𝑘 

minimum value is approached for 𝐼 = 𝐼min 𝑃𝑐𝑟 =
𝜋2𝐸𝐼min
(0.5𝑙)2

 

𝑤′(𝑙) = 0 → 0 = 𝐴𝑘 cos 𝑘𝑙 − 𝐵𝑘 sin 𝑘𝑙 − 𝐴𝑘 →   𝐵 = 𝐴
cos 𝑘𝑙 − 1

sin 𝑘𝑙
 

𝑤 𝑙 = 0 → 𝐴 sin 𝑘𝑙 + 𝐵 cos 𝑘𝑙 −
𝑅

𝑃
𝑙 +
𝑀1
𝑃
= 0 → 1 − cos 𝑘𝑙 = 𝑘𝑙 sin 𝑘𝑙 

𝑘𝑙 = 2𝜋 → 𝑃𝑐𝑟 =
4𝜋2𝐸𝐼

𝑙2
 



Solution to a pole with guided support 
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𝑀0 𝑥 = 𝑀1 → 𝑤part 𝑥 = −
𝑀1
𝑃

 

𝑤 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 −
𝑀1
𝑃

 

the boundary conditions: 

𝑤′ 0 = 0 → 0 = 𝐴𝑘 cos 0 − 𝐵𝑘 sin 0 = 0 → 𝐴 = 0 

𝑤 𝑙 = 0 → 0 = 𝐴 sin 𝑘𝑙 + 𝐵 cos 𝑘𝑙 −
𝑀1
𝑃
→ 𝑀1 = 𝐵𝑃 cos 𝑘𝑙 

minimum value is approached for 𝐼 = 𝐼min 𝑃𝑐𝑟 =
𝜋2𝐸𝐼min
𝑙2

 

𝑤′ 𝑙 = 0 → 0 = 𝐴𝑘 cos 𝑘𝑙 − 𝐵𝑘 sin 𝑘𝑙 →  sin 𝑘𝑙 = 0 → 𝑘𝑙 = 𝜋 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝑙2
 



General formula for Euler’s critical force 
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where 𝑙 is the actual bar length and the parameter 𝛼 depends on the static scheme 

- 𝛼 = 1 for a pin-ended element 

- 𝛼 = 0.5 for a pole 

- 𝛼 = 0.699 for a supported pole 

- 𝛼 = 0.5 for a bilaterally fixed beam 

- 𝛼 = 1 for a pole with guided support  

the slenderness ratio: 

the effective length: 

𝑙𝑒 ≝ 𝛼𝑙 

The Euler’s formula for the (Euler’s) critical force in a general form: 

λ ≝
𝑙𝑒
𝑖𝑚𝑖𝑛

 

𝑃𝐸 =
𝜋2𝐸𝐼min

𝑙𝑒
2 =

𝜋2𝐸𝐴

𝜆max
2 



Validity range for the Euler’s formula 
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λ 𝜆lim 

𝜎 

𝑅𝐻 

The Euler’s formula is valid for linearly elastic material 

it means, that  𝜎 ≤ 𝑅𝐻 →
𝑃𝐸

𝐴
≤ 𝑅𝐻 → 

𝜋2𝐸

λmax
2 ≤ 𝑅𝐻, so: 

λlim ≥ 𝜋
𝐸

𝑅𝐻
 

linear 

elastic 

range 

steel: λlim ≈ 65 ÷ 90 

aluminum:  λlim ≈ 46 ÷ 64 

oak: λlim ≈ 55 

concrete: λlim ≈ 85 



Solution beyond the linear elastic range 
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λ 𝜆lim 

𝜎 

𝑅𝐻 
linear 

elastic 

range 

𝑅𝑒 TJ 
JO 

where: 

𝜎𝑇−𝐽 0 = 𝑅𝑒 →  𝑎 = 𝑅𝑒 ,

𝜎𝑇−𝐽 λmin = 𝑅𝐻 → 𝑏 =
𝑅𝑒 − 𝑅𝐻
λmin

 

Tetmeyer-Jasiński formula: 

𝜎𝑇−𝐽 = 𝑎 − 𝑏λ 

Johnson-Ostenfeld formula: 

𝜎𝐽−𝑂 = 𝐴 − 𝐵λ
2 

where: 

𝜎𝐽−𝑂 0 = 𝑅𝑒 → 𝐶 = 𝑅𝑒 

𝜎𝐽−𝑂 λlim = RH → B =
Re − RH

λlim
2  

𝑃𝑇−𝐽 = 𝐴𝜎𝑇−𝐽 

𝑃𝐽−𝑂 = 𝐴𝜎𝐽−𝑂 

if λ < 10, the danger of the stability loss may be neglected 



Different buckling phenomena 
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a) b) c) 
a) b) c) 

a) plane buckling or buckling by bending 

b) torsional buckling 

c) spatial buckling or buckling by bending and torsion 

local buckling 



Dimensioning 
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Keep in mind, that the accident risk is always present in compression! 

 

Because of catastrophic consequences of the stability loss, the safety coefficients are really huge: from 1.5 for 

small values of the slenderness ratio, to even 7 for great values of the slenderness ratio.  

 

Despite great safety coefficients, the slenderness ratio is usually limited from 10 to 350 about. 

𝑃𝑎𝑐𝑐 =
𝑃𝐸 , 𝑃𝑇−𝐽, 𝑃𝐽−𝑂
𝑛

 

𝑛 = 1.5 ÷ 7 



Rankine-Gordon formula 
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Rankine-Gordon formula: 
1

𝑃𝑅−𝐺
=
1

𝑃𝐸
+
1

𝐴𝑅𝑒
 

 

𝜎𝑅−𝐺 =
𝜋2𝐸𝑅𝑒
𝑅𝑒λ
2 + 𝜋2𝐸

 

𝑃𝑅−𝐺 =
𝐴𝑅𝑒

1 +
λ
λ𝑐

2 ,      λ𝑐 = 𝜋
𝐸

𝑅𝑒
 R-G 

T-J 

E 

Material λ𝒄 𝑹𝒆[Mpa] 

mild steel 87 300 

wrought iron 89 250 

cast iron 135 560 

timber 31 35 



Effect of imperfections 
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Imperfections: 

a) tube eccentricity 

b) rolling tolerance 

c) welding distortions 

d) rebars shifted positions 

e) material parameters variations  

Real member behavior:  

a) buckling 

b) plastic zone localization 



Steel buckling curves 
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The buckling curves of industrial steel members 

General rule of thumb:  the higher slenderness , the greater bearing capacity loss 

(and the greater safety coefficients should be adopted) 

The bottom curve refers to the members with the 

greatest imperfections   



Stability of a system – an example 
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Solution 

in actual configuration (Fig. b): 

𝑀 𝑥 = 𝑁𝑤 + 2𝑁𝑥 tan 𝜃 

using 𝐸𝐼𝑤′′ 𝑥 = −𝑀(𝑥) and 𝑘2 ≝
𝑁

𝐸𝐼
 

we get the Euler’s equation: 

𝑤′′ + 𝑘2𝑤 = −2𝑘2𝑥 tan 𝜃 
with the complementary and particular functions: 

𝑤 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 − 2𝑥 tan 𝜃  

KBC: 𝑤 0 = 0;𝑤′ 𝐿 = 0 → 𝐵 = 0, 𝐴𝑘 cos 𝑘𝐿 − 2 tan 𝜃 = 0 

and with 𝑤 𝐿 = 𝑤𝐿 → 𝐴sin 𝑘𝐿 − 2𝐿 tan 𝜃 = 𝐿 tan 𝜃 →  tan 𝜃 =
𝐴

3𝐿
sin 𝑘𝐿, we get: 

𝑘𝐿 cos 𝑘𝐿 −
2

3
sin 𝑘𝐿 = 0 → 𝑘𝐿 = 0.9674 → 𝑘𝐿 2 = 0.9359 → 𝑁𝑐𝑟 =

0.9359𝐸𝐼

𝐿2
→ 𝑙𝑒 = 3.247𝐿 ≫ 2𝐿 

For the one bay frame, using the same method,  the result is  𝑁𝑐𝑟 =
1.3586𝐸𝐼

𝐿2
, → 𝑙𝑒 = 2.695𝐿 ≫ 2𝐿 

Determine the critical load of the structure ABCDEF in the Fig. below, composed of one fixed-end column and 

several bi-articulated beams and columns. Compare the effective length of the fixed column with the regular 

value of the basic case. Determine the critical load in the case of one-bay ABCD frame. 



Energy method 
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The energy method is based on the first law of thermodynamics. The increase in internal  energy is equal to the 

change in strain energy. For an adiabatic elastic column: 

𝛿𝑊 = 𝛿𝑈 

The column may buckle when the load first reaches a value for which the above equality is fulfilled. 

Buckled 

position 

L b 

P external work variation 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑧2 → 𝑑𝑠 = 1 + 𝑤′ ^2 𝑑𝑥 = 1 +
1

2
𝑤′ 2 +⋯  𝑑𝑥 

𝐿 =  1 +
1

2
𝑤′ 2 𝑑𝑥

𝑏

0

= 𝑏 +
1

2
 𝑤′ 2𝑑𝑥 ≅ 𝑏 +

1

2
 𝑤′ 2𝑑𝑥

𝐿

0

𝑏

0

 

𝛿𝑊 = 𝑃 𝐿 − 𝑏 =
𝑃

2
 𝑤′ 2
𝐿

0

𝑑𝑥 

internal energy variation 

𝛿𝑈 = 𝑈1 − 𝑈0 = 𝑈1 =  
𝑀2

2𝐸𝐼
𝑑𝑥

𝐿

0

=
1

2
 𝐸𝐼 𝑤′′ 2
𝐿

0

𝑑𝑥 𝑃𝑐𝑟 =
 𝐸𝐼 𝑤′′ 2𝑑𝑥
𝐿

0

 𝑤′ 2𝑑𝑥
𝐿

0

 



Energy method – cont. 
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Let us assume 𝑤(𝑥) in the Fourier series: 

𝑤 𝑥 =  𝑎𝑛 sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

then we get 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿2
 𝑛4𝑎𝑛

2∞
𝑛=1

 𝑛2𝑎𝑛
2∞

𝑛=1

 

for: 

- 𝑎1 ≠ 0, other 𝑎𝑖 = 0 →   𝑃 =
𝜋2𝐸𝐼

𝐿2
 

- 𝑎2 ≠ 0, other 𝑎𝑖 = 0 →    𝑃 =
4𝜋2𝐸𝐼

𝐿2
=
𝜋2𝐸𝐼

0.5𝐿 2
 

- (and so on…) 
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Determine the Euler’s critical force for a two-story prismatic column in the Fig. below; 𝑙1 = 4 m, 𝑙2 = 2 m. 

 

P
l

l
PP 2

2

1
2   

x 

l1 

l2 

N 

x1 

x2 

N 

P 

3P 

Energy method – an example 

Solution 

The first approximation:  𝑤 𝑥 = 𝑎 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑  

 KBC: 𝑤 0 = 𝑤 𝑙1 = 𝑤 𝑙1 + 𝑙2 = 0 
 w 𝑥 = 𝑎 𝑥3 − 10𝑥2 + 24𝑥  

 𝑁𝑐𝑟 = 1.458 𝐸𝐼 
The 2nd approximation: 𝑤 𝑥 = 𝑎 𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓  

 KBC: 𝑤 0 = 𝑤 𝑙1 = 𝑤 𝑙1 + 𝑙2 = 0 
 SBC: 𝑤′′ 0 = 𝑤′′ 𝑙1 + 𝑙2 = 0 

𝑤 𝑥 = ⋯ 

𝑁𝑐𝑟 = 0.952 𝐸𝐼 

The exact solution 

Using the complementary and particular functions for both equations 1 and 2 we get: 

𝑤1 𝑥1 = 𝐴 sin 𝑘1𝑥1 + 𝐵 cos 𝑘1𝑥1 −
𝑃

𝑁
𝑥1,  𝑤2 𝑥2 = 𝐶 sin 𝑘2𝑥2 + 𝐷 cos 𝑘2𝑥2 −

𝑃

𝑁
𝑥2 

KBC: 𝑤1 0 = 𝑤1 𝑙1 = 0,𝑤2 0 = 𝑤2 𝑙2 = 0, the compat. conditions: 𝑤1
′ 𝑙1 = −𝑤2

′ 𝑙2 , 𝑤1
′′ 𝑙1 = 𝑤2

′′(𝑙2) 
and finally we get 
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