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Πάντα ῥεῖ καὶ οὐδὲν μένει  

panta rhei  

kai ouden menei 

everything flows  

and nothing remains still  

    Heraclitus of Ephesus (540-480 BC) 

Ἡράκλειτος ὁ Ἐφέσιος 

(Herakleitos ho Ephesios) 



Rheology - time 
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Tempus fugit, aeternitas manet 

t - time 

Hourglass is  

the trademark of 

Rheological Society 



Pioneers… 
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Euclid, ~ 300 BC 

R. Hooke, 1635-1703 

B. Pascal, 1629-1662 

I. Newton, 1643-1727 

Solids Fluids 

𝑝 → 0 𝑝 ≠ 0 𝜀 = 0 𝜀 → ∞ 

Elastic body 

Stiff body Perfect fluid 

𝜀 ≠ const 

Viscous fluid 

𝑝 ≠ 0 𝑝 ≠ 0 𝜀 ≠ 0 



Time – definitions  
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Time – a new independent variable for description of materials’ behavior and/or processes course (by load, 

temperature, humidity, corrosion, etc.) 

 

Three aspects: 

- creep: slow increase of strain with stress constant in time or change of the stress under constant strain 

- ageing:  change of material mechanical properties with time (concrete) 

- memory: materials remember processes of the past 

 

 
There are the viscous materials, visco-elastic materials, and visco-plastic materials (sometimes known as visco-

elasto-plastic materials and visco-elasto/plastic materials) /the slash means a distinct elastic limit/ 

There are two aspects of creep in structures: 

- flow – a change (usually very slow) od strain under constant stress    

- relaxation – change of stress under constant strain 

There are two type of the structural materials: 

- materials of fluid type (unlimited flow) 

- materials of solid type (limited flow) 𝑡 

𝜀 

𝑡 

𝜀 

𝑡 

𝜎 



Structural models 
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Three type of elements: 

- Hooke’s element (elastic): 𝜀 = 𝜎/𝐸 

- de Saint-Venant element (plastic): 𝜀 =  
    0 for 𝜎 < 𝑅𝑒
≠ 0 for 𝜎 ≥ 𝑅𝑒

 

- Newton element (viscous): 𝜀 = 𝜎/η 

η 
𝑁

𝑚2 𝑠  

Two basic tests: 

- creep, 𝜎(𝑡) = 𝜎0 = const 

- relaxation, 𝜀 𝑡 = 𝜀0 = const 

 a) b) 

a) creep: 1 – limited, 2 – unlimited 

b) relaxation 

1 

t t 

t t 

 

 

 

 
2 



Maxwell model 
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connection in series of the Hooke and Newton models 

𝜀 = 𝜀𝑒𝑙 + 𝜀𝑣 
rheological constitutive equation 

(rheological state equation) 𝜀𝑒𝑙 =
𝜎

𝐸
 𝜀 𝑣 =

𝜎

η
 𝜀 =

𝜎 

𝐸
+
𝜎

η
 

creep test: 𝜎 = 𝜎0 𝜀 =
𝜎0

η
 →  𝜀 𝑡 =

𝜎0

η
𝑡 + 𝐶        initial condition: 𝜀 𝑡 = 0 =

𝜎0

𝐸
 → 𝐶 =

𝜎0

𝐸
 →  𝜀 =

𝜎0

𝐸
+

𝜎0

η
𝑡 

relaxation test: 𝜀 = 𝜀0 

we seek solution to the rheological constitutive equation by: 

𝜎 𝑡 = 𝐶𝑒𝑟𝑡  →  𝜎 = 𝑟𝐶𝑒𝑟𝑡 → 0 =
𝑟𝐶𝑒𝑟𝑡

𝐸
+
𝐶𝑒𝑟𝑡

η
→  η𝑟 + 𝐸𝑟 = 0 

𝑟 = −
𝐸

η
, initial condition: 𝜎 𝑡 = 0 = 𝜎0 → 𝐶 = 𝜎0 →  𝜎 = 𝜎0𝑒

−
𝐸

η
𝑡  

 
η

𝐸
≝ 𝑡𝑟 [s] relaxation time 

𝜎 = 𝜎0𝑒
− 
𝑡
𝑡𝑟 

𝑡 

𝜀 

𝜎1 < 𝜎2 

𝜎2 > 𝜎1 

𝑡 

𝜎 

𝑡𝑟 

𝜎0 

for 𝑡 = 𝑡𝑟 →  𝜎 = 0.3679𝜎0 

the Maxwell material relaxes totally, the relaxation rate is 

characterized by the relaxation time (the material constant) 

creep 

relaxation 

𝜎0
𝑒

 

𝑡 

𝜀 loading 

with 

unloading 



Kelvin model 
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parallel connection of the Hooke and Newton models 

𝜎 = 𝜎𝑒𝑙 + 𝜎𝑣 𝜎𝑒𝑙 = 𝐸𝜀 𝜎𝑣 = η𝜀  𝜎 = 𝐸𝜀 + η𝜀  

creep test: 𝜎 = 𝜎0 

𝑥 𝑡 + 𝑝 𝑡 𝑥 𝑡 = 𝑓 𝑡 → 𝑥 𝑡 = 𝑒−  𝑝 𝑡 𝑑𝑡  𝑓 𝑡 𝑒 𝑝 𝜏 𝑑𝜏𝑑𝑡 + 𝐶 , so: 

𝜀 +
𝐸

η
𝜀 =

𝜎0
η
→  𝜀 = 𝑒

−
𝐸
η
𝑡 𝜎0
η
 𝑒

𝐸
η
𝜏
𝑑𝑡 = 𝑒

−
𝐸
η
𝑡 𝜎0

η
∙
η

𝐸
∙ 𝑒

𝐸
η
𝑡
+ 𝐶 =

𝜎0
𝐸
+ 𝐶𝑒

−
𝐸
η
𝑡
 

the initial condition: 𝜀 𝑡 = 0 = 0 → 𝐶 = −
𝜎0

𝐸
 →  𝜀 =

𝜎0

𝐸
1 − 𝑒

−
𝐸

η
𝑡

 

𝑡𝑑 ≝
η

𝐸
 [s] retardation time  

𝜀 =
𝜎0
𝐸

1 − 𝑒
− 

𝑡
𝑡𝑑  

𝑡 

𝑡𝑟 

𝜀0 
0.6321𝜀0 

𝜀 

nonsteady (nonlinear) bounded creep 

there is no relaxation 

creep 

𝑡 

𝜀 
loading 

with 

unloading 

𝜏0  
inelastic (total) recovery 

𝜀 𝑡 =
𝜎0
𝐸

𝑒
− 
𝑡−𝜏0
𝑡𝑑 − 𝑒

− 
𝑡
𝑡𝑑  



Operator method for constitutive equation 
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Jan Stefan Mikusiński (1913-1987) 

Mikusiński’s operator 

𝐷 ≝
𝑑

𝑑𝑡
  

can be treated as an algebraic quantity 

for ex. Kelvin model: 𝜎 𝑡 = 𝐸𝜀 𝑡 + η𝜀 𝑡 = 𝐸𝜀 𝑡 + η𝐷𝜀 𝑡 = (𝐸 + 𝐷η)𝜀 𝑡  

module of model: 

𝑀 𝐷 ≝
𝜎(𝑡)

𝜀(𝑡)
 

so, for Kelvin model the module is: 𝑀 𝐷 = 𝐸 + 𝐷η 

for connection in series of n models  

ε 𝑡 = 𝜀𝑖 𝑡

𝑛

𝑖=1

, 𝜎𝑖 𝑡 = 𝜎 𝑡 = idem →
1

𝑀(𝐷)
=
𝜀(𝑡)

𝜎(𝑡)
=
 𝜀𝑖
𝑛
𝑖=1 (𝑡)

𝜎𝑖 𝑡
= 

𝜀𝑖(𝑡)

𝜎𝑖(𝑡)
=

𝑛

𝑖=1

 
1

𝑀𝑖

𝑛

𝑖=1

 

for parallel connection of n models 

𝜎 𝑡 = 𝜎𝑖 𝑡 ,  𝜀𝑖 𝑡 = 𝜀 𝑡 = idem →   𝑀𝑖

𝑛

𝑖=1

= 𝑀(𝐷)

𝑛

𝑖=1

 



Standard models 
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An example: Kelvin + Newton 𝐸, η1 + η2  
1

𝑀 𝐷
=

1

𝑀𝐾
+

1

𝑀𝑁
=

1

𝐸 + 𝐷η1
+

1

𝐷η2
=
𝐷η2 + 𝐸 + 𝐷η1
𝐷2η1η2 + 𝐷𝐸η2

 

𝜎(𝑡)

𝜀(𝑡)
=
𝐷2η1η2 + 𝐷𝐸η2
𝐷η2 + 𝐸 + 𝐷η1

→ 𝐷2η1η2𝜀 𝑡 + 𝐷𝐸η2𝜀 𝑡 = 𝐷η2𝜎 𝑡 + 𝐷η1𝜎 𝑡 + 𝐸𝜎 𝑡  

so, finally 

𝐸𝜎 𝑡 + η1 + η2 𝜎 𝑡 = 𝐸η2𝜀 𝑡 + η1η2𝜀 𝑡  

 

The equation order is equal to the number of separate viscous elements (two viscous elements, connected in 

series or parallel, should be treated as one viscous element) 

a) M||H, b) K-H, c) K-N, d) M||N 



Burgers’ model 
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M (1) and K (2) in series: 

rheological equation of the state: 𝜎 𝑡 +
η1

𝐸1
+

η1

𝐸2
+

η2

𝐸2
𝜎 𝑡 +

η1η2

𝐸!𝐸2
𝜎 𝑡 = η1𝜀 𝑡 +

η1η2

𝐸2
𝜀 (𝑡) 

creep test:  

𝜀 𝑡 = 𝜎0
1

𝐸1
+

𝑡

η1
+

1

𝐸2
1 − exp −

𝐸2
η2

𝑡  

𝑡 

𝜀(𝑡) asymptote 𝜎0
1

𝐸1
+

1

𝐸2
+

𝑡

η1
 

𝜎0
E2

 

𝜎0
𝐸1

 

relaxation test (for 𝐸1 = 𝐸2 = 𝐸 and η1 = η2 = η) 

𝑡 

𝜎(𝑡) 

η

2𝐸
 



General form of state equation for simple models 

6/06/2019 Adam Paweł Zaborski 12/19 

𝐴0𝜀 𝑡 + 𝐴1𝜀 𝑡 + 𝐴2𝜀 𝑡 + ⋯+ 𝐴𝑛𝜀
𝑛 𝑡 = 𝐵0𝜎 𝑡 + 𝐵1𝜎 𝑡 + 𝐵2𝜎 𝑡 + ⋯+ 𝐵𝑚𝜎

𝑚 (𝑡) 
 

Solution to the problems with the structural models, demanding differential equations of the second or higher 

order, can be very complicated. This is more advisable to construct the rheological equations of state in form of 

integral equations (the hereditary theories). 

generalized Maxwell model 
generalized Kelvin model 



Linear hereditary theory 

6/06/2019 Adam Paweł Zaborski 13/19 

creep function, 𝜑(𝑡):  

𝜑(𝑡) ≝
𝜀(𝑡)

𝜎0
 

observation time, 𝑡 
age (loading time), 𝜏 

The hereditary theory: 

creep function, 𝜑 𝑡, 𝜏  

creep measure, 𝐶 𝑡, 𝜏 = 𝜑 𝑡, 𝜏 − 𝜑 𝜏, 𝜏  

The invariant hereditary theory (loading duration counts only): 

𝐶 𝑡, 𝜏 = 𝐶(𝑡 − 𝜏) 
rheological equation of state 

𝜀 𝑡 =
1

𝐸
𝜎 𝑡 +  𝜎 𝜏 𝐾 𝑡 − 𝜏 𝑑𝜏

𝑡

𝜏0

 

𝐾(𝑡 − 𝜏) – the kernel of the Volterra integral equation of the second kind; 𝐾 is an influence function of the 

stimulus 𝜎 𝜏 𝑑𝜏 on the strain; this describes material with fading memory 

Boltzmann superposition principle is valid: 𝜀 𝜎1 + 𝜎2 = 𝜀 𝜎1 + 𝜀(𝜎2) 

𝑡 

𝜏 

𝜑 

𝐶(𝑡, 𝜏) 

𝜑(𝜏, 𝜏) 



Linear hereditary theory – cont. 
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The non-invariant hereditary theory (used for concrete) 

𝜀 𝑡 =
1

𝐸 𝑡
𝜎 𝑡 +  𝜎 𝜏 𝐾 𝑡, 𝜏 𝑑𝜏

𝑡

𝜏0

 

If the kernel is degenerated: 

- 𝑓 𝑡 𝑔(𝜏), or 

- 𝑓 𝑡 − 𝜏  

the Volterra equation come down to the differential equations with variable or constant coefficients, respectively. 

Both hereditary theories describe the previous history of loading or deformation. The material memory is fading: 

the recent events are better remembered than the forepast events. The influence of older loading on actual state 

of strain is weaker than the influence of the recent process. 



Phenomenological theories of creep 
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the creep strains:  

𝜀𝑐 = 𝑓1 𝜎 𝑓2 𝑡 𝑓3 𝑇  

where 𝑇- absolute temperature 

the most used propositions are: 

- for 𝑓1 𝜎  

- 𝐵𝜎𝑛 (Norton 1929, the most prevalent and verified) 

- 𝐴 sinh
𝜎

𝜎0

𝑛
 (Garofalo 1965) 

- for 𝑓2(𝑡) 

- 1 + 𝑎𝑡1/3 exp (𝑏𝑡) (Andrade 1910) 

- 𝑐𝑡𝑚 (Bailey 1935) 

- for 𝑓3(𝑇) 

- exp −
𝑄

𝑅𝑇

𝑝
 (Dorn 1955) 

primary creep 

secondary creep 

(stationary) 
tertiary creep 

𝑡 

𝜀 

typical creep curves for metallic alloys: 



Summary of creep 
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There are two fundamental characteristics of rheological processes: 

• Its dependence on the history of loading  

• Energy dissipation - causing irreversibility 

Macroscopically observable effects are due to material microstructure changes (see material science and Ashby 

maps). 

These changes can lead not only to irreversible deformation and stress relaxation but to the formation and 

growth of microstructural defects. 

Following this deterioration process a structure can be fatally damaged at arbitrary level of loading or 

deformation – after a sufficiently long period of loading time. 

This is, however, a subject of another important branch of solid mechanics – mechanics of damage and failure. 



Damage under creep conditions 
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𝐼 

𝐼𝐼 

𝐼𝐼𝐼 

𝜎 

𝑇 

I – ductile damage (high stress, low temperature, slips prevail) 

II – brittle damage (low stress, high temperature, cracks prevail) 

III – mixt damage (various mechanisms) 



Ductile and brittle damage 
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Hoff 1953 

𝑙 → ∞, 𝐴 → 0 

material:  𝜀 = 𝐵𝜎𝑛 Hoff’s damage time:  𝑡𝐻 =
1

𝑛𝐵𝜎0
𝑛 

Kachanov 1958 continuity parameter:  ψ ≝
𝐴

𝐴0
 an evolution equation 

𝑑ψ

𝑑𝑡
= −𝐶

𝜎0
ψ

𝑚

 

𝑡𝐾 =
1

𝑚 + 1 𝐶𝜎0
𝑚 Kachanov’s damage time: 

mixt damage (ductile-brittle damage) 
tm
tH

= 1 − 1 −
𝑡𝐾
𝑡𝐻

𝑛 − 𝑚

𝑛

𝑛
𝑛−𝑚

 



Rheology in civil engineering 
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loss of prestress 

 the essence of prestressing concrete is that once the initial compression has been applied, the 

 resulting material has the characteristics of high-strength concrete when subject to any subsequent 

 compression forces, and of ductile high-strength steel when subject to tension forces; this can result 

 in improved structural capacity and/or serviceability compared to conventionally reinforced concrete 

 in many situations 

support’s settlement 

 defective foundation, bad soil conditions; usually the settlement process takes a lot of time (months 

 or years) 

concrete creep resulting in the stress redistribution 



Thank you for your attention! 


