Tension

1. Determine the static and kinematic indeterminacy of the structures in Fig. below. (Assume the vertical symmetry in the structure on the left).

Answ.: a) s1, k2, b) s2, k3
2. An initial strain of a prestressed steel bar was $\varepsilon=0.003$. Determine the strain in concrete after the bonding and releasing the steel bar, if $\frac{A_{s}}{A_{c}}=0.05, \frac{E_{s}}{E_{c}}=7.5$.

Answ.: $8.18 \cdot 10^{-4}$
3. Define the BVP for tension and derive its solution.

Bending

4. Choose an appropriate profile for the beam in Fig. below, if $R=220 \mathrm{MPa}$.

Answ.: INP200.
5. Specify the conditions of symmetry needed for plane cross-sections of a loaded bar.
6. A cross-section is composed of two rectangular parts $b \times \frac{h}{2}$, each made from a different material. Determine the normal stress distribution generated by the hogging bending moment M, if $E_{1}=2 E_{2}$.

Answ.: $\sigma_{x}(0.417 h)=7.27, \sigma_{x}(-0.0833 h)=-1.45$, and $-0.72, \sigma_{x}(-0.5833 h)=-5.09,\left[\times\left(\frac{M}{b h^{3}}\right)\right]$

Biaxial bending

7. Determine the maximum value of the normal stress.

Answ.: 118.0 MPa
8. Determine the parameter a of the angle cross-section, if $R_{c}=18 \mathrm{MPa}, R_{t}=30 \mathrm{MPa}$.

Answ.: $a=2.2 \mathrm{~cm}$.
9. Determine σ_{D} if $\sigma_{A}=15 \mathrm{MPa}, \sigma_{B}=-10 \mathrm{MPa}$, and $\sigma_{C}=7 \mathrm{MPa}$.

Answ.: $\sigma_{x}=-0.1429 \mathrm{MPa}$

Composed bending

10. Find the maximum value of the normal stress in the steel flat bar.

Answ.:459.4 MPa
11. Demonstrate that the neutral axis position doesn't depend on a value of an eccentric force.
12. Sketch the cross-section core and determine the point of the core outline which lies beyond the principal axes.

Answ.: ($0.4616,-0.7971$)
13. Given the neutral axis, find the point of an eccentric force application.

Answ.: $\left(\frac{h}{8},-\frac{b}{8}\right)$ (coord. set turned by 90 deg.)
14. A rectangular cross-section in the Fig. below, (the dimensions in cm), is loaded on the longer symmetry axis by an eccentric force $P=12 \mathrm{kN}$. Determine the extreme value of the normal stress if the material works in compression only.

Answ.: 13.33 MPa

Transverse bending

15. Give the reasons why the cross-sections of transverse bent beam cannot be plane?
16. Derive the formula for mean shear stresses.
17. Determine a shear flow (a horizontal shear force per running meter between the beam parts) in a cantilever beam shown in Fig. below. Assume $P=2 \mathrm{kN}, b \times h=22 \times 9.6 \mathrm{~cm}$.

Answ.: 27.78 kN/m
18. Determine the shear center O of a channel section of uniform thickness (Fig. below), knowing that $b=100 \mathrm{~mm}, h=150 \mathrm{~mm}$ and $t=4 \mathrm{~mm}$.

Answ.: 40 mm

Deflections

19. Derive the relationship between the curvature and bending moment of the beam.
20. Find a deflection at point K using the Mohr method.

Answ.: $\mathrm{w}_{\mathrm{K}}=18.53 / \mathrm{EI}$
21. Find a deflection at point K of the beam using the Macauley method.

Answ.: $w_{K}=\frac{725.3}{E I}$

Torsion

22. Compare $\tau_{\text {max }}$ in the ring D / d and the cut ring (an open profile) of the same geometry and torque.

Answ.: $\frac{\tau_{\max }^{(\text {ring })}}{\tau_{\max }^{\text {rectu }}}=\frac{16 D}{\pi\left(D^{4}-d^{4}\right)} \frac{\pi(D+d)(D-d)^{2}}{24}=\frac{2}{3} \frac{D(D+d)(D-d)^{2}}{\left(D^{4}-d^{4}\right)}$
23. Describe the way out of the torsion of a composite cross-section (the steel I-beam with a concrete plate).

Exertion

24. In the frame with a rectangular cross-section, find the substitute stress $\sigma_{H M H}\left(\sigma_{C T G}\right)$ at point $A(B, C$, or D) on the fixed end (rectangle $b \times h=0.2 \times 0.3 \mathrm{~m}$).

Answ.: $\sigma_{H M H}^{A}=13.17 \mathrm{MPa}$
25. Can be the stresses $\sigma=-5 \mathrm{MPa}$ and $\tau=20 \mathrm{MPa}$ safe if $R_{c}=40 \mathrm{MPa}$ and $R_{t}=4 \mathrm{MPa}$? Use the (linearized and conservative) Mohr's definition of exertion.

Answ.: slightly exceeds

Stability

26. Design the parameter a of the column. Assume $l=3 \mathrm{~m}, P=100 \mathrm{kN}, E=205 \mathrm{GPa}, R_{H}=160 \mathrm{MPa}, n$ $=2.3$.

Answ.: 0.04162 m (range linear elastic)
27. Determine $P_{a c c}$ using the Gordon-Rankine formula, $a=5 \mathrm{~cm}, l=2.5 \mathrm{~m}, E=205 \mathrm{GPa}, R_{e}=250 \mathrm{MPa}$, $n=2.2$.

Answ.: $P_{\text {acc }}=202 \mathrm{kN}$
Plasticity
28. Determine limit plastic bearing capacity of the bar structure, $a_{1}=0.2 \mathrm{~m}, a_{2}=0.15 \mathrm{~m}, a_{3}=0.2 \mathrm{~m}$, $a_{4}=0.15 \mathrm{~m}, A_{1}=2 \mathrm{~cm}^{2}, A_{2}=1.5 \mathrm{~cm}^{2}, A_{3}=2 \mathrm{~cm}^{2}, A_{4}=1.5 \mathrm{~cm}^{2}, l=1 \mathrm{~m}, R_{e}=420 \mathrm{MPa}$.

Answ.: $\overline{\bar{P}}=283 \mathrm{kN}$
29. Determine limit plastic capacity of the beam in the Fig. below.

Answ.: $\overline{\bar{q}}=\frac{\overline{\bar{M}}}{2}$
30. Derive the rheology equation of state for the given standard model in Fig. below. Sketch the strain response for loading-unloading impulse.

Answ.: for model VK-H $\left(E_{2}, \eta-E_{1}\right): \eta \dot{\sigma}+\left(E_{1}+E_{2}\right) \sigma=E_{1} \eta \dot{\varepsilon}+E_{1} E_{2} \varepsilon$ (instantaneous elasticity, limited creep, elastic return, full recovery)

