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Theory of Plasticity 

Introductory remarks 

Plasticity – inelasticity with perfect material memory 
 

Course details: 12 lecture hours & 8 designing hours 

 
The scope of the plasticity theory 

- plastic behavior of metals and ceramic materials 

- constitutive equations for plastic materials within thermodynamic 
internal variables theory 

- technological problems of plastic processing (forging, rolling, 

stamping, extrusion, pull broaching and others), 
- limit bearing capacity of the bar structures (mostly in bending), 

plates and in soil mechanics, 

- dynamic problems, 
- large-deformation plasticity 

Some themes are out of scope of our considerations. 
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Some statements from mechanics of continua 

Volumetric and deviatory strain can be split into: 

𝑇𝜀 = 𝐴𝜀 + 𝐷𝜀 

In the same way, we decompose: 

𝑇𝜎 = 𝐴𝜎 + 𝐷𝜎 

and, on the octahedral plane: 

n =
1

√3
(±𝑒1, ±𝑒2, ±𝑒3) 

we have: 

𝜎(n) = 𝜎𝑚,         |𝜏(n)|2 = 𝜏𝑜𝑐𝑡
2 =

2

3
𝐽2 

Boundary value problem 

The set of differential equations with the boundary conditions with the displacement 

and/or surface traction prescribed is called a boundary value problem.  

Admissible fields: 

 kinematically admissible displacement field, 

 statically admissible stress field. 

Virtual displacements – the difference between two kinematically admissible 

displacement fields, 𝛿𝑢𝑖. 

Principle of virtual work (principle of virtual displacements): 

∫ (𝜎𝑖𝑗,𝑗 + 𝜌𝑏𝑖)𝛿𝑢𝑖𝑑𝑉
𝑅

− ∫ (𝑛𝑗𝜎𝑖𝑗 − 𝑡𝑖
𝛼)𝛿𝑢𝑖𝑑𝑆 = 0

𝜕𝑅𝑡

 

may be interpreted as an application of the method of weighted residuals. When a 

certain stress field is not exactly statically admissible, we have: 

𝜎𝑖𝑗,𝑗 + 𝜌𝑏𝑖 + 𝜌∆𝑏𝑖 = 0 in R,        𝑛𝑗𝜎𝑖𝑗 = 𝑡𝑖
𝛼 + ∆𝑡𝑖

𝛼 on 𝜕𝑅𝑡  

∆b and ∆𝑡𝛼 being the residuals of the body force and applied surface traction, 

respectively. We can try to make them vanish in some average sense, multiplying them 

with a vector-valued weighting function, w, such that: 

∫ 𝜌∆b∙w𝑑𝑉
𝑅

+ ∫ ∆𝑡𝑖
𝛼𝑤𝑖𝑑𝑠

𝜕𝑅𝑡

= 0 

for every w belonging to W. 

In the light of the method of weighted residuals, the principle of virtual work may be 

represented by the equation: 
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∫ (𝜎𝑖𝑗,𝑗 + 𝜌𝑏𝑖)𝑤𝑖𝑑𝑉
𝑅

− ∫ (𝑛𝑗𝜎𝑖𝑗 − 𝑡𝑖
𝛼)𝑤𝑖𝑑𝑆 = 0

𝜕𝑅𝑡

 

Virtual stress field – the difference between two statically admissible stress fields, 𝛿𝝈. 

Principle of virtual forces (principle of complementary virtual work): 

∫ [휀𝑖𝑗 −
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)] 𝛿𝜎𝑖𝑗𝑑𝑉

𝑅

+ ∫ (𝑢𝑖 − 𝑢𝑖
𝛼)𝑛𝑗𝛿𝜎𝑖𝑗𝑑𝑆 = 0

𝜕𝑅𝑢

 

Inelasticity 

Time as a new independent variable: 

 rate sensitivity, deformation produced by slow stressing is usually greater than 

that produced by rapid stressing 

 flow, (usually slow) change of displacements in time for constant stresses 

and/or slow decrease of the stress at a fixed strain 

 ageing, material characteristics change in time 

 material memory, actual material behavior depends on previous material’s 

history 

Surpassing the elastic limit, material yields. The elastic range forms a region in the 

space of the stress components, usually called the elastic region and its boundary is 

called the yield surface. 

For infinitesimal deformation, it is almost universally assumed that the strain tensor 

can be decomposed additively into an elastic strain and an inelastic strain: 

휀𝑖𝑗 = 휀𝑖𝑗
𝑒 + 휀𝑖𝑗

𝑖  

Internal variables 

Scalar or second-rank tensor values, ξ: 

ε = ε(σ, 𝑇,ξ) 

Additional constitutive equations are required (so-called the equations of evolution or 

rate equations) for the internal variables: 

𝜉�̇� = 𝑔𝛼(σ, 𝑇,ξ) 

Linear viscoelasticity 

Standard solid model: 

 

Fig. 1.1 Standard solid model 

𝜎 = 𝐸0휀𝑒 ,    𝜎 = 𝐸1휀𝑖 + 𝜂휀̇𝑖 
Total strain: 

휀 =
𝜎

𝐸0
+ 휀𝑖  
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휀̇𝑖 =
1

𝜂
𝜎 −

𝐸1

𝜂
휀𝑖  

The inelastic strain is an internal variable, the last equation being its rate equation. For 

given stress as a time function the evolution equation of inelastic strain can be solved: 

휀𝑖(𝑡) =
1

𝜂
∫ 𝑒−(𝑡−𝜏) 𝑡𝑑⁄ 𝜎(𝜏)𝑑𝜏

𝑡

−∞

 

where the reference time (at which 휀𝑖 = 0 is chosen as −∞ for convenience, and 

𝑡𝑑 = 𝜂 𝐸1⁄  is a material property having the dimension of time. In particular, if: 

𝜎(𝑡) = {
0 for t<0

𝜎0 for 𝑡 > 0
 

then we get a form of creep known as delayed elasticity: 

휀𝑖(𝑡) =
1

𝐸1
(1 − 𝑒𝑡 𝑡𝑑⁄ )𝜎0 

For 𝐸1 = 0 we get the Maxwell model with infinite retardation time, so the 

exponential factor inside the integral becomes unity, and the creep solution displays 

steady creep: 

휀𝑖(𝑡) =
𝜎0

𝜂
𝑡 

Generalized Kelvin model 

 

Fig. 1.2 Generalized Kelvin model 

Every dashpot displacement constitutes an internal variable: 

휀𝑖 = ∑ 𝜉𝛼

𝑛

𝛼=1

 

By analogy, the evolution equations are: 

𝜉�̇� =
𝜎

𝜂𝛼
−

𝜉𝛼

𝑡𝑑𝛼
 

and can be integrated explicitly: 

𝜉𝛼(𝑡) = ∫
1

𝜂𝛼
𝑒

−
𝑡−𝜏
𝑡𝑑 𝜎(𝜏)𝑑𝜏

𝑡

−∞

 

The total strain is: 

휀(𝑡) =
1

𝐸0
𝜎(𝑡) + ∫ (∑

1

𝜂𝛼
𝑒

−
𝑡−𝜏
𝑡𝑑𝛼

𝑛

𝛼=1

) 𝜎(𝜏)𝑑𝜏
𝑡

−∞

 

Introducing the uniaxial creep function 𝐽(𝑡): 

𝐽(𝑡) =
1

𝐸0
+ ∑

1

𝐸𝛼
(1 − 𝑒−𝑡 𝑡𝑑𝛼⁄ )

𝑛

𝛼=1

 

the strain can be expressed (by integration by parts) as: 
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휀(𝑡) = ∫ 𝐽(𝑡 − 𝜏)
𝑑𝜎

𝑑𝜏
𝑑𝜏

𝑡

−∞

 

If 

𝜎(𝜏) = {
0 for 𝜏 < 0
𝜎 for 𝜏 > 0

 

then 

휀(𝑡) = 𝜎𝐽(𝑡) 

therefore, the creep function can be determined experimentally from a single creep 

test. 

Similarly, the same can be done for a relaxation test: 

휀(𝜏) = {
0 for 𝜏 < 0
휀 for 𝜏 > 0

 

the stress is 

𝜎(𝑡) = 휀𝑅(𝑡) 

where 𝑅(𝑡) is the uniaxial relaxation function, and: 

𝜎(𝑡) = 𝑅(𝑡 − 𝜏)
𝑑휀

𝑑𝜏
𝑑𝜏 

An explicit form of the relaxation function in terms of internal variables can be 

obtained from the generalized Maxwell model, in Fig. 

 

Fig. 1.3 Generalized Maxwell model 

Internal variables: General theory 

In a local equilibrium state the internal variables remain constant. Nonequilibrium 

states are an essential feature of rate-dependent inelastic continua. The states evolve 

in time by means of irreversible processes. In the thermodynamics of irreversible 

processes the temperature and the entropy are defined at a nonequilibrium state. 

The second law of thermodynamics can be expressed by the local Clausius-Duhem 

inequality. The inequality is obeyed if and only if material obeys the dissipation 

inequality (called also Kelvin inequality): 

𝐷 = ∑ 𝑝𝛼𝜉�̇� ≥ 0

𝛼

 

where the thermodynamic force conjugate to the internal variable 𝜉𝛼 is: 

𝑝𝛼 = −𝜌
𝜕𝜓

𝜕𝜉𝛼
 

and ψ is the Helmholtz free energy density. Note that only the sum should be 

nonnegative and every term of dissipation inequality may be negative without 

violating the second law of thermodynamics. 
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Two types of internal variables: 

 physical, describing aspects of local physic-chemical structure (extent of the 

reaction, relative density of two phases, etc.) 

 phenomenological, being some mathematical constructs where the form of the 

functional dependence is assumed a priori (inelastic strain) 

Flow law and flow potential 

A flow law is an evolution equation for inelastic strain. It is assumed that the rate 

equations are (generalized normality for e generalized potential Ω): 

𝜉�̇� =
𝜕𝛺

𝜕𝑝𝛼
 

The thermodynamics forces 𝑝𝛼 can be obtained as function of stress by means of the 

complementary free-energy density (free-enthalpy density or Gibbs function): 

𝜒 = 𝜌−1𝜎𝑖𝑗휀𝑖𝑗 − 𝜓 

(ψ – Helmholtz free-energy density). It can be easily shown that: 

𝑝𝛼 = 𝜌
𝜕𝜒

𝜕𝜉𝛼
 

and 

휀𝑖𝑗 = 𝜌
𝜕𝜒

𝜕𝜎𝑖𝑗
 

A sufficient condition for the existence of a generalized potential is that each of the 

rate functions depends on the stress only through its own conjugate thermodynamic 

force: 

𝜉�̇� =
𝜕𝛺𝛼

𝜕𝑝𝛼
 

and the generalized potential: 

𝛺(p, 𝑇,ξ) = ∑ 𝛺𝛼(𝑝𝛼 , 𝑇,ξ)

𝛼

 

for mathematical reasons is usually assumed to be a convex function of p. 

The physics of plasticity 

The plastic materials can change their shape by the forces and retain their new shape 

upon removal of such forces. The shaping process deformations are often 

accompanied by very slight, if any, volume changes.  

Tension test 

− rapid, 

− requires simple apparatus, 

− the preferred method of determining the material properties of metals, glass, 

hard plastics, textile fibers, biological tissues, and many others. 
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Fig. 1.4 Nominal and real stress-strain diagrams1 

Moreover, during loading-unloading-reloading process, we observe other phenomena 

as aging, the Bauschinger effect, annealing or recovery.  

 

Fig. 1.5 Stress-strain diagrams for brittle solids and for concrete (and many rocks)2 

 

Fig. 1.6 Diagrams for rock (limestone) and soils in triaxial compression3 

Rate effects can distort the results. They are negligible if the time taken for the test is 

either very long or very short compared with the characteristic time td of the material. 

                                         
1 from Lubliner 
2 form Lubliner 
3 from Lubliner 
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Even in the absence of the rate effects, it is not always easy to determine an accurate 

value for the elastic or proportional limit.  

For design purposes, the conventional “yield strength” is defined as the value of the 

“offset” or conventional permanent strain. 

Plastic deformation, schematizations 

What is new? 

 partial or total irreversibility of some processes  (residual strains, greater stresses 

in elastic regime due to strain or work hardening, strain softening of compressed 

concrete) 

 dependence of the material behavior on process history 

 it is clear that the description of real mechanical properties of material should be 

evolutionary (material constant are not really constant, there is a virgin curve and 

processed curve) 

Models of exponential scheme 

Nonlinear exponential schemes for the materials with hardening: 

 exponential plastic hardening 

 𝜎 = 𝑘휀𝑛 

 
𝜎

𝜎0
= (

𝜀

𝜀0
)

𝑛
,     (0 ≤ 𝑛 ≤ 1)  

 rigid-plastic materials with exponential hardening (Ludwik, 1909) 

 nk  0 𝜎 = 𝜎0 + 𝑘휀𝑛  

 elastic-plastic exponential hardening 

 
 

 








Ek

EE

n

0

0




 𝜎 = {

𝐸휀    (휀 ≤ 𝜎0 𝐸⁄ )

𝑘휀𝑛    (휀 ≥ 𝜎0 𝐸⁄ )
 

 elastic-plastic exponential hardening (Ramberg-Osgood, 1943) 

 휀 =
𝜎

𝐸
+ 𝑘 (

𝜎

𝐸
)

𝑛
,    (𝑛 ≥ 1) 

 

 

 

n=1 

n=0 

  

 

 
  

 

 
  

 

 
 

Fig. 1.7 Models: nonlinear, Ludwik, elastic-plastic and Ramberg-Osgood 

Models of asymptotic ideal plasticity 

There are the schemes of the type      0:  ff : 

 two parameter scheme of hyperbolic tangent (Prager, 1938) 

 휀 =
𝜎0

𝐸
tanh−1 (

𝜎

𝜎0
) 

 three parameter scheme of Ylinen 

 𝐸𝑡 =
𝑑𝜎

𝑑𝜀
= 𝐸

𝜎0−|𝜎|

𝜎0−𝑐|𝜎|
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 or 

 휀 =
1

𝐸
[𝑐𝜎 − (1 − 𝑐)𝜎0 ln (1 −

𝜎

𝜎0
)] ,    (0 ≤ 𝑐 ≤ 1) 

 three parameter scheme of Życzkowski 

 휀 =
𝜎

𝐸(1−
𝜎

𝜎0
)

𝑛 ,    (𝑛 ≥ 0) 

 

n0 c1 

 

 

 

 

 

 
 

Fig. 1.8 Schemes of asymptotic plasticity (Prager, Ylinen, Życzkowski) 

The Maxwell and Voigt-Kelvin relations also describe creep, it means continuing 

deformation at constant stress. The creep can be either bounded or steady. 

 
Fig. 1.9 Typical creep curves for metals 4 

Geomaterials plasticity 

Soils are particulate (composed of many small solid particles from 1μm to a few mm). 

They have so-called void ratio (void volume), that can be (partially) saturated or dry 

(but still contain adsorbed water). These materials can be: 

- cohesive soils 

- frictional soils 

Another phenomenon of the seepage of water from the voids and decrease in void ratio 

is known as consolidation. 

The dependence between shear and normal stress in dry cohesionless soils is due to 

Coulomb law: 

𝜏 = 𝜎 tan 𝜑 

where φ is the angle of internal friction. 

In wet cohesionless soils, the applied stress is the sum of the effective stress and the 

neutral stress due to water pressure and possibly capillary tension. 

                                         
4 from Lubliner 
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In clays, the shear strength is given by: 

𝜏 = 𝑐 + 𝜎 tan 𝜑 

where c is material cohesion (shear strength under zero normal stress). 

Rocks and concrete attain their ultimate strength after developing permanent strains 

that are significantly greater than the elastic strains (however small in absolute terms). 

The permanent deformation is due to several mechanisms, the foremost of which is the 

opening and closing of cracks. These materials exhibit strain-softening: a gradual 

decrease in strength with additional deformation. In the sufficiently great confining 

pressure, the brittle behavior of concrete and some rocks (marble, limestone) is 

replaced by ductility with work-hardening. The volume increase resulting from the 

formation and growth of cracks parallel to the direction of the greatest compressive 

stress is known as dilatancy5. The same term is applied to the swelling of dense granular 

soils with different causing mechanism. The uniaxial tensile strength of rock and 

concrete is typically between 6 and 12% the uniaxial compressive strength. 

 
 

                                         
5  don’t confound with dilatation 


