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Constitutive theory 
From previous lecture you saw that “yielding” is the most striking phenomenon of 

plastic behavior. 

However, the existence of a well-defined yield stress is rather exceptional and most 

materials, like hardened steel, don’t exhibit distinct yielding stress. 

Internal variable theory of viscoplasticity 

ξ - the array of internal variables 

A continuous function 𝑓(𝜎, 𝑇, 𝜉) such that there exists a region in the space of stress 

components in which at given values of T and ξ, f<0 and the inelastic strain-rate tensor 

vanishes in that region but not outside it 

∃𝑓(𝜎, 𝑇, 𝜉):     ∃𝛺𝛴: 𝑓(𝜎, 𝑇, 𝜉) < 0   &   휀̇𝑖 = 0 

then the region constitutes the so-called elastic range, and f(  ) = 0 defines the yield 

surface in stress space.  

The orientation of the yield surface is defined in such a way that the elastic range forms 

its interior. 

Material having such function is viscoplastic in the stricter sense.  

The definition does not entail the simultaneous vanishing of all the internal variable 

rates 𝜉̇ in the elastic region. There are different effects in the elastic region, like strain 

ageing, it means an evolution of the local structure while the material is stress-free. But 

because the phenomenon is of the order of hours, for the sake of simplicity we assume 

that all internal-variable rates vanish in the elastic region. 

So, we can use a scalar function Φ such that: 

〈𝛷(𝑓)〉 = {
0 for 𝑓 ≤ 0

𝛷(𝑓)for 𝑓 > 0 
  

The dependence of the yield function f on the internal variables 𝜉𝛼 describes what are 

usually called the hardening properties of the material. 

 
Fig. 2.1 Static curve1 
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Let’s look on the tensile test diagram in the form of static stress-strain curve, which 

shows rising and falling portions, it means “hardening” and “softening” portions 

respectively. 

If the material is viscoplastic, then its behavior is elastic at points below the curve and 

viscoplastic at points above the curve - it means, that the curve represents the yield 

surface. 

If the stress is held constant above the static curve, creep occurs with increasing strain 

as shown by the dashed horizontal lines. 

If the initial point is: 

- like A, above the rising portion of the static stress-strain curve, the creep tends 

toward the static curve and creep is bounded 

- like B, above the falling portion, the creep tends away from the static curve and 

creep is unbounded 

We can now generalize these results from uniaxial case: 

- creep toward the yield surface means hardening and yield function decreases, 

𝑓̇ < 0 

- creep outward the yield surface means softening with the 𝑓̇ > 0. 

 

There are two phenomena: hardening and softening materials – the both mean the 

change of material behavior due to strain process 

 

Hardening and softening in viscoplasticity 

We can write down the rate of the yield function 𝑓̇ as a sum of its derivatives with 

respect of internal variables: 

𝑓̇|𝜎=𝑐𝑜𝑛𝑠𝑡,𝑇=𝑐𝑜𝑛𝑠𝑡 =∑
𝜕𝑓

𝜕𝜉𝛼
𝜉�̇�

𝛼

= 𝜙∑
𝜕𝑓

𝜕𝜉𝛼
ℎ𝛼

𝛼

= −𝜙𝐻 

where ϕ is a scalar function containing the rate and yielding characteristics of the 

material. We introduce the capital H by definition equal to: 

𝐻 = −∑
𝜕𝑓

𝜕𝜉𝛼
ℎ𝛼

𝛼

 

and from this we have: 

 H > 0 for hardening, H < 0 for softening materials, H = 0 describes a perfectly plastic 

material (it means the yield function is independent of internal variables 𝜉𝛼). 

 

We introduce the definition of flow potential as a sum of partial derivatives of inelastic 

strain over the internal variables, times ℎ𝛼: 

ℎ𝑖𝑗 =∑
𝜕휀𝑖𝑗

𝑖

𝜕𝜉𝛼
ℎ𝛼

𝛼

 

then, the flow equation is expressed with use of the scalar function ϕ: 

휀�̇�𝑗
𝑖 = 𝜙ℎ𝑖𝑗 

If there exists a function g, continuously differentiable with respect to 𝜎, wherever 𝑓 >
0, the g is called a viscoplastic potential: 
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ℎ𝑖𝑗 =
𝜕𝑔

𝜕𝜎𝑖𝑗
 

Many researchers, including Perzyna, have assumed that the viscoplastic potential g is 

proportional to the yielding function f. This is of no great significance in viscoelasticity, 

but becomes highly important in rate-independent plasticity. 

There were presented several propositions of viscoplastic potential. Some limiting case 

of great interest is a case of vanishing viscosity. 

The flow equations indicate that the rate of a process with inelastic deformation 

increases with distance from the yield surface. If a process is very slow, then it takes 

place very near but just outside the yield surface. 

When f remains equal to zero (or a very small positive constant): 

𝑓̇ =
𝜕𝑓

𝜕𝜎𝑖𝑗
�̇�𝑖𝑗 +∑

𝜕𝑓

𝜕𝜉𝛼
𝜙ℎ𝛼 = 0

𝛼

 

with, by definition 

𝑓 =
𝜕𝑓

𝜕𝜎𝑖𝑗
�̇�𝑖𝑗 

we have, combining the previous equations: 

𝑓̇ = 𝑓 − 𝜙𝐻 = 0 

for hardening (H >0), with 𝜙 > 0 above equation is possible if and only if 𝑓 > 0. The 

condition is called loading.  

We get: 

𝜙 =
1

𝐻
< 𝑓 > 

therefore: 

𝜉�̇� =
1

𝐻
< 𝑓 > ℎ𝛼 

In the last equation, both sides are derivatives with respect to time, so a change in time 

scale does not affect the equation. So, the equation is rate-independent. 

 

When the equation is valid over a sufficiently wide range of loading rates, the behavior 

of such material is called rate-independent plasticity, or inviscid plasticity or simply 

plasticity.  

Henceforth, we consider all processes to be infinitely slow, compared with the material 

relaxation time. 

Rate-independent plasticity 

Flow rule and work-hardening 

Instead of inelastic strain rate we use now plastic strain and the flow equation may be 

written as: 

휀𝑖𝑗
�̇�
= �̇�ℎ𝑖𝑗 

where 
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�̇� = {

1

𝐻
< 𝑓 > ,   𝑓 = 0,

0,                  𝑓 < 0,
 

with: 

𝐻 = −∑
𝜕𝑓

𝜕𝜉𝛼
ℎ𝛼

𝛼

 

The rate equations analogously become: 

𝜉�̇� = �̇�ℎ𝛼 

If 
𝜕𝑓

𝜕𝜉𝛼
≡ 0, the material is called perfectly plastic. In this case 𝐻 = 0, but 𝑓 = 𝑓̇, and 

therefore the condition 𝑓 > 0 is impossible. Plastic deformation then occurs only if 

(𝜕𝑓 𝜕�̇�𝑖𝑗⁄ ) = 0 (neutral loading), and the definition of �̇� cannot be used. Instead it is 

an indeterminate positive quantity when 𝑓 = 0 and (𝜕𝑓 𝜕�̇�𝑖𝑗⁄ ) = 0, and is zero 

otherwise. 

In either case, �̇� and f can easily be seen to obey the Kuhn-Tucker conditions of 

optimization theory: 

�̇�𝑓 = 0, �̇� ≥ 0, 𝑓 ≤ 0. 

Deformation theory 

A deformation or total-strain theory (Hencky 1924): the plastic strain tensor itself is 

assumed to be determined by the stress tensor, provided that the yield criterion is met 

and unloading and reloading are elastic. 

Proportional or radial loading – a loading in which the ratios among the stress 

components remain constant, provided the yield criterion and flow rule are sufficiently 

simple (for example, the Mises yield criterion and the flow rule with ℎ𝑖𝑗 = 𝑠𝑖𝑗). It’s 

been proved that the stress states derived from the deformation and the incremental 

flow theories converge if: 

− the deformation develops in a definite direction, or  

− a material whose yield surface has a singular point or corner and the stress point 

remains at the corner in the course of loading. 

Work-Hardening 

It has been already said that: H>0 means hardening, H=0 means perfect plasticity and 

H<0 means softening. 

When we draw the yield function in the stress-space, we see that H>0 implies that, at 

least locally, the yield surface is expanding (in the stress space). 
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Fig. 2.2 Hardening and softening in rate-independent plasticity2 

A contracting yield surface denotes work-softening. A stationary yield surface means 

perfect plasticity. 

The yield function may be a function of stress state, plastic strains and a hardening 

parameter: 

𝑓(𝜎, 휀𝑝 , 𝜅) = 𝐹(𝜎 − 𝜌(휀𝑝)) − 𝑘(𝜅), 
describes both isotropic and kinematic hardening. The hardening is: 

− isotropic if 𝜌 ≡ 0 and 𝑑𝑘 𝑑𝜅⁄ > 0, and 

− purely kinematic if 𝑑𝑘 𝑑𝜅⁄ ≡ 0 and 𝜌 ≠ 0, 

− perfectly plastic if 𝑑𝑘 𝑑𝜅⁄ ≡ 0 and 𝜌 ≡ 0. 

Drucker’s Postulate 

A more restricted definition of work-hardening was formulated by Drucker in 1950 

and 1951 by generalizing the characteristics of uniaxial stress-strain curves. With a 

single stress component 𝜎 and the conjugate plastic strain rate 휀̇𝑝: 

�̇�휀̇𝑝 {

≥ 0,   hardening material           
= 0,   perfectly plastic material
≤ 0,    softening material             

  

When the above inequalities hold equally well when they are multiplied by the 

infinitesimal time increment dt, so for 𝑑𝜎𝑑휀𝑝 . This product has the dimensions of 

work per unit volume.  

Drucker defines a “stable” plastic material as one in which the work done during 

incremental loading is positive, and during loading-unloading is nonnegative.  

The definition can be extended to general three-dimensional states of stress and 

strain. Drucker’s inequality is valid for both work-hardening and perfectly plastic 

materials: 

�̇�𝑖𝑗휀�̇�𝑗
𝑝
≥ 0 

Very common interpretation of Drucker’s postulate is that in terms of work. Often, it 

is referred to as a quasi-thermodynamic postulate, but it should be clearly stated, that 

it is independent of the basic laws of thermodynamics. 

Because the left part of inequality represents the product, it can be said that the 

plastic strain rate cannot oppose the stress rate. 

                                         
2 from Lubliner 
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Fig. 2.3 Drucker’s postulate: (a) in uniaxial stress-strain plane;(b) in stress space3 

Drucker’s postulate holds for any stress increment, not necessary a small one: 

(𝜎𝑖𝑗 − 𝜎𝑖𝑗
∗ )휀�̇�𝑗

𝑝
≥ 0 

Maximum-Plastic-Dissipation Postulate and Normality 

The above equation is a necessary condition for Drucker’s postulate, but it is not a 

sufficient one. Using its uniaxial counterpart: 

(𝜎 − 𝜎∗)휀̇𝑝 ≥ 0 

 
Fig. 2.4 Maximum-plastic-dissipation postulate (in uniaxial stress-strain plane) 

It can be seen that work-softening and perfectly plastic materials have this property 

as well. It is called the postulate of maximum plastic dissipation. 

 
Fig. 2.5 Yield surface with associated flow rule: (a) normality; (b) convexity; (c) 

corner 

                                         
3 from Lubliner 
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The postulate has consequences of the highest importance in plasticity theory. 

Consequences: 

− normality rule: when we “attack” the yielding surface from different points in 

the elastic region, we see that the plastic strain rate vector should be directed 

along the outward normal there 

− convexity rule: when the rate of plastic strain is normal to the yield surface, to 

keep the inequality valid, the yield surface should be convex; in other words, 

the entire elastic region must lie to one side of the tangent 

− the outward normal vector is proportional to the gradient of the yield surface 

𝑓(𝜎, 𝜉) = 0. (excluding the points of singularity that can be treated separately) 

 

Let us define the plastic dissipation (the maximum being taken over all 𝜎∗: 
𝐷𝑝(휀̇

𝑝; 𝜉) = max𝜎∗𝜎𝑖𝑗
∗ 휀�̇�𝑗

𝑝
 

We get the principle of maximum plastic dissipation: 

𝐷𝑝(휀̇
𝑝; 𝜉) ≥ 𝜎𝑖𝑗

∗ 휀�̇�𝑗
𝑝

 

Because the gradient of smooth yield surface f (in stress space) is proportional to the 

outward normal vector, the normality rule may be expressed as: 

ℎ𝑖𝑗 =
𝜕𝑓

𝜕𝜎𝑖𝑗
 

where ℎ𝑖𝑗 is the tensor function appearing in the flow equation, 

means that the function f defining the yield surface is itself a plastic potential, so this 

is the case of a flow rule associated with the yield criterion, or, briefly, an associated 

(associative) flow rule. The materials obeying an associated flow rule are called 

standard materials in the French literature. 

A nonassociated flow rule is a rule derivable from a plastic potential g that is distinct 

from f; more precisely: 
𝜕𝑔

𝜕𝜎𝑖𝑗
 is not proportional to 

𝜕𝑓

𝜕𝜎𝑖𝑗
 

Iliushin’s Postulate 

It can be shown that the normality rule follows from a “postulate of plasticity” in 

strain space proposed by Iliushin (1961), namely, that in any cycle that is closed in 

strain space, 

∮𝜎𝑖𝑗𝑑휀𝑖𝑗 ≥ 0 

where the equality holds only if the process is elastic. However Iliushin’s postulate is 

satisfied for processes in which the original yield surface is inside all subsequent 

yield surfaces. The last condition is satisfied in materials with isotropic hardening, 

but not in general. Consequently Iliushin’s postulate is a stronger (less general) 

hypothesis than the principle of maximum plastic dissipation. 

Yield criteria, Flow Rules and Hardening Rules 

There are several possibilities to graphically present the yield criteria. 
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Haigh-Westergaard space, Meldahl space, meridian plane 

The Haigh-Westergaard space is the space with the set of principal stress coordinates. 

The axis, which is equally inclined to all axes, is hydrostatic axis (mean stress axis). 

The Meldahl surface or deviatory surface, or 𝜋-plane, is the surface perpendicular to 

the mean stress axis.  

The surface passing through the hydrostatic axis is the meridian plane, where its angle 

describes angle between the meridian plane and the first principal axis. A point with 

𝜃 = 0 corresponds to a tensile meridian of the surface. A point with 𝜃 = 𝜋 3⁄  

corresponds to a compressive meridian.  

Another cross-section is the section by the plane 0 i , for the plane state of stress.  

Sometimes, the same set of coordinates  , like for Mohr’s circles, is the best choice 

to present the yielding/failure criterion. 

 
Fig. 2.6 Haigh-Westergaard space and intersection with particular plane 

For instance, the Rankine criterion of failure of materials having different tensile and 

compression strengths (like concrete), in the Haigh-Westergaard space is a cube 

located eccentrically. 

 
 

 
Fig. 2.7 Different views of Rankine’s criterion 
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We can express the principal stress values in terms of the hydrostatic stress value (the 

distance from the origin to the deviatory plane, ξ), the length of the stress vector in the 

deviatory plane, ρ, and an angle of the meridian plane, θ:  
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Fig. 2.8 Shear and compression meridians 

Yield criteria independent of the means stress 

Tresca criterion 

From the assumption that plastic deformation occurs when the maximum shear stress 

over all planes attains a critical value (of the current yield stress in shear), the 

criterion may be represented by the yield function: 

𝑓(𝜎, 𝜉) =
1

2
max(|𝜎1 − 𝜎2|, |𝜎2 − 𝜎3|, |𝜎3 − 𝜎1|) − 𝑘(𝜉) 

or, equivalently 

𝑓(𝜎, 𝜉) =
1

4
(|𝜎1 − 𝜎2|, |𝜎2 − 𝜎3|, |𝜎3 − 𝜎1|) − 𝑘(𝜉) 

The projection of the Tresca yield surface in the π-plane is a regular hexagon, while 

in the (𝜎1 − 𝜎3)(𝜎2 − 𝜎3)-plane it takes the form of the irregular hexagon shown in 

Fig. 2.9 

 
Fig. 2.9 Comparison of Tresca and Huber-Mises criteria 
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Fig. 2.10 Comparison of Tresca and Huber-Mises criteria 

Tresca criterion: associated flow rule 

The Tresca yield surface is singular. Its associated flow rule can be derived by means 

of a formal application of distribution functions: 
𝑑

𝑑𝑥
|𝑥| = sgn 𝑥 

where 

sgn 𝑥 = 2𝐻(𝑥) − 1 = {
+1, 𝑥 > 0
−1, 𝑥 < 0

 

In this way we obtain: 

휀1̇
𝑝
=
1

4
�̇�[sgn(𝜎1 − 𝜎2) + sgn(𝜎1 − 𝜎3)] 

where, for work-hardening materials �̇� = 〈𝑓〉/𝐻, with 

𝐻 =∑
𝜕ℎ

𝜕𝜉𝛼
ℎ𝛼

𝛼

 

while for the perfectly plastic material �̇� is indeterminate. 

Lévy flow rule and Huber-Mises yield criterion 

The general form proposed by Lévy: 

휀�̇�𝑗
𝑝
= �̇�𝑠𝑖𝑗 

The yield criterion with which this flow rule is associated is the Huber-Mises criterion, 

represented by the yield function: 

𝑓(𝜎, 𝜉) = √𝐽2 − 𝑘(𝜉) 
or, in an alternative form with the dependence on ξ not shown explicitly: 

𝑓(𝜎, 𝜉) = 𝐽2 − 𝑘
2 

where 𝑘(𝜉) is again the yield stress in shear at the current values of the variable ξ 

Expressing 𝐽2 in term of the principal stresses, the Huber-Mises criterion is: 

(𝜎1 − 𝜎2)
2 + (𝜎2 − 𝜎3)

2 + (𝜎1 − 𝜎3)
2 = 6𝑘2 

or 

𝜎1
2 + 𝜎2

2 + 𝜎3
2 − 𝜎2𝜎3 − 𝜎3𝜎1 − 𝜎1𝜎2 = 3𝑘

2 
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In the π-plane the Huber-Mises yield surface is of a circle of radius √2𝑘 and in the 

(𝜎1 − 𝜎3)(𝜎2 − 𝜎3) plane of an ellipse. 

 

  
Fig. 2.11 Deviatory plane (𝜋 − plane) 

 
Fig. 2.12 Yield surfaces’ projections 

The plastic dissipation for the Huber-Mises criterion and the associated flow rule is 

given by: 

𝐷𝑝(휀̇
𝑝; 𝜉) = 𝜎𝑖𝑗휀�̇�𝑗

𝑝
= �̇�𝑠𝑖𝑗𝑠𝑖𝑗 = √2𝐽2√휀�̇�𝑗

𝑝
휀�̇�𝑗
𝑝
= 𝑘(𝜉)√2휀�̇�𝑗

𝑝
휀�̇�𝑗
𝑝

 

Prandtl and Reuss generalization; expressed in terms of total strain rate: 

휀�̇�𝑘 =
1

3𝐾
�̇�𝑘𝑘 

�̇�𝑖𝑗 =
1

2𝐺
�̇�𝑖𝑗 + �̇�𝑠𝑖𝑗 

Some generalization of the yield function with the dependence on 𝐽3 included (a typical 

form): 

𝑓(𝜎) = (1 − 𝑐
𝐽3
2

𝐽2
3)

𝛼

𝐽2 − 𝑘
2 

where the exponent α is taken as 
1

3
 and 1, k is as usual the yield stress in simple shear, 

ad c is a parameter. 
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Anisotropic yield criteria 

Anisotropy in yielding may be of two types: 

− initial anisotropy, usually in materials that are structurally anisotropic 

− induced anisotropy, as a result of work-hardening process. 

Hill: 
1

2
𝐴𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝜎𝑘𝑙 = 𝑘

2 

where A is a fourth-rank tensor which has the same symmetries as the elasticity tensors. 

If the yield criterion is independent of mean stress,, then A also obeys 𝐴𝑖𝑗𝑘𝑘 = 0, so 

that is has at most 15 independent components; the isotropic (Huber-Mises) case 

corresponds to 𝐴𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙 −
1

3
𝛿𝑖𝑗𝛿𝑘𝑙. 

Yield criteria dependent on the mean stress 

The critical combination may be expressed in a form 𝜏 = ±𝑔(𝜎), unchanged when the 

direction of the shear stress is reversed. The envelopes of the Mohr’s circles 

representing failure and are therefore called the Mohr failure (rupture) envelopes. 

 

Mohr-Coulomb criterion 

When the envelopes are straight lines, the criterion can be reduced to: 

𝑔(𝜎) = 𝑐 − 𝜇𝜎 

where σ is positive in compression, c is the cohesion and 𝜇 = tan𝜙 is the coefficient 

of internal friction in the sense of Coulomb model of friction. (When ϕ = 0 the criterion 

reduces to that of Tresca). 

 
Fig. 2.13 Mohr-Coulomb criterion 

 
Fig. 2.14 Mohr-Coulomb criterion for different tensile/compressive yielding ratio 
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The associated plastic dissipation was shown by Drucker to be: 

𝐷𝑝 (휀̇
𝑝; 𝜉) = 𝑐 cot 𝜙 (휀1̇

𝑝
+ 휀2̇

𝑝
+ 휀3̇

𝑝
) 

The failure surfaces in principal stress space are obviously planes that intersect to form 

a hexagonal pyramid: 

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 + (𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛) sin 𝜙 = 2𝑐 cos𝜙 

where 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 denote respectively the (algebraically) largest and smallest 

principal stresses. The last equation may be rewritten as 

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 +
1

3
[(𝜎𝑚𝑎𝑥 − 𝜎𝑖𝑛𝑡) − (𝜎𝑖𝑛𝑡 − 𝜎𝑚𝑖𝑛)] sin 𝜙 = 2𝑐 cos𝜙 −

2

3
𝐼1 sin 𝜙   

where 𝜎𝑖𝑛𝑡 denotes the intermediate principal stress. The family of criteria based on 

Coulomb friction may be described by equation of the form: 

𝐹(𝐽2, 𝐽3) = 𝑐 − 𝜆𝐼1 

where c and λ are constants. 

Drucker-Prager criterion 

Combining Coulomb friction with the Huber-Mises yield criterion, Drucker and 

Prager proposed yielding criterion which occurs on the octahedral planes when 

𝜏𝑜𝑐𝑡 = √
2

3
𝑘 −

1

3
𝜇𝐼1, so: 

0),( 2121  kJIJIf  

or 

026),(  kf . 

The associated plastic dissipation is 

𝐷𝑝(휀̇
𝑝; 𝜉) =

𝑘√2휀�̇�𝑗
𝑝
휀�̇�𝑗
𝑝

√1 + 𝜇2
 

 
Fig. 2.15 Mohr-Coulomb and Drucker-Prager criteria 

The Drucker-Prager criterion for a biaxial stress: 

    k 2
221

2
13

1
21 . 

The Drucker criterion 

The Drucker proposition is a generalization of CTG criterion: 

  013
1  kIIIII , 

f 'c

f 'c
f 't

f 't





-



-


- 

Drucker-Prager

Mohr-Coulomb
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which in principal stress space is pyramid. 

Anisotropic failure/yield criteria 

The proposition of Mises with use of 4th order plasticity tensor: 
0 kklijijkl  

and 21 independent material constants is simplified by Hill into six parameters 

criterion in the case of orthotropy. 

Hardening rules 

A hardening rule it is a specification of the dependence of the yield criterion on the 

internal variables, along with the rate equations for these variables. 

Isotropic hardening 

The yield functions we have studied so far are all reducible to the form: 

𝑓(𝜎, 𝜉) = 𝐹(𝜎) − 𝑘(𝜉) 
When an internal variable is identified with the hardening variable κ, defined as either 

the plastic work or as the effective plastic strain, so that the work-hardening modulus 

H is 

𝐻 =

{
 

 
𝑘′(𝑊𝑝)𝜎𝑖𝑗ℎ𝑖𝑗

𝑘′(휀̅𝑝)√
2

3
ℎ𝑖𝑗ℎ𝑖𝑗

 

Work-hardening in rate-independent plasticity corresponds to a local expansion of the 

yield surface. The present behavior of swelling of yielding surface, called isotropic 

hardening, represents a global expansion, with no change in shape.  

 

 

σ 

σ 

τ 

 
Fig. 2.16 Plastic isotropic hardening 

There is no the Bauschinger’s effect. The hardening depends on non-decreasing 

function of plastic strain 

Taylor-Quinney (1931): 
 p

i Wf2  

where the plastic strain work (dissipation energy): 

 

ppp e

p

ijij

e

p

ijij

e

p

ijij

dp desdedWW

~

0

~

0

~

0

  

is non-decreasing variable also. 
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Kinematic hardening 

The yield function: 

𝑓(𝜎, 𝜉) = 𝐹(𝜎 − 𝜌) − 𝑘(𝜉) 
If 𝜌 ≡ 0 and if k depends only on κ – isotropy. This is a fairly good agreement with 

the Bauschinger effect for those materials whose stress-strain curve in the work-

hardening range can be approximated by a straight line (“linear hardening”), and for 

such materials that Melan proposed the model in which 𝜌 = 𝑐휀𝑝, with c a constant. A 

similar idea was also proposed by Ishlinskii (1954), and a generalization of it is due to 

Prager (1955, 1956), who coined the term “kinematic hardening” on the basis of his 

use of a mechanical model in explaining the hardening rule, see Fig. 

 
Fig. 2.17 Prager’s mechanical model of kinematic hardening 

A kinematic hardening model is also capable of representing induced anisotropy, since 

a function 𝐹(𝜎 − 𝜌) that depends only on the invariants of its argument stops being an 

isotropic function of the stress tensor as soon as ρ (so-called the back stress) differs 

from zero. 

The equation 

𝜌𝑖𝑗 = 𝑐휀𝑖𝑗
𝑝

 

does not imply proportionality between the vectors representing ρ and 휀𝑝 in any space 

other than the nine-dimensional space of second-rank tensors 

In more sophisticated Melan-Prager model the back stress is treated as a tensorial 

internal variable with its own rate equation: 

�̇�𝑖𝑗 = 𝑐휀�̇�𝑗
𝑝

 

where c not need be a constant but may depend on other internal variables. 

Another example of a kinematic hardening model is that due to Ziegler (1959): 

�̇�𝑖𝑗 = �̇�(𝜎𝑖𝑗 − 𝜌𝑖𝑗) 

where 
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�̇� =
〈
𝜕𝑓
𝜕𝜎𝑘𝑙

�̇�𝑘𝑙〉

𝜕𝑓
𝜕𝜎𝑚𝑛

(𝜎𝑚𝑛 − 𝜌𝑚𝑛)
 

in order to satisfy the consistency condition 𝑓̇ = 0. 

 

σ1 

σ2 

Melan 

orig. flow surf. 

Ziegler 

 
Fig. 2.18 Translation of the plastic flow surface 

Generalized hardening rules 

Other models: 

 combined hardening by Hodge 

 coined hardening by Chaboche 

 with family of the back stresses by Mróz (stress-strain curves are piecewise 

linear) 

 two-surface model by Dafalias (with bounding/loading/memory surface – an 

original and “final” flow surface) 

 anisotropy distortion in initially isotropic materials (Sawczuk, with 

decomposition of fourth rank back stress tensor into elastic and plastic parts) 

The mixed hardening is a combination of isotropic and kinematic hardening.  

The anisotropic hardening consists on the active surface change. There are a few 

kinds of such hardening: 

 general type 

 with independent mechanisms 

 qualitative change of yielding surface (plastic corners) 

 

τ 

σ 

σ1 

σ2 σ3 

σ1 

σ2 σ3 
 

Fig. 2.19 Different mechanisms of anisotropic hardening 

 

 


