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Plasticity of bar structures 

Limit capacity of the cross-section 

We assume the cross-section has one (vertical) symmetry axis. Moreover: 

 uniaxial state of stress 







e

e

R

RE <dla, 
  

 Bernoulli’s hypothesis of plane cross-sections. 

We use the conditions of equilibrium: 
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The stages of the cross-section work are: 
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a) b) c) d) e)

 
Fig. 3.1 Stages of the cross-section work 

 elastic range, the principle of superposition is valid due to linearity of equations 

 yielding of the first extreme fibers, it is elastic limit of the cross-section bearing 

capacity,  

 one-sided yielding in elastic-plastic range, 

 two-sided yielding, the elastic-plastic range, 

 full yielding with the plastic hinge arising, it is a plastic limit of the cross-section 

bearing capacity. 

The elastic-plastic range calculations are the most complicated. The problem consists 

on determination of two process parameters from the equations of equilibrium. There 

are two regions in the cross-section: elastic and plastic, divided by the plasticity front. 

The position of the front, the integral limits, is unknown. 
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Fig. 3.2 Parameters of the stress distribution 

From Bernoulli’s hypothesis, we have: 

z  0 . 

Two parameters determine the strain distribution: the bar axis strain and its curvature. 

Sometimes, it is the easier way to apply other parameters, like: 

 position of neutral axis 
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- position of the plastic front 
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- range of the elastic zone 
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Only two parameters are independent. 

Elastic and plastic limit capacity of the cross-section 
Elastic limit capacity of the cross-section is the set of cross-section forces causing yielding of the 

(first) extreme fibers. 

For simple bending, the value of the bending moment causing the first yielding can 

be easily calculated from the equation of elastic range (Hooke’s equations). 
Plastic limit capacity of the cross-section is the set of cross-section forces causing full yielding of 

the whole cross-section. 

For simple bending the plastic limit value can be calculated from rectangular 

distribution of the normal stress. From the first condition of zero normal force we 

have: 
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so, the neutral axis halved cross-section (divides cross-section into two equal areas). 

From the second condition we get that the plastic limit value of the bending moment 

is equal to the sum of static moments of the cross-section halves.  
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The condition of equilibrium is valid in every coordinate set. If one axis is the 

principal central axis, the static moments differ only by their signs, so the formula 

may be rewritten: 

2,1
02 AAe SRM  . 

Similarly to elastic cross-section factor, we introduce the plastic cross-section factor 

as: 

2,1
02 AASW  . 
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Generalized stress 

A concept of cross-section forces (axial force and bending moment) as generalized 

stress and axis elongation with its curvature as generalized strains is of great 

usefulness in the limit analysis of structures (see below). 

Generalized stress may coincide with the actual stresses, or they may be local stress 

resultants integrated over one or two dimensions, or even a whole finite element of 

the body. 

Interaction curves 
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Main formulae resulting from the equivalence theorem: 
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We introduce dimensionless quantities: 
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Elastic range 

The normal stress is given by formula of a plane: 

y
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In practice, position of the neutral axis suffices to determine point(s) of the yielding 

onset.  

With dimensionless parameters, we have: 
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The neutral axis equation: 
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is an equation of straight line. Extreme values with yielding will be attained at: 
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Biaxial bending case 
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For n = 0, the neutral axis is: 

0
maxmax
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and relationship between bending moments is linear: 
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Bending with axial force 
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and in limit elastic state: 
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where pz  is neutral axis position. 

Extreme value of bending moment can be found from a formula: 
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it means for simultaneous yielding of both extreme fibers, and the neutral axis 

position: 

2
0

dg zz
z


 . 

 

n 

1 

1 

-1 

-1 

ym  

 

Fig. 3.3 Interaction curves of mn   

Elastic-plastic range 

In the plastic state the stress distribution is partially rectangular 
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and relations between cross-section forces are non-linear: 
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The typical curves are shown in the figure below. 

 
Fig. 3.4 n-m curves for rectangle (1), circle (2) and I-beam (3) 

 

Theorems of limit analysis 

Introduction 

Analyzing a structure, we seek: 

 limit value of the load causing the onset of the plastic mechanism 

 stress field corresponding to the equilibrium state and the static boundary conditions 

 appropriate displacement field or the rate of this field which fulfills kinematic 

boundary conditions. 

The exact solution fulfills the principle of virtual work. 

The work (the power) of stress on the displacements (or their rates) is equal to the 

work (the power) of external forces on the displacements (or their rates). 

 

v

ijij

v

jj

A

jj uFup

T

dVdVdA    

Neglecting mass forces, we can write the equation by a coefficient of external forces. 

The coefficient has an exact value for true forces. 
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Lemma 

If the limit plastic state is reached and displacements increase under constant load, 

the stress remains constant and only plastic (not elastic) strain increases. 

Proof: („rate” form of principle of virtual work) 
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(index l means limit state) 

For the limit load, left side of the equation vanishes, from the definition: 

 0l
iF  in volume V, 

 0l
iq  at Aσ, 

 0l
iu  at Au. 

We decompose the strain rate into elastic and plastic parts: 

  0  V

p
ij

e
ij

l
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l
ij

l
ij dVdV ll    

From the associated flow rule for perfectly plastic material follows that the vector ij  

is tangent to the flow surface, if the plastic strain appears. So: 

0V
e
ij

l
ij dVl  ,  

and as consequence, the stress is constant and the rate of elastic strain is zero. For the 

limit load only the plastic strain exists. The elastic properties of material are not 

important.  

In this way, the model of perfectly elastic-plastic material is equivalent to the model 

of perfectly plastic material. 

Statically admissible solutions 

The stress field is statically admissible, if the following conditions are fulfilled: 

 the equations of internal equilibrium 

 static boundary conditions 

 the yield criterion in the form of weak inequality (and in particular, the stress does 

not exceed the plasticity limit). 

In such case, the multiplier will be different: 
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Fig. 3.5 Statically admissible stress field and the sign of the integral 

Subtracting the above equations, we get: 

     

TA

ijijjjs upmm

V

ij0 dV*dA   . 

From the Drucker’s stability postulate follows that the sign of the integral on the right 

side is nonnegative and: 

mms  . 
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Lower-bound theorem: 

The structure does not undergo destruction, or, at the most is in the state of limit 

equilibrium, if the statically admissible state of stress balances the actual loading. 

In other words, the structure does not collapse if the external loading can be balanced 

by the statically admissible state of stress. The real bearing capacity is at least as the 

balanced load and it is the lower bound estimation. 

Kinematically admissible solutions 

The field of displacement rates is kinematically admissible if the following 

conditions are fulfilled: 

 kinematic boundary conditions and compatibility equations 

 the condition of nonnegative work (power) of external forces: 

00  
A

k
jjz upmD   

Applying the principle of virtual work to an arbitrary kinematically admissible field 

of displacements, we have: 
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Subtracting the above equation from this of “real” state, we get: 
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k
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k
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k
jjk upmm

V

0 dVdA   . 

From the Drucker’s stability postulate follows that the integral on the right side is 

nonnegative. The integral on the left is positive (positive work of internal forces) and 

the multiplier of kinematically admissible displacement field is not less than real 

(exact) value: 

mmk  . 

Upper-bound theorem: 

The structure collapses (becomes a mechanism) or, at least is in limit equilibrium 

state if for kinematically admissible field of displacements the total work (power) of 

external forces is not less than the work (power) of internal forces.  

In other words, if the structure collapses under external load, its bearing capacity is 

less or equal to the applied load (upper bound estimation). 

Approximate and exact solutions 

Comparing the theorems, an assessment is valid: 

ks mmm  . 

If the statically admissible state of stress is associated at the same time with 

kinematically admissible field of displacements, the solution is exact to the real value 

of limit capacity. Such a solution is called a complete solution. 

The theorems are very attractive because, in most cases, the upper and lower 

estimations can be found very easy. Many satisfactory engineering solutions were 

found for bar structures, plates and soil.  

It is shown as a rule, plausible velocity fields are easier to guess than stress fields, and 

therefore in many cases only upper estimates are available. Of particular importance 

are velocity fields called mechanisms, in which the deformation is concentrated at 

points, lines, or planes, with the remaining parts of the system moving as rigid bodies. 
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The use of mechanisms for estimating collapse loads antedates the development of 

plasticity theory. Examples include Coulomb’s (1773) method of slip planes for 

studying the collapse strength of soil, the plastic-hinge mechanism due to Kazinczy 

(1914) for steel frames, and the yield-line theory of Johansen (1932) for reinforced-

concrete slabs, later extended to plates in general. 

Limit analysis of trusses 

A truss member will be said to fail if it can undergo significant lengthening or 

shortening with no significant change in the bar force. Failure in this sense can result 

from yielding, if the material is perfectly plastic or nearly so, or, in the case of a 

compression member, from buckling. The bar force in a failed member is determined 

by the failure criterion, not by equilibrium. It can be presumed as known if the 

properties of the bar are known, and the number of unknown bar forces drops by one, 

as does the indeterminacy number r. The truss therefore becomes unstable if r +1 bars 

fail. In particular, a statically determinate truss collapses as soon as one bar fails. 

Equating the external work rate to the total internal dissipation leads to an upper bound. 

Example 

Find the limit bearing capacity of the truss, where 31 A cm2, 22 A cm2, 53 A cm2, 

4000  MPa. 

 

N1 N2 N3 

1 3 2 

5 

P 

1 2 3 

P 
 

Fig. 3.6 Statically indeterminate truss and the node equilibrium 

Static approach 

We calculate the bearing capacity of the bars: 

1201 N  kN, 802 N  kN, 2003 N  kN 

The structure becomes a mechanism if two bars reach yield point. There are three 

possibilities: 

a) 2211 , NNNN   

 from the sum of projections, we have: 

 5.150
34

3

26

1
80

34

3
120:0 33  NNX  kN 

   4.310
34

5
5.150

26

5
80

34

5
120:0 PY  kN 

 we verify 0
3

3
3 MPa301  

A
N

 (statically admissible scheme) 

b) 3311 , NNNN   

from the projections sum on x axis, we have: 
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222 kN9.2090
34

3
200

26

1

34

3
120:0 NNNX   

so, the scheme is not statically admissible 

c) 3322 , NNNN   

from the projection on horizontal axis we have: 

  111 kN5.1690
34

3
200

26

1
80

34

3
:0 NNNX  

and the scheme is not statically admissible. 

Actually, we have only one scheme statically admissible and the lower bound 

estimation is 310.4 kN. 

Kinematic approach 

As before, there are three possibilities of changing the structure into mechanism. We 

verify only one of them that corresponds to yielding of bars 1 and 2. The system has 

an instant center of rotation at the end of the bar no 3. 

 

γ 

β 

α 

α 

Δ2 Δ1 

Δ 

N3 N1 N2 

 
Fig. 3.7 Kinematic scheme of the mechanism 

Comparing the work of external and internal forces, we have: 

212211 80120
34

3
 PΔNΔNΔP  

and from geometrical relations follows: 

000 31.11
26

5
arccos,96.30

34

5
arccos,04.59

34

3
arccos    

 6726.0)cos(,8823.0)cos( 21   

so: 

4.310P  kN, 

and the result is identical with the static approach result. We have exact solution for 

the model. 

Limit analysis of beams 

Any transversely loaded beam is statically indeterminate in the sense that the stress 

field cannot be deduced from the loading independently of unknown properties. It is 

conventional, however, to call a beam statically determinate or indeterminate if it is 

externally determinate or indeterminate. The number of equilibrium equations 

available is three for plane bending. Any hinge, whether frictionless or a plastic 

hinge, provides an additional equilibrium equation: at a frictionless hinge, M = 0, 

since such a hinge cannot transmit moment, while at a plastic hinge 𝑀 = ∓�̿�. 

The beam collapses when the number of hinges reduces the number of indeterminacy 

to −1. If the beam is statically determinate one hinge is sufficient. A plastic hinge 

may form at any point of the beam at which the condition |𝑀| = �̿� is possible, that 
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is, in the interior of a span, at a fixed-end, or at an intermediate support.  A collapse 

mechanism is admissible if it does not violate any support condition (unless relaxed 

by the formation of a plastic hinge) and if it produces positive external work rate. 

A hinge that has rotated by an angle Θ can be thought of as the limit of a small 

segment of length ∆𝑥. The total internal dissipation in the hinge is 𝜃�̿�. 

A moment distribution is statically and plastically admissible if it is in equilibrium 

with the applied load, is consistent with all force and moment end conditions and 

frictionless hinge conditions (if any), and is such that |𝑀| ≤ �̿� everywhere. In the 

moment distribution at collapse, the points where 𝑀 = ±�̿� are precisely the ones 

where plastic hinges form. 

Example 

Find limit bearing capacity of the beam.  
 

A B C 
D 

P 2P 

2 1 1 
 

Fig. 3.8 Beam scheme 

Static approach 

We apply the method of consecutive plastic hinges. The plastic hinges carry on the 

limit plastic bending moments, M , the direction of which corresponds with the 

stretched fibers. To determine the section of the first hinge we have to have the 

diagram of bending moments. Due to its form of linear segments we consider three 

possible sections only. 

a) For the hinge in the section A, we get the statically determined beam 
 

M  

A B C 
D 

P 2P 

2 1 1 
 

Fig. 3.9 Scheme with the hinge at A 

4
2,

4

M
PR

M
PR DA   

4
2,

2
2

M
PM

M
PM CB   

Because of MB < MC, we assume the next plastic hinge in the section C. The limit 

load and the bending moment in the section B will be: 

MMMMP B 
4

3

8

5 , . 

The scheme is statically admissible because the bending moment MB is less than 

plastic limit moment. 

b) For the first plastic hinge in the section B, we have: 
 

A B C 
D 

P 
2P 

2 1 1 

M  

 
Fig. 3.10 Scheme with the hinge at B 
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2MPRD  , 2MPRB  , PMM A 42  , 2MPMC  . 

For two possibilities for second hinge we get, at the section A: 

MMMMP C 
4

3

4

1 , (admissible) 

and in the section C: 

2MP  , and 0AM (admissible). 

c) For the first hinge in the section C, we have: 
 

M  

A B C 
D 

P 2P 

2 1 1 
 

Fig. 3.11 Scheme with the hinge at C 

MRD  , MRC  , PMM B 22  , PMM A 84  . 

The next hinge in the section A, we have: MP
8

5 , MMM B 
4

3 , 

and for the next hinge in the section B, we get: MP
2

1 , MM A  0 . 

From these lower bound estimations we choose the biggest value. So, the limit plastic 

bearing capacity of the beam is equal to the maximum of lower bound estimations.  

MMMMP
8

5

2

1

4

1

8

5 ),,max(  . 

Kinematical approach 

The most probable sections of plastic hinges are the sections at the intervals ends. To 

obtain the kinematic mechanism with one degree of freedom (DOF) we need two 

plastic hinges. Only three sections are involved and, consequently, three kinematic 

schemes. 

3
4



2



2


P 2P

P 2P

P 2P

 
Fig. 3.12 Kinematic schemes 

Comparing the external and internal work, we get: 

MPMPP 75.0322 1   

MPMPP 625.05322 2   

MPMP 5.132 3   

The kinematic approach is the upper bound estimation, so we choose the smallest 

value of estimation (the beam collapses under the force 321 , PPP  as   wellas ), so the best 

value is MP 625.0 . The same result we got from the static approach, so, the result is 

exact. 

Example 

Find the limit bearing capacity of the statically undetermined beam. 
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 q 
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+1 

 

b l-b 

l 

 
Fig. 3.13 Beam and the kinematic scheme of collapse 

Similarly as before, two plastic hinges will be necessary to create the kinematical 

mechanism with one DOF. One hinge will be at the fixed end but the position of the 

second hinge is unknown. We assume hypothetically the second hinge in the middle 

of the span,  12
1 ,lb . We get: 

2

5.0

0

1232
l

M
qMxdxq

l

 . 

From the static approach the hypothesis gives us: 

 

RC RB 

q 

l 

 
Fig. 3.14 Static scheme of the beam 

The reaction in the upper beam is: 

l

Mql
RB

2

4
  

and the bending moment at the fixed end of the lower beam is 

M
ql

M u 2
4

2

  

and with the second hinge at the fixed end, we have: 

2
12

l

M
qMM u  , 

so, the same value as from the kinematic approach. Seemingly, the solution looks to 

be exact, but it is not the case. When we calculate the reaction for the limit value 

found, we get: 

023 
l

M

l

M

l

M
RB , 

and this signifies that on the right of the hinge the shear force changes the sign and 

has a zero-value point: 

l

M

l

M

l

Mlq
RB 56

2
 . 

It means that there is extreme bending moment in the right span of the beam. This 

extreme value must be greater than the value at the hinge due to convexity of the 

bending moment diagram. The value exceeds the limit bending moment and the 

scheme is statically not admissible. 

Let’s change the sequence of the hinges. For the plastic hinge at the fixed end, we 

have: 

l

Mql
RA 

2
 

and the shear force in the span: 
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qxRxQ A )( . 

From the condition of zero-value of the shear force we get the position of the second 

hinge: 

q

R
xxQ A

e  xtr0)(  

and extreme value of the moment will be: 

M
q

Rqx
MxRxM A

A 
22

)(
22

extr
extrextr  

Assuming the second hinge created we find the limit load of the beam: 

03
4

)(
2

2
2

2

extr 
l

M
Mq

lq
MxM  

We change the equation introducing a new variable: 

66.11,343.0013 21

2

4
1

2

 
M

lq
. 

Because the static approach gives the lower bound estimation we take the second 

core and the corresponding limit load value: 

2
66.11

l

M
q  . 

Similarly, we find from the kinematical scheme the exact value of load capacity. We 

find the position of the hinge at the span from the principle of virtual work: 

 




blb

Mdxxqxdxq
0

1111

0

2  

and, from the figure is: 





bl

b
1 , 

we have: 

bl

bl

bl

M
q






22
. 

We seek the extreme (minimal) value of load capacity: 

  llblblb
b

q
q 59.0220240min 22 




, 

and finally: 
22

66.11
246

4

l

M

l

M
q 


  

Both solutions are identical. 

Example 

Find the limit load capacity of the beam with variable cross-section capacity: M2  

from the left and M  from the right. 

 

2 

1 

θ 

θ 

P 

0.4l 0.4l 0.2l 
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Fig. 3.15 Beam with variable stiffness and collapse schemes 

For the kinematical schemes we have: 

1) 
3
2

1 , 
l

M
PlPM 33.134.0)(2

3
5   

2)  5,11 , 
l

M
PlPMM 25.114.05.22   

The lower value is the solution from the kinematic approach.  

Problem 

Using static and kinematic approach, determine the plastic limit load for the beam 

shown in the figure below and 3200  [MPa]. 

 

q 

3 m 4 m 

2 2    3  2 2 cm 

2 cm 

7 cm 

 
Fig. 3.16 Beam and the cross-section 

Solution: 

1. The limit bending moment of the cross-section: 

 cross-section area A = 50 cm2 

 gravity center: C(5.5, 5.48) 

 principal inertia moment Jy = 371.15 cm4 

 cross-section elastic factor Wel = 67.73 cm3 

 position of neutral axis at limit bending moment:  y0 = 0.7696 cm (upward from 

gravity center) 

 cross-section plastic factor Wpl = 117.75 cm3 

 factors’ relation n = Wpl/Wel = 1.74 

 limit bending moment Mpl = 320·106 ·117.75·10-6 = 37.68 kNm 

2. Static approach: 

 we introduce one plastic hinge which suffices for the beam to evolve into 

statically determined 

 

q 
M  

 
Fig. 3.17 Beam with the hinge  

 (two parts of the beam work independently), for the left beam we have: 
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RA 

q 
M  

 
Fig. 3.18 Left part of the beam 

Mq
Mq

RA 3
15.1

3

5.4



  

 we seek the position of zero transverse force: 

q

M
xqxMqqxRxQ pA

3
5.105.1)(

3
1   

 the bending moment at this point is: 

q

M
Mqx

q
xRxM ppAp

18
5.0125.1

2
)(

2

2    

 we assume the next plastic hinge at the point 

MMqMqMqMxM p 295.1
125.12

25.1
05.1125.1)(

2

18
12 




  

 the plastic limit load is: 

8.48295.1  Mq kN/m 

3. Kinematic approach 

 we introduce two plastic hinges to transform the beam into the mechanism with 

one degree of freedom 

 
a 

Θ1 

Θ1+Θ 

Θ 

q 

 
Fig. 3.19 Kinematic scheme 

 from geometric relations, we have: 

a

a
aa




3
)3( 11  

 the work of internal forces (always positive) 

a

a
MMMLin






3

3
)( 11   

 the work of external forces 

 qaxdxqxdxqL

aa

ex 5.1

3

0

1

0

 


  

 the bearing capacity of the scheme 

M
aa

a
qLL ext

)3(

3

3

2
int




  

 we seek the extreme value of the load 

243.1)12(30)23)(3(30 2 



aaaaa

a

q
m 

 finally, the plastic limit load is: 
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8.48295.1
)423(9

22

)12(3)3233(

)12(33

3

2








 MMMq  kN/m 

(the same value as in the static approach, it means the exact solution) 

Problem 

Using static and kinematic approach, determine the plastic limit load for the beam 

shown in the figure below and 3300  [MPa]. 

 

q 

3 m 4 m 

2 2    3  2 2 cm 

2 cm 

5 cm 

2 cm 

 
Fig. 3.20 Beam and the cross-section 

Solution 

1. The limit bending moment of the cross-section: 

 cross-section area A = 58 cm2 

 gravity center: C(5.5, 4.14) 

 principal inertia moment Jy = 512.23 cm4 

 cross-section elastic factor Wel = 105.35 cm3 

 position of neutral axis at limit bending moment:  y0 = 0.39 cm (downward from 

gravity center) 

 cross-section plastic factor Wpl = 155.75 cm3 

 factors’ relation n = Wpl/Wel = 1.478 

 limit bending moment Mpl = 330·106 ·155.75·10-6 = 51.40 kNm 

2. Static approach: 

left part of the beam: 

 we introduce one plastic hinge which suffices for the beam to evolve into 

statically determined 

 

RA 

M  q 

3 m 4 m 

 
Fig. 3.21 Beam with the plastic hinge 

Mq
Mq

RA 3
15.1

3
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 we seek the position of zero transverse force: 

q

M
xqxMqqxRxQ pA

3
5.105.1)(

3
1   

 the bending moment at this point is: 

q

M
Mqx

q
xRxM ppAp

18
5.0125.1

2
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2

2    
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 we assume the next plastic hinge at the point 

MMqMqMqMxM p 295.1
125.12

25.1
05.1125.1)(

2

18
12 




  

 the plastic limit load is: 

56.66295.1  Mq kN/m 

right part of the beam: 

 we introduce two plastic hinges which suffice for the part of the beam to become 

statically determined 

 

M  

M  M  q 

3 m 4 m 

 
Fig. 3.22 Beam with two plastic hinges 

 we assume the third plastic hinge at the middle of the span: 

40.51
16

2
88 2

22

 MM
l

qM
ql

M
ql

M kN/m 

 the value for the second scheme is less then prior value, so it is evident that the 

first scheme is statically inacceptable (for this limit load the bending moment at 

right span will exceed admissible value), and the answer is: 

40.51q kN/m 

3. Kinematic approach 

 we introduce one degree of freedom mechanism at left and right parts of the 

beam: 

 

q 

3 m 4 m 

q 

3 m 4 m 

 
Fig. 3.23 Kinematic scheme 

left part of the beam: 

 from geometrical relations (the plastic hinge at a from the roller), we have: 

a

a
aa




3
)3( 11  

 the work of internal forces (always positive) 

a

a
MMMLin






3

3
)( 11   

 the work of external forces 

qaxdxqxdxqL
aa

ex 5.1
3
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 the bearing capacity of the scheme 

M
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a
qLL ext

)3(

3

3

2
int
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 we seek the extreme value of the load 

243.1)12(30)23)(3(30 2 



aaaaa

a

q
m 

 finally, the plastic limit load is: 

56.66295.1
)423(9

22

)12(3)3233(

)12(33

3

2








 MMMq  kN/m 

right part of the beam: 

 from the external work compared with the internal one, we have: 

 
2

0

40.5124 MqxdxqM kN/m 

 this value is less then the value in the first scheme, and because we take minimum 

from both cases, the answer is  

40.51q kN/m 

Problem 

Using static and kinematic approach, determine the plastic limit load for the beam 

shown in the figure below and 3000  [MPa]. 

 

q 
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2 cm 
1 m 

 
Fig.3.24 Beam with the cross-section 

Solution: 

1. The limit bending moment of the cross-section: 

 cross-section area A = 66 cm2 

 gravity center: C(5, 4.68) 

 principal inertia moment Jy = 567.3 cm4 

 cross-section elastic factor Wel = 121.75 cm3 

 position of neutral axis at limit bending moment:  y0 = 0.57 cm (upward from 

gravity center) 

 cross-section plastic factor Wpl = 174.75 cm3 

 factors’ relation n = Wpl/Wel = 1.44 

 limit bending moment Mpl = 300·106 ·174.75·10-6 = 52.43 kNm 

2. Static approach: 

 we introduce one plastic hinge which suffices for the beam to evolve into 

statically determined (two parts of the beam work independently) 

 

q 
M  
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Fig. 3.25 Beam with the hinge 

 for the left beam we have: 

 

RA 

q 
M  

 
Fig. 3.26 Left part of the beam 

3
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 we seek the position of zero transverse force: 

q

R
xqxRxQ A

pA  0)(  

 the bending moment at this point is: 

q

R
x

q
xRxM A

ppAp
22

)(
2

2    

 we assume the next plastic hinge at the point 

02616
2

)(
2

2
2

 MqMqM
q

R
MxM A

p  

 we have two roots; but only the positive one makes sense: 

123.1781.15856.1  pA xMRMq m 

 the plastic limit load is: 

13.835856.1  Mq kN/m 

3. Kinematic approach 

 we introduce the plastic hinges to transform the beam into the mechanism with one 

degree of freedom 

 
a 

Θ1 

Θ1+Θ 

Θ 

q 

 
Fig. 3.27 Kinematic scheme 

 from geometrical relations, we have: 

a

a
aa




3
)3( 11  

 the work of internal forces (always positive) 

a

a
MMMLin
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3
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 the work of external forces 
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5.0 a
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 the bearing capacity of the scheme 
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a
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 we seek the extreme value of the load 
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123.10860)86)(26()83(20 22 



aaaaaaa

a

q
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 finally, the plastic limit load is: 

13.83586.1  Mq kN/m 

(the same value as in the static approach, it means the exact solution) 

Problem 

Using static and kinematic approach, determine the plastic limit load for the beam 

shown in the figure below and 2500  [MPa]. 

 

(hollow cross-section) 3 cm 
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Fig. 3.28 Beam and the cross-section 

Solution 

1. The limit bending moment of the cross-section: 

(solid cross-section, without a hole) 

 cross-section area A = 99 cm2 

 gravity center: C(5.5, 4.5) 

 principal inertia moment Jy = 668.25 cm4 

 cross-section elastic factor Wel = 148.5 cm3 

 position of neutral axis at limit bending moment:  y0 = 0.0 cm (at the gravity 

center) 

 cross-section plastic factor Wpl = 222.75 cm3 

 factors’ relation n = Wpl/Wel = 1.5 

 limit bending moment Mpl = 250·106 ·222.75·10-6 = 55.69 kNm 

(hollow cross-section) 

 cross-section area A = 76 cm2 

 gravity center: C(5.5, 4.66) 

 principal inertia moment Jy = 614.44 cm4 

 cross-section elastic factor Wel = 131.9 cm3 

 position of neutral axis at limit bending moment:  y0 = 0.34 cm (upward from the 

gravity center) 

 cross-section plastic factor Wpl = 190 cm3 

 factors’ relation n = Wpl/Wel = 1.44 

 limit bending moment Mpl = 250·106 ·190·10-6 = 47.5 kNm 

2. Static approach: 

 we introduce one plastic hinge which suffices for the beam to evolve into 

statically determined 
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Fig. 3.29 Beam with the hinge 

 the reaction is 

786.65.32
2

2





 q
l

M
ql

RA  

 the shear force is 
0786.65.3)(  qxqqxRxQ A  

 extreme value of bending moment occurs at the point of zero shear force 

q
x

786.6
5.3max   

 extreme bending moment 

002.2319.79125.669.55
2

2
1

2
max

maxmax  qqM
qx

xRM A  

 so, the limit load is 

63.12q kN/m 

 we verify the bending moment value at the point of cross-section change 

2
2

max 4.55363.125.0342.37)3(,42.37,963.2 MMRx A   

(statically not admissible) 

 we assume plastic hinge at the point of cross-section change 

5.4736.2063
2

3)3( 2
2  Mq

q
RM A  

 so, the limit load is: 

31.11q kN/m 

3. Kinematical approach: 

 we assume the plastic hinge at the point of cross-section change 
 

θ 
θ1 

θ+θ1 
 

Fig. 3.30 Kinematic scheme 

 external work is 









 75.118
4

3
215.47exL  

 internal work is 

  qxdxqxdxqLin 5.10
4

34

0

3

0

 

 comparing, we get the limit load 

31.11q kN/m 

(the same value as for the static approach) 
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Problem 

Using static and kinematic approach, determine the plastic limit load for the beam 

shown in the figure below and 3500  [MPa]. 
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Fig. 3.31 Beam and the cross-section 

Solution: 

1. The limit bending moment of the cross-section: 

 cross-section area A = 52 cm2 

 gravity center: C(6, 5.615) 

 principal inertia moment Jy = 669.6 cm4 

 cross-section elastic factor Wel = 119.25 cm3 

 position of neutral axis at limit bending moment:  y0 = 1.385 cm (upward from 

gravity center) 

 cross-section plastic factor Wpl = 170.0 cm3 

 factors’ relation n = Wpl/Wel = 1.43 

 limit bending moment Mpl = 350·106 ·170·10-6 = 59.5 kNm 

2. Static approach: 

 we introduce two plastic hinges which suffice for the beam to evolve into 

statically determined 
 

B A 

M  M  

RB RA 

P 2P 

 
Fig. 3.32 Beam with two hinges 

 we calculate the bending moments at the point of forces applied 

P
PP

RA 82.1
11

482



  

PMRMM AA 46.53  , PMPRMM AB 74.4247  , BA MM   

OKMMMMPMM BA  735.03667.0  

 the limit load is: 

82.213667.0  MP kN 

3. Kinematical approach: 

we consider two schemes of the kinematical mechanisms 

scheme 1 
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θ+θ1 

θ θ1 


8
3

1   

Fig. 3.33 Kinematic scheme 1 

 external work 

  MMMMLex 
4

11
11  

 internal work 
PPPLin  5.7432

8
3  

 limit load 

MP 3667.0  

scheme 2 
 

θ+θ1 

θ θ1 


4
7

1   

Fig. 3.34 Kinematic scheme 2 

 external work 

  MMMMLex  5.511  

 internal work 
PPPLin  13732  

 limit load 

MP 423.0  

 we choose 

82.213667.0,min 21 





 MPPP kN 

(the same value as in static approach) 

Limit analysis of frames 

An assemblage of bars that are joined together rigidly resists the applied loads 

primarily through bending; axial force and shear are considered secondary effects. 

Collapse is assumed to occur when sufficient plastic hinges have formed to produce a 

mechanism. In a multistory frame, collapse may be limited to a single story, and 

therefore the overall degree of static indeterminacy is not a relevant parameter for the 

determination of the necessary number of hinges. 

A one-story, one-bay frame, see Fig. below, is statically indeterminate of degree 

three, and the collapse of the frame as a whole indeed requires four hinges, as shown 

in Fig. (a) and (c). 

 
Fig. 3.35 One-story, one-bay frame 
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However, in figure (d), the beam mechanism is illustrated. This mechanism does not 

entail collapse in the sense of unlimited displacements; the deflection of the beam is 

limited by that of the columns and in practice the structure may be said to collapse 

when its displacements can become significantly greater than those in the elastic range. 

The only pertinent collapse mechanisms for the frame are the beam mechanism (d), the 

panel or sideway mechanism (c), and the composite mechanism (b), which is a 

superposition of (c) and (d) in which the hinge B is eliminated. The composite 

mechanism (a) – the mirror image of (b) – in which joint D is rigid, entails negative 

work done by the horizontal force and therefore is viable only when this force is zero, 

in which case it is equivalent to (b). 

Example 

Find the limit load of the frame below. 

 

l 

q 

P=ql 

2l 
 

Fig. 3.37 One-story, one-bay frame 

1. Kinematically admissible schemes of collapse 

We verify 3 schemes of collapse: beam type, frame type and mixed: 

 

2θ 

θ θ 

θ θ 

θ 

θ 

2θ 

θ θ 

 
Fig. 3.38 Mechanisms of collapse 

 beam scheme 

2

0

44dx2
l

M
qMxq

l

   

 frame (sideway or panel) scheme 

2
44

l

M
qMlql    

 mixed (combined, composite) scheme 

2
322dx2

l

M
qMMMMxqlql

l

o

    

We get upper bound estimation for the smallest value from the mixed scheme: 

2
3

l

M
q   

2. We check is the mixed scheme statically admissible?  

We calculate: 
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the shear force at spandrel beam from the left: 
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Fig. 3.39 Calculation scheme 

The shear force changes the sign, the extreme value of the bending moment exceeds 

admissible limit value. The scheme is not admissible. 

We look for the hinged section at the spandrel beam. 
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Fig. 3.40 Calculation scheme 

we calculate: 
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and the shear force in the spandrel beam is: 
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and: 
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and in the same time 
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so, after the transformations, we have: 
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and finally: 

2
96.2

l

M
q  . 

3. We verify the solution by kinematic approach, assuming the kinematic scheme of 

collapse with the hinge at the spandrel beam is located at a, to the left from the 

middle: 

al

al
MMqx

al

al
qxlq

alal









 



 24dxdx
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after simple transformations, we have: 
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We calculate the extreme: 

      02320 
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we get the equation: 

06 22  lala  

with the core: 

la 162.0  

and finally: 

   22
96.2

162.01162.02

162.032

l

M

l

M
q 




 . 

The result is the same as from the static approach. 

Complex frames 

In a frame comprising several stories and bays, the number of possible collapse 

mechanisms can become quite large. Every transversely loaded member may form a 

beam mechanism, and each story may produce a panel mechanism. Furthermore, at 

any joint at which three or more members come together, a plastic hinge may form 

independently in each member near the joint. If only two members meet, the hinge can 

form in the weaker member. 

It is convenient to establish a basis of independent mechanisms, called elementary 

mechanisms, such that all mechanisms may be regarded as superposition of the 

elementary ones. These elementary mechanisms consist of all the beam and panel 

mechanisms, and in addition, of the joint mechanisms constituted by the formation of 

plastic hinges, resulting in a rotation of the joint. The joint mechanisms are not in 

themselves collapse mechanisms, since the external work rate associated with them is 

zero (unless the external point moment acts at the joint), but they are used in 

combination with beam and/or panel mechanisms in order to cancel superfluous 

hinges. 

Let r denote the degree of redundancy of the frame. A simple method of determining r 

is to cut the frame at a sufficient number of sections so that it just becomes statically 

determinate, that is, equivalent to a set of simply supported beams and/or cantilevers; 

r is then the number of stress resultants (moments, axial forces and shear forces) that 

can arbitrarily be specified at the cuts. Equivalently, r is the number of sections at 

which the moment can be arbitrarily prescribed. Suppose, now, that the number of 

critical sections – that is, sections at which a plastic hinge can form – is n. It follows 
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that there are n-r independent relations among the n moments at the critical sections, 

and these relations are equilibrium equations. Each such equation can be associated, 

by means of the principle of virtual work, with a mechanism. Consequently, there are 

n-r independent mechanisms. 

In the method of superposition of mechanisms, the analysis begins by determining the 

upper bounds predicted by the elementary beam and panel mechanisms. In order to 

improve the upper bound the composite mechanisms are considered. In more complex 

cases, it may be quite difficult to make sure that all the possible collapse mechanisms 

have been explored. The only way to check whether the best upper bound that has been 

found indeed gives the collapse load is to see if it is also a lower bound, that is, to find 

a statically admissible moment distribution such that bending moment is equal to cross-

sectional plastic limit moment at all sections corresponding to hinges in the 

mechanism, and it is not greater elsewhere. A method of analysis on the lower-bound 

theorem is the method of inequalities and can be transformed to the problem of linear 

programming. 

If any span carries a distributed load, then the critical section in that span must be 

assumed. Improvements to the upper bound can be achieved by changing the hinge 

locations. On the other hand, if any distributed load is replaced by a statically 

equivalent (equipollent) set of concentrated loads, then the collapse load calculated on 

the basis of the concentrated loads is a lower bound on the collapse load for the 

distributed load. This result is known as the load-replacement theorem. 

Frames with inclined members, such as the gable frame, can be studied analogously.  

 


