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Applications of the limit theorems1 
Application of the basic ideas of the limit capacity analysis, assisted by fundamental knowledge of 

mechanics of materials, leads to simple techniques of bearing capacity assessment. These methods, 

sometimes very elementary, give significantly good results. 

Statically admissible field of stress has to fulfill the equilibrium conditions and do not contradict the 

yield criterion. The conditions required to establish a lower-bound solution are essentially as 

follows: 

(1) A complete stress distribution or stress field must be found, everywhere satisfying the 

differential equation of equilibrium. 

(2) The stress field at the boundary must satisfy the stress boundary conditions. 

(3) The stress field must nowhere violate the yield condition 

From these rules it can be seen that  a lower-bound technique is based entirely on equilibrium and 

yield conditions but it must not, however, be confused that the limit equilibrium method or slip-line 

field gives a lower-bound solution. In these method the stress state is specified only either along the 

slip lines or in local plastic stress zone around the load and not everywhere in the solid, as required 

by item (1), and therefore a limit equilibrium solution or a slip-line solution does not give a complete 

equilibrium solution. Even if a complete equilibrium solution can be found, it remains to be 

demonstrated that such a stress distribution will not violate the yield condition, as required by item 

(3). 

Discontinuous fields of stress 

Very often, during constructions of admissible stress fields, it is necessary to admit several zones of 

the stress field. The stress distribution in each zone is homogeneous. At the stress boundaries the 

stress discontinuities appear. The same discontinuity appears at plastic hinge.  
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Fig. 4.1 Discontinuity of the normal stress 

In marked contrast to the velocity admissible fields where discontinuity is not only useful and 

convenient in upper-bound calculation but often is contained in actual collapse mode or mechanism, 

discontinuous stress fields are useful and permissible in lower-bound calculation but are rarely the 

actual state. 

However, these separate fields of stress can be valid if they fulfill the equilibrium conditions at each 

point of discontinuity. We see from the figure that the equality of normal and shear stress at both 

sides of the border are required: 
)2()1(

nn    and )2()1(   , 

while the components 
)2()1( , tt  , parallel to the border, can be different. 

Mohr’s diagrams 

We shall restrict our discussion to the plane strain condition in which the dimension perpendicular 

to the plane of the drawing is infinitely long. The velocity components 𝑣𝑥 and 𝑣𝑦  are independent of 

z, while 𝑣𝑧 is zero. Under these circumstances, the stress components 𝜏𝑦𝑧 = 𝜏𝑧𝑥 = 0 and the 

remaining components 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 and 𝜏𝑥𝑦 are independent of the coordinate z.  

                                                
1 adapted from Lubliner, op. cit. 
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The vanishing shear stresses indicates that the stress component 𝜎𝑧 is a principal stress and the z-

direction is a principal direction. In the Mohr stress diagram the normal stress and the shearing 

stress are used as coordinates. 

 

Fig. 4.2 Mohr’s circles 

 
 

Fig. 4.3 Mohr’s circles and their basic features 

Values of stresses satisfying the Coulomb or Tresca condition are represented in figure by points in 

the region inside the straight lines representing the flow surface. Yielding of the material can occur 

when the largest of the circles touches the lines. In the plane strain condition, instead of a three-Mohr 

circle representation, it is sufficient to consider only the stress variation in the xy-plane or the Mohr 

circle passing through the two points of extreme stresses, and instead of stresses on some element of 

area, we have only to consider stresses on some linear element. 

The point A in the figure correspond to the surface element the normal n of which is in the positive 

x-direction. On this surface there will be applied an actual stress T forming an angle 𝛿 with the 

normal n and having normal and tangential components 𝜎𝑥 , 𝜏𝑥𝑦. The stress vector T may be also 

considered as having hydrostatic pressure p normal to the surface and maximum shear stress 

component s forming an angle 2α with the normal n. In the Mohr diagram sketch the angles are 

measured positive in the counter-clockwise sense. 

It is well known that the central angle of the arc AQD equals 2α. However, the position of point A 

can also be determined without laying off the angles by means of the following procedure. We trace 

through D a line parallel to the principal section shown in the inset of the figure. This line intersects 
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the circle at point P. This point is called the pole of the Mohr circle. When the pole is known, the 

point of the circle which corresponds to a given surface element is readily found by drawing, 

through the pole, a line parallel to the trace of the surface element and determining the second 

intersection of this line with the circle. 

Sum of two stress fields 

 

 

Fig. 4.4 Addition of two stress fields 

One of the most important application of the Mohr stress circle method is to solve the following 

problem: We know the directions and intensities of the principal stresses of several uniform stress 

fields. We also know the yield condition (Coulomb’s or Tresca’s). We want to determine whether 

the resultant stress field obtained from the superposition of these individual stress fields will violate 

the yield condition. In order to solve our problem it is sufficient to remember that the resultant 

stress state is determined completely by the values p and s corresponding to the resultant 

components of the resultant traction T on any section through the point. Since the hydrostatic 

pressure components p’ and p’’ are always perpendicular to the element, the resultant hydrostatic 

pressure component p is simply the algebraic summation of the hydrostatic components. However, 

the resultant shear component s is the vector summation of the shear components.  
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Fig. 4.5 Directions of principal stresses and planes on which they act 

Two stress conditions are sketched in the above figure; the purpose of this figure is to demonstrate a 

direct means of obtaining a physical feeling for states of stress without any calculation or the 

drawing of Mohr’s circle. The combination of normal stresses and the shear one gives a principal 

stress direction 𝛼 between the two extremes of direction as shown, and a corresponding orientation 

of principal plane between the two extreme plane positions. 

It may be advantageous to divide the body into several stress zones. In each zone the stress field 

will satisfy the equations of equilibrium and not violate the yield condition; further, the stress field 

will be continuous in each zone. However, the stress state on the boundary between two 

neighboring zone may not be identical. Here we shall exploit the possibility of discontinuity of 

stress between two adjacent stress elements at the boundary. 

Consideration of the equilibrium of a long and narrow element containing the boundary where the 

state of stress on either side is denoted by the subscripts t and n, tangential and normal to the 

boundary respectively, shows that in the absence of self-weight of material the normal stress 𝜎𝑛, 

and the shear stress 𝜏, must be continuous or: 

𝜎𝑛
1 = 𝜎𝑛

2   and   𝜏1 = 𝜏2 
where the superscripts denote the zones. Equilibrium, however, places no restrictions on the change 

of 𝜎𝑡. across the boundary. As far as the equilibrium is concerned we can have a discontinuity in the 

𝜎𝑡-component across the boundary, although the other components of stress, 𝜎𝑛 and 𝜏, must be 

continuous across the boundary from the above equation. 
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Fig. 4.6 Stress discontinuity and Mohr circles 

This situation is illustrated clearly by the Mohr circles for the regions 1 and 2.  

The poles of two circles are obtained by drawing a line through A parallel to the element AA of the 

line of discontinuity. The two stress components 𝜎𝑛 and 𝜏 coincide at the discontinuous interface A, 

but the two states of stress, represented by circles1 and 2 corresponding to two different values of 

𝜎𝑡, may be rather different.  

For given values of the normal and shear stresses represented by the point A in the diagram, 

infinitely many of such circles of various radius can be drawn through A, so as to have their centers 

on the 𝜎-axis. 

In order to obtain a largest lower-bound solution, it is advantageous if the material is at the yield 

point or plastic stress on both sides of a boundary. In such a case, through A only two circles 

tangent to the yield lines can be drawn. 

Considering, for example, the special case of Tresca material for which 𝜑 = 0, the Mohr circles 

representing limiting states of stress have two parallel lines as an envelope. 

 

 

Fig. 4.7 A line of stress discontinuity separating the plastic stress fields 1 and 2 of Tresca material 

It follows that the discontinuity line AA must bisect the corresponding directions of principal shear 

stress on either side of the plastic stress discontinuity. In other words, the axes of principal stresses 

in the two plastic zones form mirror images of each other in the boundary of stress discontinuity. 
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Stretched plate with a hole 

Let’s consider a bar with rectangular cross-section tb , stretched by axial force P, with a hole of 

diameter d, located symmetrically. Assume TG yield criterion. 

 

 

Fig. 4.8 Bar with the circular hole 

Lower bound limit 

The yielding stress for uniaxial tension is 00 2  . If there is only one hole, the simplest solution 

consists from three elongated strips, two of them yielded and third without stress. The lower bound 

evaluation is: 

 tdbP D  0 . 
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Upper bound limit 

We seek the kinematically admissible scheme, which fulfill the compatibility conditions. Let’s 

consider three such schemes. 

In the first scheme, fig. 1.b, two parts of the bar slide ono one another, crosswise to the hole at an 

angle α with the velocity  . The speed of relative movement is  sin . Comparing the dissipation 

rate of the internal energy with this of external energy, we have: 

 









2sin

)(2

cos
sin 0

1
0 tdb

P
tdb

P G 








. 

The extreme (minimal) value of the load capacity is reached for an angle of 45°: 

tdbtdbPG )()(2 001   . 

The result is identical with the previous one, so, the solution is exact. 

In the second scheme, fig.1.c, we assume the slip across the bar thickness. Similarly as before, from 

the dissipation energy comparison, we get: 
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so, the same value as before. 

Third variant of the kinematic scheme consists on relative movement of four rigid regions, which 

form something like the “necking”. Comparing the rate of dissipation energies, we get: 

tdb
tdb
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P GG )(
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0
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Again, we have the same solution. 

Bending of the notched bar 

The notched bar is bent by two moments at its ends. Assume the bar width big enough so it can be 

in the simple bending. 

 

Fig. 4.9 Bending of the notched bar 

Lower bound limit 

The stress field composes from three strips with homogeneous stress state. The regions near the 

notch are without stress and two other carry the bending on: one region in tension and another in 

compression. Absolute stress value is 00 2 : 

2
00 5.0

22
2 a

aa
M D  

. 

Upper bound limit 

The velocity field results from the assumption of rotation round circular hinges with the radius r. 

The regions outside and inside the hinges are rigid and not deformed. Comparing the rate of 

energies, we have: 
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, 

MLz 2
, 

and: 

, 

The minimum of the moment value is reached for  2tan  , that is for  67 , and: 
2

069.0 aM G  . 

From both estimations we have the solution in the interval: 

69.05.0
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Triangular field of the stress 

 

Fig. 4.10 Triangular fields of stress, some cases 

If a triangular region is loaded by continuously constant load p and q from both sides, fig. 4.a, it is 

the region of uniform biaxial compression. The region below is – from equilibrium conditions – in 

the state of simple compression, 00 2  . 

From fig. 4.b follows that the forces P, Q, F must be in equilibrium, so: 
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We assume the thickness, perpendicularly to the figure plane, is so important that plane state of stress 

is valid. For TG yield criterion, the yield criterion in the triangular region will be in the form: 

02 qp . 

Inserting previous terms, we get: 

1
cossin

)cos()sin(







 

so 

sin 2(𝛽 + 𝛾) = sin 2𝛾 = sin(𝜋 − 2𝛾)  
and 

24

  . 

Substituting last expression to first equations, we have: 

 sin2),sin1(2 00  qp
. 

The equilibrium at the boundaries is fulfilled because of the balance of the whole set, despite of the 

normal stress jump parallel to the zones’ border. 

Fig. 4.c and fig. 4.d present particular cases of such equilibrium.  

If  30 , then  30  and: 

 okkqkp  ,,3
. 

When  60 , then  30  and: 

kqkp  ,  

and the triangular region is on biaxial compression and tension.. 

The case of loading the wedge by continuous constant load on one wall, fig. 4.d (the wedge with an 

obtuse angle) and fig. 4.e (with an acute angle), can be considered also as a case of a triangular 

region, which two infinite sides. In the first case, in the triangular region we have biaxial 

compression and in the second case – biaxial compression and tension. 

Stress fields as truss bars 

The triangular stress field is often considered as a set of three truss bars, fig. 5. The loads P and Q, 

triggering biaxial compression in the region, are equilibrated by the force F. There is no problem of 

discontinuous stress filed if the forces are in equilibrium. The state of stress is simply superposition 

of the stress applied laterally. If one force is tensile, resulting shearing stress will be much greater 

than in the first case of both compressed forces. 
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Fig. 4.11 Stress fields as truss bars 

Notched tensioned strip 

The figure below presents statically admissible field of stress. The lower bound limit evaluation is: 

026.1  D
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Fig. 4.12 Tensioned strip with notches 

Discontinuous stress fields for cut wedge 

Similar methodology is applied in the case of cut wedge, loaded by uniform continuous load, fig. 6. 

As before, the truss bars with homogeneous stress state are some part of the region.  
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Fig. 4.13 Cut wedge – stress fields 
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Indentation – plane state of deformation 
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Fig. 4.14 Semi-space punching 

Let’s consider indentation of rigid stamp into semi-space of perfectly plastic TG material, fig. 8. 

We assume the plane state of deformation. 

As the first approximation, we consider simple discontinuous field of stress under the stamp, for 

lower bound limit estimation: 

bbP D
001 2  . 

It is rough evaluation, because of assumption of vertical column of compressed material. To 

improve the estimation, we add field with horizontal compression on both sides of the column. 

Then, the region under the stamp is in biaxial compression and the vertical stress can be doubled 

without yield criterion violation. Adjusted load capacity is: 

bbP D
002 42   . 

As next variant, we use the truss bars method. Assuming two and three bars we consecutively 

improve the evaluations: 

bbP D
002 55.2    

Upper bound limit estimations – basic methods 

The kinematically admissible field of displacements rate, give us upper bound limit of bearing 

capacity. The method consists on comparison of the rate of energy dissipation. The kinematic field 

is the collapse scheme that has to be „continuous”: the regions do not overlap nor empty area 

created. The displacements direction following the kinematic scheme should determine the yield 

stress used in calculus of dissipation power.  

Rigid block slide 

The figure below presents the simple mechanism of rotation of rigid region round an instantaneous 

rotation centre. The hinge is created by a line of gliding of two rigid regions one another.  

The power of external load is: 
  brP

2
1cos 

, 

where b is the width of the stamp, r the radius of the hinge, θ the angle between the radius of 

rotation and horizontal surface and   is angular speed of rotation. 

The dissipation power is: 



Theory of Plasticity – chapter 4 | Adam Zaborski 

 

12 

 

   rr 20   
from it the estimation follows: 

 
br

rk
PG

2
1

2

cos

2










 

 

Fig. 4.15 Rigid block slide 

Upper bound limit we estimate looking for minimum of the solution for two variables: rotation 

radius and the angle θ: 

cos0 rb
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. 

From the first equation follows that the rotation centre should be on the lateral wall of the block, 

from the second – by method of trials and errors – we find the angle value:  2.23 , finally: 
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Translation mechanisms 

Let’s consider the mechanisms of rigid solid translation. 

 

Fig. 4.16 Translation mechanism with friction under the stamp 

The first mechanism has a rectangular region, which moves together with the stamp. The graphical 

presentation of moves of rough stamps and sliding triangular regions is on the figure. 

Comparison of the power gives:: 
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For smooth stamp with possible slide under it, fig. 11, we calculate similarly: 
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In both cases the result is the same. 

 

Fig. 4.17 Translation mechanism (without friction under stamp) 

Mixed rotary-translating mechanisms  

The example of such mechanism is Prandtl’s mechanism and Hill’s mechanism.  
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Fig. 4.18 Prandtl’s mechanism with friction (1921) 

For Prandtl’s mechanisms, the dissipation on the straight sliding lines (from the centre to the sides) 

is: 
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Finally: 

bPG
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The same result we get from the Hill’s mechanism. 
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Fig. 4.19 Hill’s mechanism with friction under stamp (1950) 

If the loading capacity of the material depends on the normal stress (like in the soil), the spiral 

sliding replace the circular ones. The direction of speed relative to the sliding lines should take into 

consideration the fact of internal friction angle.  

Kinematic schemes of collapse are often an image of real collapse mechanism. This is rarely the 

case for statically admissible stress fields.  


