ENERGY-BASED APPROACH TO LIMIT STATE CRITERIA OF CELLULAR MATERIALS

Małgorzata Janus-Michalska Piotr Kordzikowski Ryszard B. Pęcherski

Institute of Structural Mechanics Faculty of Civil Ingineering Cracow University of Technology, Kraków

ABSTRACT

Formulation of limit state criteria derived on micromechanical analysis for open-cell anisotropic media modeled as periodic beam structure is presented. Linear response and material strength from macroscopic perspective is described by energy based constitutive model.

PROBLEM DEFINITION

- multiscale modeling
- formulation for equivalent continuum
 Rychlewski criterion

$$\frac{\Phi(\mathbf{\sigma}_{I})}{\Phi_{I}^{cr}} + \frac{\Phi(\mathbf{\sigma}_{II})}{\Phi_{II}^{cr}} + \dots \frac{\Phi(\mathbf{\sigma}_{\rho})}{\Phi_{I}^{cr}} \le 1 \qquad \rho \le 6$$

 μ μ μ

$\boldsymbol{\sigma}_{I}$..., $\boldsymbol{\sigma}_{\rho}$ eigenstates

Φ_I^{cr}, Φ_{ρ}^{cr} critical energy densities

Microstructures

Representative unit cells

cubic symmetry

METHOD of structural mechanics

Framework of micromechanical analysis

- representative unit cell kinematics
- mechanical model Timoshenko beam
- stress tensor definition
- stiffness tensor: Kelvin moduli and eigenstates
- micro-macro transition

Kinematics

- affinity of nodes displacements
- uniform states of strains (macro-scale)

$$\boldsymbol{\Delta}_{i} = \boldsymbol{\Delta}_{i-0} + \boldsymbol{\psi} \times \mathbf{b}_{i}^{0} + \boldsymbol{\Delta}_{0}$$

Timoshenko beam model

s skeleton material

Displacement-force relations

$$F_{in} = \Delta_{i-0,n} \cdot s_n$$

$$F_{i\tau} = \Delta_{i-0,\tau} \cdot s_{\tau}$$

Stress definition for equivalent continuum

$$\boldsymbol{\sigma} = \frac{1}{V} \int_{V^{s}} \boldsymbol{\sigma}^{s} dV$$

Hooke's law $\sigma = S \epsilon$,

- **S** stiffness tensor, λ_i eigenvalues
- σ_i eigenstates $i = 1, \dots, \rho, \ \rho \leq 6$
- Young's moduli $E(\mathbf{n}) = (\mathbf{n} \otimes \mathbf{n}) \cdot \mathbf{S} \cdot (\mathbf{n} \otimes \mathbf{n})$

 $E_r(\mathbf{n}) = \frac{E(\mathbf{n})}{E_{\max}}$

rectangular prism trigonal prism

cubic

LIMIT STATES

skeleton

the limit states in the skeleton are calculated with the use of Huber criterion cellular material (as a continuum) limit elastic eigenstates

 $\mathbf{\sigma}_{i,cr}^{s} \Leftrightarrow \mathbf{\sigma}_{i,cr}$

 \Leftrightarrow

 \Downarrow critical energy densities $\phi_{i,cr}$

$$\mathbf{\sigma}_{\mathbf{I}} = \begin{bmatrix} 0 & \sigma_{I} & 0 \\ 0 & 0 & \sigma_{I} \end{bmatrix} \quad \mathbf{\sigma}_{\mathbf{II}} = \begin{bmatrix} 0 & \sigma_{b} & 0 \\ 0 & 0 & \sigma_{b} \end{bmatrix} \quad \mathbf{\sigma}_{\mathbf{III}} = \begin{bmatrix} \tau & 0 & \tau \\ \tau & \tau & 0 \end{bmatrix}$$

$$\sigma_{s} = R_{e} \implies \sigma_{i} = \sigma_{i,cr}$$
$$\phi_{i,cr} = \frac{1}{\lambda_{i}} \sigma_{i,cr} \cdot \sigma_{i,cr}$$

RESULTS

eigenvalues $\lambda_i = \lambda_i (s_n, s_\tau, H, L, A,)$

cubic cell	$\lambda_{I} = \lambda_{1} = \frac{s_{n}}{2L}, \qquad \lambda_{II} = \lambda_{2} = \lambda_{3} = \frac{s_{n}}{2L}, \qquad \lambda_{III} = \lambda_{4} = \lambda_{5} = \lambda_{6} = \frac{s_{\tau}}{2L}$
rectangular prism	$\lambda_{I} = \lambda_{1} = \frac{L_{1-2} s_{n1-2}}{2 L_{3-4} H}, \lambda_{II} = \lambda_{2} = \frac{L_{3-4} s_{n3-4}}{2 L_{1-2} H}, \lambda_{III} = \lambda_{3} = \frac{H s_{n5-6}}{2 L_{1-2} L_{3-4}}$
	$\lambda_{IV} = \lambda_4 = \frac{\frac{2 H^2 s_{\tau 5-6}}{L_{3-4}^2 s_{\tau 3-4} + H^2 s_{\tau 5-6}} \frac{L_{3-4}}{2} s_{\tau 3-4}}{L_{1-2} H},$
	$\lambda_{V} = \lambda_{5} = \frac{\frac{2 H^{2} s_{\tau 5-6}}{L_{1-2}^{2} s_{\tau 1-2} + H^{2} s_{\tau 5-6}}}{L_{3-4} H} \frac{L_{1-2}}{2} s_{\tau 1-2}}{L_{1-2}}$
	$\lambda_{VI} = \lambda_6 = \frac{\frac{2 L_{3-4}^2 s_{\tau 3-4}}{L_{3-4}^2 s_{\tau 3-4} + L_{1-2}^2 s_{\tau 1-2}}}{L_{3-4} H} \frac{L_{12}}{2} s_{\tau 1-2}}{L_{3-4} H}$
trigonal prism	$\lambda_{I} = \lambda_{1} = \frac{2\sqrt{3} s_{nL}}{9L}, \qquad \lambda_{II} = \lambda_{3} = \frac{\sqrt{3} s_{nL}}{6H}, \lambda_{III} = \lambda_{2} = \lambda_{6} = \frac{\sqrt{3} s_{nL} s_{\tau L}}{3H\left(s_{nL} + s_{\tau L}\right)},$
	$\lambda_{IV} = \lambda_{4} = \lambda_{5} = \frac{4\sqrt{3} H s_{\tau H} s_{\tau L}}{3 L^{2} s_{\tau L} + 4 H^{2} s_{\tau H}}$
foam cell	$\lambda_{I} = \lambda_{1} = \frac{2(s_{n} + 2s_{\tau})}{9\sqrt{3}L}, \lambda_{II} = \lambda_{2} = \lambda_{3} = \frac{2(s_{n} - s_{\tau})}{9\sqrt{3}L}, \lambda_{III} = \lambda_{II}$

energy densities
$$\Phi_i = \Phi_i(R_e, s_n, s_\tau, H, L, A,)$$

	^{III} 9 s_{nL} H L ² (2 I s_{nL} + 2 I $s_{\tau L}$ + L $s_{\tau L}$ h A) ²
	$\Phi_{IV}^{gr} = \frac{16\sqrt{3} \left(3 L^2 s_{\tau L} + 4 H^2 s_{\tau H}\right) I^2 R_e^2}{27 H^3 s_{\tau H} s_{\tau L} L^4 h^2}$
foam cell	$\Phi_{I}^{gr} = \frac{2}{3K} \left(\frac{\rho}{\rho^{s}}\right)^{2} R_{e}^{2}, \Phi_{II}^{gr} = \frac{R_{e}^{2}}{4G} f(A,L)$

DISTRIBUTION OF ENERGY LIMITS

dependence on microstructure parameters modelling possibilities

EXPERIMENTAL VERIFICATION OF ENERGY CRITERION

tension-compression tests in xy plane

$$\boldsymbol{\sigma}(\boldsymbol{\xi},\boldsymbol{\eta}) \!=\! \begin{bmatrix} \boldsymbol{\sigma} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$$

 α - cell orientation angle with respect to tension direction

 $\sigma = \sigma_{I} + \sigma_{II} + \sigma_{III}$ eigenstate decomposition of

the plane stress state

theoretical prediction of σ_{cr}

CONCLUSION

- •effective model of elastic behaviour and limit state of open-cell microstructures is proposed
- such an approach can be used for each type of (micro)structure (topology and morphology)
- •the presented analysis can be extended for:

nonlinear elasticity plastic analysis of struts (plastic hinges) failure analysis different models (plate model)

theoretical background for experiment is given

Literature

- L.J. Gibson, M.F. Ashby (1997). Cellular Solids, 2nd edition Cambridge University Press.
- [2] **J.Rychlewski** (1984).Unconventional approach to linear elasticity, *Arch. Mech.*, **47**, 1995, 149-171.
- [3] **J.Ostrowska-Maciejewska, J.Rychlewski,** (1988). Plane elastic and limit states in anisotropic solids, Arch. Mech., **40**, 379-386.
- [4] **M.Janus-Michalska, R.B.Pęcherski, (**2003). Macroscopic properties of open-cell foams based on micromechanical modelling, Technische Mechanik.
- [5] P.Kordzikowski, M.Janus-Michalska, R.B.Pęcherski, (2003). Analysis of the influence of the strength of the struts forming a cubic cell structure on the distribution of the energy limits, Rudy i Metale Nieżelazne, R49,No.3,2004.