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Abstract 
 

The aim of this paper is to formulate an effective anisotropic continuum for cellular 

materials based on micromechanical modeling. It corresponds to recent trend, of searching 

for advanced materials tailored to special requirements, which is based on intrinsic relation 

between structure and macroscopic properties. Open-cell materials with diverse structures 

representing different types of symmetries are considered. It is assumed that essential 

macroscopic features of mechanical behaviour can be inferred from the deformation response 

of a representative volume element. The structural mechanics methods are applied for a beam 

model of skeleton. An analytical formulation of force-displacement relations for the skeleton 

struts is found by considering the affinity of nodal displacement in tensile, bending and shear 

deformations. The concept of multiscale modeling leads to formulation of equivalent 

continuum as an effective model. Such an approach is typical for micromechanics. 

The stiffness tensor may be produced for anisotropic solid depending on material properties 

of the solid phase and topological arrangement of a cellular structure using the micro-macro 

transition. The analysis based on the assumption of linear elasticity leads to the analytical 

solution. Graphical representation of choosen material constants is performed. 

The possibility to model the influence of morphology and topology parameters is studied. 

The proposed theoretical framework of micromechanical modeling can be extended to 

nonlinear behaviour, plasticity and failure analysis. For such problems numerical approach 

is required.  

 

Keywords: cellular materials, anisotropy, effective model, micromechanical modeling, 

elasticity 

 

 

 

Streszczenie 
 

 Poszukiwanie nowych wielofunkcyjnych materiałów odpowiada najnowszym tendencjom 

tworzenia materiałów o założonych z góry własnościach w tym również własnościach 

mechanicznych. Takie modelowanie oparte jest na znajomości relacji pomiędzy strukturą 

wewnętrzną a własnościami materiału w skali makro. Ustalenie tych relacji jest 

podstawowym zadaniem, którego rozwiązanie prowadzi do skonstruowania modelu 

efektywnego. 



Obiektem rozważań są materiały komórkowe o komórkach otwartych, które tworzą 

szkielet mikrostruktury o regularnym przestrzennym układzie oraz pianki charakteryzujące się 

układem nieregularnym. Własności mechaniczne takich struktur można wyznaczyć w oparciu 

o szczegółową analizę komórki reprezentatywnej, z postaci której można wnioskować 

o symetrii materiału. W pracy zastosowano typową dla mikromechaniki koncepcję 

modelowania dwuskalowego, która prowadzi do sformułowania continuum zastępczego jako 

modelu efektywnego. Analizę kinematyczną w strukturze przeprowadzono przy spostrzeżeniu 

podobieństwa przemieszczeń względnych komórek dla jednorodnych stanów odkształceń 

materiału w skali makro. Szkielet struktury modelowano jako belkę Timoshenki 

wyprowadzając relacje siła-przemieszczenie w szkielecie poprzez sztywności osiowe i giętne 

belek. Dla określenia naprężenia efektywnego continuum zastosowano definicje uśrednionych 

naprężeń rzeczywistych w szkielecie. Powyższy algorytm pozwala wyznaczyć składowe 

tensora sztywności dla materiału anizotropowego jako funkcje sztywności elementów 

składowych i parametrów opisujących geometrię komórki reprezentatywnej. 

Praca zawiera prezentację graficzną wybranych stałych materiałowych dla poszczegól-

nych struktur ze wskazaniem na możliwość modelowania wskazanych własności sprężystych 

materiału. 

 

 

 

 

1. Introduction 
 

Highly porous materials with cellular structure exhibit many interesting combinations 

of physical and mechanical properties such as high stiffness in conjunction with very low 

specific weight. For this reason they are frequently used to fulfill constructional and 

functional purposes. The development of mechanics of cellular solids is documented by 

Gibson and Ashby [1]. Banhart [2] gives detailed description of manufacturing possibilities 

and diversity of applications. Cellular materials are finding an increasing range of applications 

in light-weight construction, crash energy absorption, aerospace industry, shipbuilding, 

sporting equipment, biomedical industry. These materials also exhibit properties which 

suggest their implementation as multifunctional materials [3] for such applications as cooling 

devices, heat exchangers, silencers, filtration, transfer of liquid, flame arresters, acoustic 

control. Cellular solids are materials made up of an interconnected network of cells with solid 

strut edges. The cell faces can be open or covered by plates or membranes. Distinction is 

made between open and closed cell materials, which are inherently different. Searching for 

new multifunctional materials corresponds to recent trend of searching for advanced materials 

tailored to special requirements [4,5,6]. The empirical development of such materials by trial 

and error may be very time consuming and expensive. An essential step toward 

implementation comprises structural analysis. Advanced modeling of materials relies on the 

intrinsic relation between structure and properties. Establishing this relation is a challenge for 

researches. Fundamental studies of phenomena on a micro-scale are necessary to explain the 

macroscopic behaviour of such structured bodies. The overall effective properties are 

determined by certain considerations using micro-macro transition. It is related to effective 

model construction [7,8,9]. The effective properties are then used to determine the response of 

structural elements on a macro scale and emerge naturally as a consequence of micro-macro 

relations without depending on specific physical measurements [8]. This method, typical for 

micromechanics, has been applied to aluminum foams [10]. 



2. Micromechanical analysis 
 

2.1. Representative unit cells for different microstructures 
 

Our interest is focused on typical cellular materials with skeleton structures shown 

in Fig.1. 
 

a)            c) 

     
 

b) 3-dimensional foam with equal cells 

 

c)            d)  

  
       

 

Fig.1. Examples of 3-D cellular structures, which may be described by the present 

formulation. 

 

 

Formulation on a micro level begins by identifying the unit cell of the spatially periodic 

array or volume. Thin lines identify the volume within the symmetry planes surrounding the 

part of the skeleton (thick line) inside the unit cell. Unit cells have the property of filling 

space by appropriate repetitions of themselves when mirrored and inverted about the faces of 

the element in all directions without introducing gaps or overlaps. Cells satisfying these 

conditions composed of four, six or eight members converging into a node (rigid joint) with 

the description of cell geometries are shown in Fig.2. These unit cells correspond to structures 

given in Fig.1. 

An open-cell microstructure is represented by unit cell with a part of skeleton having half 

struts of length 
2

0 iL − . The unit cell position is considered with respect to the assumed 

coordinate system having the origin at vertex 0. The strut midpoints are described by 

the position vectors 0

ib  ni ,....1=  where: 
2

00 i
i

L −=b . Representative volume element V has 

face areas iA  perpendicular to struts i .  



a)        b)        c) 

     
 

d)           e) 

     
 

Fig.2. Representative unit cells and their symmetries for the given microstructures: a) cubic 

cell, cubic symmetry; b) foam cell, cubic symmetry; c) rectangular prism, orthotropic 

symmetry; d) trigonal prism, transversely isotropic symmetry; e) hexagonal prism, 

transversely isotropic symmetry. 

 

 

2.2. Strain and stress measures for linear elasticity 

 
The unit cell is treated as a model on the basis of which effective relations between strains 

and stresses are established. These strains and stresses are defined as volumetric averages of 

the micro field variables [8], which are defined as given below:  

( ) dSsym
V

iA

ii
V

s ∑ ⊗== unεε
1

,  ( ) dS
V

iA

ii
V

s ∑ ⊗== ntσσ
1

      (1) 

where: 
V

stands for the volumetric average in skeleton s taken over V, in  is the outer unit 

normal on the boundary iA  and iu and it  are respectively the midpoint displacement on 

the surface iA  and surface traction defined as follows:
i

i
i A

F
t = . 

This means that strains and stresses are measured using the unit cell’s surface displacements 

and tractions, respectively. 



A representative volume element with its mechanical model is used to determine the effective 

properties using the principles mentioned above on a micro-scale together with 

the assumption of uniform strain and stress state. 

 

2.3. Kinematics 

 
The essential feature of uniform deformation of solids with repetitive microstructure is 

node displacement affinity. The spatially periodic nature of the cell array requires that the 

individual beams deform antisymmetrically about their midpoints, so there is no resultant 

moment across the section at the beam midpoints. An example of such deformation is shown 

in Fig.3. 

 
 

Fig.3. Example of uniform deformation. 

 

The kinematics of the unit cell is described by the relative displacements of the beam 

midpoints with respect to a rigid motion of the junction point (vertex). This rigid motion 

is described by the translation component 0∆  and spatial rotation ψ . As a result relative 

midpoint displacement with respect to node is given by the following formula: 

000 bψ∆∆∆ ×−−=− ii    ni ,....1=             (2) 

Note that only this relative deformation produces forces in microstructure skeleton. 

The uniform axial deformation results in the motion of the beam midpoints which may be 

described as written below: 

( ) ( ) αααα εε eeb∆ ⋅⋅= 0

ii   ni ,....1=             (3) 

for subsequent uniaxial extensions αε  in the α direction zyx ,,=α . 

For pure shearing deformation in the αβ  plane βα ≠  the displacements are given 

as follows: 

( ) ( ) ( ) ( )( )αββααβαβ γγ eebeeb∆ ⋅+⋅⋅= 002/2/ iii    ni ,....1=        (4)  

The location and rotation of the junction point is determined by enforcing cell equilibrium: 

0
1

=∑
=

n

i

iF   0
1

0 =×∑
=

n

i

ii bF .               (5)

          

Relative displacements may be represented by the components normal and tangent to 

the individual strut direction  

τ,0,00 inii −−− += ∆∆∆                   (6) 



where displacement components can be obtained using the following formula:  

( ) iiini ee∆∆ ⋅= −− 0,0   ( ) iiii e∆e∆ ××= −− 0,0 τ            (7) 

 

The deformation mechanisms mentioned above have been confirmed by calculations 

performed using ROBOT FE software (FE beam discretization). 

 

2.4. Displacement-force relations 

 
Timoshenko beam model is adopted as the most appropriate for short beams of the typical 

microstructure skeleton where shear deflections of beams should be considered. For a low 

density structures with long slender struts Bernoulli-Euler beam theory is sufficient. At this 

level the non-uniform morphology may be accounted for. It refers to the case where the 

transverse strut dimension varies along the centerline axis with the maximum value at the 

joint to the minimum at the midpoint. 

The elastic behaviour of cantilever beam subject to axial and transverse loads is known from 

classical solutions. The appropriate differential equations together with boundary conditions 

are quoted in [10].  

For axial load inF  and transversal load τiF , applied at the end of cantilevered beam, its free 

end axial displacement ni ,0−∆  and transversal displacement τ,0−∆ i  may be described by linear 

relations with respect to fixed end: 

ininni cF=∆ − ,0    τττ iii cF=∆ − ,0              (8) 

where: inc  is defined as beam axial elastic compliance of strut i 

τic is defined as bending elastic compliance of strut i having the length 
2

0 iL − . 

For uniform beam cross-section the solutions are as follows:  
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where:   

A  - cross-sectional area 

sE  sG  - Young and shear modulus for the skeleton material.  

 

 
 

Fig.4. Cantilevered beam representing microstructural element. 

 

For slender strut modeled using the Bernoulli-Euler beam model deflection depends only on 

distribution of bending moments. For Timoshenko beam additional displacement component 

related to shearing stress should be included. It may be determined by solving equations  



quoted in [10]. For such a model bending elastic compliance is a sum of two components. 

The first one corresponds to Bernoulli-Euler beam response whereas the second one is related 

to shearing strains present in Timoshenko beam. 

For nonuniform cross-section elastic beam compliances are functions of microstructure 

morphology. 

Axial and bending stiffnesses of beams are given by inverts of compliances: 

( ) 1−
= inin cs  ,  ( ) 1−

= ττ ii cs .                    (10) 

When the stiffnesses are determined, one may calculate the normal and transversal forces as 

functions of unknown nodal rigid motions using force-displacement relations. 

The displacement and rotation components may be obtained from equilibrium equations (5). 

The solution supplies full description of deformation mechanism.  

 

2.5. Effective elasticity tensors 

 
The forces obtained in such a way make the calculation of stresses in an equivalent 

continuum possible following the definition (1). Six types of specific deformations related to 

subsequent strain tensor components being non zero one at a time are considered (3), (4). As a 

result of the analysis the effective constitutive matrix for the unit cell is constructed. 

For the given types of symmetries the elasticity tensors in Kelvin notation [11,12] are given in 

Appendix. 

Nonzero components of elasticity tensor are given in Table 1. Generally theses components 

are functions of structural element stiffnesses and geometrical parameters of representative 

volume elements. 

Note that the effective properties are dependent not only on relative density but also on strut 

morphology both in cross-section and variation along the strut length. 

All the obtained results are compatible with those available in literature [19]. 

 

 

3. Graphical representation of the anisotropic linear properties 

 
The generalized Hooke law for anisotropic material can be given by 4-th order stiffness 

tensor S
 
or compliance tensor C  or equivalently by two scalar functions, which uniquely 

determine anisotropic linear elastic behavior. These functions represent Young modulus and 

generalized bulk modulus depending on direction of tension in a tension test [15]. This latter 

description is very useful, since tensile test is the most frequent test determining elastic 

anisotropy experimentally. Special applicability of anisotropic materials requires the 

capability to visualize their properties. All directions in 
3ℜ can be parametrized by spherical 

coordinates { }ϑϕ ,,r
 

with 1=r . Young modulus or generalized bulk modulus can be 

effectively represented by means of spherical polar diagram, i.e. with a surface generated by a 

vector whose length is proportional to the value of modulus in the direction indicated by the 

vector itself. 

Since the dependence of macroscopic properties on Young modulus of the skeleton material is 

linear it is useful to show dimensionless plots. 

For properties such as shear modulus and Poisson’s ratio only planar representation is 

possible and it is drawn in chosen planes. 

Geometric parameters of skeleton structure are chosen in a way that avoids buckling (struts 

are not overly slender) and Timoshenko beam theory is valid (struts are not overly thick). 

 



3.1 Young’s modulus and generalized bulk modulus 
 

A tensile test is represented by an uniaxial stress state having tensile direction n . Young 

modulus ( )nE  definition as the ratio of tensile stress to tensile strain leads to the following 

formula [12,15]: 

( )
( ) ( )nnCnn

n
⊗⋅⋅⊗=

E

1
                (12) 

where: n
 
normalized vector specyfing the tensile direction in a tension test  

 

Note that the expression 
( )nE

1
 corresponds to elastic energy [14] stored in a body subject to 

uniaxial stress state of a unit value. This allows for the interpretation of the directions 

corresponding to extremes of Young’s modulus as directions of maxima and minima for the 

stored energy function. Maxima are oriented along directions parallel to the skeleton struts as 

a consequence of axial stiffness exceeding the bending stiffness in structural elements. 

 

Calculations are performed for the following geometric data: 

a) mL
410*5.1 −= , mR

610*375.9 −=  

b) mL
410*5.1 −= , mR

510*0.1 −=  

c) mL 4

21 10*5.1 −
− = , mL

4

43 10*55.2 −

− = , mH
410*7.2 −= , mR

510*37.1 −=  

d) thick structure: mL
410*5.1 −= , mH

410*0.2 −= , mR
510*35.1 −=  

d) slender structure: mL
410*5.1 −= , mH

410*0.2 −= , mR
510*5.0 −=  

e) mL
410*5.1 −= , mH

410*0.2 −= , mR
510*35.1 −=  

where: R is radius of the uniform circular beam cross-section. 

 

It yields the plots presented in Fig.5. 

 

 

a)            c) 

     
 

 

b) for isotropy the plot is a unit sphere. 



d) thick structure    d) slender structure   e)  

      
 

Fig. 5. Graphical representation of dimensionless Young’s moduli. 

 

 

Generalized bulk modulus ( )nK  is defined as one third of the ratio of a tensile stress and the 

trace of the strain tensor [15]. The quantity 
( )nK3

1
represents the relative change of volume 

per tensile unit stress in the direction n  and can be obtained using the following formula: 

( )
( )nnCI

n
⊗⋅⋅=

K3

1
                 (13) 

Calculations are performed for the same geometric and material data as previously. It gives 

the plots presented in Fig.6. 

 

a)            c) 

     
 

b) for isotropy the plot is a unit sphere. 
 

d) slender structure        e)  

      
 

Fig. 6 Graphical representation of dimensionless generalized bulk moduli. 

 

Minima are directed along directions parallel to the skeleton struts as a consequence of axial 

stiffness being greater than bending stiffness for structural elements. 



3.2. Poisson’s ratio and shear modulus 

Poisson’s ratio in the direction m perpendicular to the direction of tension n is defined by 

the following formula [12]: 

( )
( )

( ) ( )mmCnn
n

mn
⊗⋅⋅⊗=

−

E

,ν
              ( 14) 

Considerations in xy plane for a honeycomb made of square or rectangular cells, yields a plot 

typical for all structures in xz or yz planes. For structures d) and e) the plot is circular as can 

be expected for transversal anisotropy. Since the typical honeycomb d) is more compliant, its 

Poisson’s ratio is greater than for honeycomb e). 

 

Calculations are performed for data given previously. 

 

a ), c)       d)        e) 

     
 

Fig.7. Graphical representation of Poisson’s ratio for XY plane (α is defined as angle with 

direction n)  

 

 

Shear modulus for two perpendicular directions can be obtained by the formula: 

( )
( ) ( )mnCmn

n
⊗⋅⋅⊗=

G2

1
              (15) 

 

Plots for similar cases as for Poisson’s ratio are given in Fig.8. 

 

a), c)       d)        e) 

     
 

Fig.8. Graphical representation of shear modulus plane (α is defined as angle with direction 
n), a)XY plane, d)e) XZ plane 



4. The topological design  

Detailed study based on described examples leads to the conclusion, that responses in 

skeleton structure are fundamentally related to bending and stretching deformations. Cellular 

systems that bend are subject to high local stresses which make the system compliant and 

result in low yield strength. Conversely when the cell walls stretch without bending the 

system is stiff and exhibits high strength. Thus, from the structural perspective skeleton 

structure of the type e) is by far superior to all other configurations, since only it works during 

shearing deformation without bending of structural elements. Skeleton structure of the type d) 

is very compliant because bending occurs during every possible uniform deformation.  

Topological design including the choice of microstructure type is responsible for macroscopic 

distribution and directional dependence of properties. 

 

5. Conclusions 

An advantage of this method lies in the fact that the macroscopic constitutive model 

follows readily from the analytical treatment. Such studies are paramount for efficient 

material design where new materials are developed with a microstructure modified in such a 

way that specific macroscopic requirements are fulfilled. The proposed theoretical framework 

of micromechanical modeling can be extended to nonlinear behaviour, plasticity and failure 

analysis. For such problems numerical approach is required. 
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Appendix 
 

Stiffness matrices for the considered types of symmetry. 
 

a) cubic symmetry: 
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b) isotropy: 

 



























−

−

−
=

11221111

11221111

11221111

111111221122

112211111122

112211221111

00000

00000

00000

000

000

000

ss

ss

ss

sss

sss

sss

S   

 

 

c) orthotropy: 
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d), e) transversal isotropy: 
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