
1 INTRODUCTION 

Cellular materials are made up of interconnected 
network of cells with solid edges. The regular 
geometric arrangements of solid skeleton are called 
honeycombs (Gibson & Ashby (1997)). Such a kind 
of structure can be found in many natural materials 
such as wood and cork. A wide range of honey-
combs is fabricated using conventional metal 
bending technology and manufactured from 
polymers and ceramics. Cellular materials become 
popular in industrial applications due to their high 
specific mechanical, thermal, acoustic properties 
and ultralight weight. Because of their structure 
natural and synthetic cellular solids exhibit unique 
physical properties, which support their 
functionality. The geometrical parameters of the 
microstructure of a honeycomb can be adapted to 
the individual needs of various applications. High 
thermal and acoustic insulating capabilities are 
associated with closed cell structures. The dominant 
mechanical properties are stiffness and yield stress. 
An approach based on multiscale modeling 
proposed by Philips (2001) and micromechanical 
analysis by Nemat-Naser & Hori (1999) gives the 
framework for constructing effective model of any 
kind of structured material. It was sucessfully 
adapted for open-cell foams by Janus-Michalska & 
Pęcherski (2003) and open-cell cellular structures 
with different topology by Janus-Michalska (2005). 
The modeling of microstructure with the help of the 

linear elasticity theory enables to predict the 
macroscopic yield condition. The general 
formulation of energy based yield criterion for 
anisotropic solids was proposed by Rychlewski 
(1995). The present formulation leads to specifica-
tion of energy-based limit condition for closed-cell 
microstructures, taking into account the elementary 
interactions within the microstructure. This idea 
was sucessfully applied to metallic foam by Janus-
Michalska &  Pęcherski (2003) and cellular materi-
als with cubic cells by Kordzikowski & Janus-
Michalska & Pęcherski (2004) and to open-cell ma-
terials of different symmetries by Janus-Michalska 
& Kordzikowski &  Pęcherski (2005). 

2 MICROMECHANICAL ANALYSIS 

2.1 Representative Volume Element  

The considered closed cell material consists of in-

terconnected plate members forming periodic struc-

ture as shown in Figure 1. The joints of structural 

members are treated as fixed. The structure can be 

modeled using representative unit cell (in microme-

chanics called RVE) given in Figure 2., consisting 

of three walls and horizontal plate and having geo-

metrical parameters: 
w ph , h , L, H  and material 

constants of skeleton structure: 
s

E ,
s

ν . 
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ABSTRACT: The multiscale modeling idea applied to formulate an effective model of elastic behaviour of 
closed-cell honeycombs is presented. Essential macroscopic features of mechanical behaviour are inferred 
from the deformation response of a representative volume element. The structural mechanics methods are ap-
plied to the plate model of a skeleton. An analytical formulation of force-displacement relations for the skele-
ton elements is found by considering the affinity of nodal displacements in tensile, bending and shear defor-
mations. The stiffness tensor for anisotropic solid may be determined depending on material properties of the 
solid phase and topological arrangement of cellular structure, using micro-macro transition based on micro-
mechanical approach. Macroscopic yield condition is predicted on the basis of energy yield criterion for ani-
sotropic solid. The study based on the assumption of linear elasticity leads to analytical formulae. The pro-
posed theoretical framework may be extended to nonlinear behaviour, plasticity and failure analysis with the 
use of numerical approach. 



 
 
Figure 1. Periodic structure 

 
 

 
 

Figure 2. Representative volume element 

 
 

Geometry of RVE is described by: 

1,....5i =  cell face midpoints, 
0

i
b  1,....5i =    midpoint position vectors, 

0

i
e  1,....5i =    midpoint position vectors, 

w ph ,h ,L,H  geometrical parameters of microstruc-

ture, 
V - cell volume. 
 

2.2 Strain and stress definition 

The overall response of a periodically structured 
solid is defined in terms of the volume averages of 
the stress and strain taken over a typical unit cell: 
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where: 
V

stands for the volumetric average in 

skeleton s taken over V, ie  is the outer unit normal 

on the boundary iA  and iu and it  denote respec-

tively the midpoint displacement on the surface iA , 

and surface traction defined as follows: i
i

i

F
t

A
= , 

where 
iF  is an equivalent of uniform load applied 

over the plate boundary and reduced to point i.  

The linear analysis is based on the assumption of 

the infinitesimal displacements and uniform strains. 

The affinity of midpoint displacements in uniform 

strain state is a consequence of periodic structure. 

In plate model it is assumed that deformation of 

RVE consists of uniform deformations of plate 

elements and the displacements compatibility con-

dition is fulfilled only at midpoints. The forces are 

generated in the microstructure only due to relative 

components of midpoint displacements
 i−

∆0  with 

respect to rigid motion of 0 node. The rigid motion 

of 0 (central) node is determined by the equilibrium 

condition of unit cell. 

2.3 Plate model of the skeleton structure 

Three independent uniform deformations of struc-
tural members shown in Figure 3 are considered: 
axial extension, bending and shear. The elastic be-
haviour of plate subject to uniform axial and trans-
verse bending and shearing loads is known from 
classical solutions. The proper differential equa-
tions with appropriate boundary conditions may be 
found for instance in Wang (2000). 

 

 
 

 
 

 

 
 

Figure 3. Uniform deformations of structural elements: axial 

extension, bending and shear.  



 

For each deformation displacement 
0i−

∆  should be 

compatible for wall and horizontal plate. It is the 

condition which should be fulfilled for microme-

chanical model.  

The first deformation is produced by uniform axial 

load w

inp  for wall elements and p

inp  for horizontal 

plate element, which gives equivalent axial forces 

inF , knF . The walls bending is related to horizontal 

plate shear and is produced by w

ip τ
, p

ip τ
 respec-

tively, which reduced to i midpoint give 
iFτ

 forces. 

The walls shear is related to plate bending and is 

produced by w

imp , p

imp  ,which give imF forces. 

We define microstructural stiffnesses as follow-

ing expressions of geometrical and material pa-

rameters: 
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These stiffnesses are coefficients in linear relation 

between the displacements and forces. The relation 

for given structure has the following form:  
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where: 

n represents direction normal to surface iA  , 

τ direction tangent and perpendicular to the i-

th plate member (wall) ,          

        m direction tangent and paralell to the 

i-th plate member (wall). 

 

2.4 Effective elasticity tensor 

Six types of specific deformations of the whole mi-
crostructure related to subsequent strain tensor 

components being non zero one at a time are con-
sidered. The forces obtained using the formula (2) 
make the calculation of stresses in an equivalent 
continuum possible following the definition (1). 
The effective stiffness matrix S  which define the 
linear relation =σ Sε  for equivalent continuum is 
constructed as the result of such analysis. 

For the given cell type the elasticity tensors ex-
hibits transversely isotropic symmetry. Its nonzero 
components are given below. Generally these com-
ponents are functions of structural element stiff-
nesses and geometrical parameters of representative 
volume elements. 
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2.5 Effective material constants 

Young’s modulus is defined as the ratio of tensile 
stress to tensile strain and can be obtained using the 
following formula: 
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where: n
 
normalized vector specifying the tensile 

direction in a tension test. 

Dimensionless spherical diagrams of Young’s 

moduli for structures exhibiting the geometrical 

properties presented in Table 1., are shown in Figu-

re 4.  

Choosen material constants such as: maximum 

value of Young’s modulus 
max

E , shear modulus in 

horizontal plane 
1

G  and Poisson’s ratio 
1

ν  and 

shear modulus in vertical plane 2G  for the consid-

ered microstructures and isotropic skeleton material 

(aluminium) with constants: 
sE 70 MPa= , 

0.3
s

ν = , are given in Table 2. 

 
 

Table 1. Geometrical parameters of microstructures 
 
      L [m]  H  [m]       wh  [m]       ph  [m] 

structure a)*     
33 10−

⋅   
36 10−

⋅   
31.0 10−

⋅  
30 10−

⋅  
structure b)  

33 10−
⋅   

310 10−
⋅   

30.5 10−
⋅  

30.2 10−
⋅  

structure c)   
39 10−

⋅   
36 10−

⋅   
30.5 10−

⋅  
30.2 10−

⋅  
structure d)  

318 10−
⋅   

36 10−
⋅   

30.5 10−
⋅  

30.2 10−
⋅  

*a) consists only of walls 
 



 

    a)           b) 
 
 

 

 
c) d) 

 
 

Figure 4. Graphical representation of Young’s modulus. 

 
 
 

Table 2. Material constants 

     maxE    1G     2G     1ν  

     [MPa]   [MPa]   [MPa]   

structure a)   
41.895 10⋅   

31.359 10⋅   
31.776 10⋅    0.554  

structure b)  
41.039 10⋅   

31.348 10⋅   
30.579 10⋅    0.399  

structure c)   
34.063 10⋅   

31.598 10⋅   
30.635 10⋅    0.129  

structure d)  
33.105 10⋅   

31.446 10⋅   
30.444 10⋅    0.074  

 
 

3 YIELD CRITERION  

3.1 Micro-macro transition 

Definition of equivalent stress tensor gives relation 

between stress in skeleton material and macrostress. 

When the microscopic level is considered, the 

HMH hypothesis is adopted for isotropic skeleton 

material. Stress on macroscale is critical when elas-

tic distortion energy density reaches critical value 

for a skeleton point. Presented formulation can give 

theoretically  determined critical stress for equiva-

lent continuum  derived from interactions in micro-

structure. Since the analytical formula generated by 

Mathcad for even the simplest case of tension is a 

very long expression, it is presented in shortened 

form, as function of geometric parameters, elasti-

city limit of skeleton material and its elastic con-

stants and direction of tension:  

 ( ), , , , , , ,s
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It may be interpreted as a prediction of critical 

stress depending on microstructural parameters. 

4 CONCLUSION 

The main advantage of such an approach is that the 
macroscopic constitutive model follows readily 
from the analytical treatment. The elastic stiffness 
and initial strength are expressed in terms of 
geometric and material parameters of skeleton 
structure. Thus it is possible to tailor the material to 
special mechanical requirements in the elastic 
range. Since this model based on micromechanics is 
simplified, numerical and experimental verification 
is required before application. 
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