

XII KRAJOWA KONFERENCJA Naukowo - Szkoleniowa MECHANIKI PĘKANIA Kraków, 6–9.IX.2009

ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA

Małgorzata JANUS-MICHALSKA, Dorota JASIŃSKA

Politechnika Krakowska Wydział Inżynierii Lądowej, Instytut Mechaniki Budowli PLAN

- 1. WPROWADZENIE
- 2. MATERIAŁY KOMÓRKOWE O UJEMNYM WSPÓŁCZYNNIKU POISSONA
- 3. ODPORNOŚĆ NA PĘKANIE
- 4. MODELOWANIE MES
- 5. WYNIKI OBLICZEŃ NUMERYCZNYCH
- 6. WNIOSKI
- 7. LITERATURA

Materiały auxetyczne

gr. 'afxetos' zwiększający przekrój przy rozciąganiu ujemny współczynnik Poissona materiały dylatacyjne sztywne na deformację postaciową

- może nastąpić redukcja lub podwyższenie koncentracji naprężeń
- wpływ współczynnika Poissona na rozkład naprężeń

Lakes R.S. *Design considerations for negative Poisson's ratio materials,* ASME Journal of Mechanical Design, 1993.

Stavroulakis G.E. *Auxetic behaviour: appearance and engineering applications*, Physica Status Solidi, 2005

Materiały komórkowe

Typowe struktury

Struktura o własnościach auxetycznych

MATERIAŁY KOMÓRKOWE O UJEMNYM WSPÓŁCZYNNIKU POISSONA

parametry geometryczne: L, h, t, γ.

Rys. 1. Mikrostruktura wraz z komórką elementarną

sprężysto-kruchy materiał szkieletu

dane:

 E_s - moduł Younga,

 v_s -współczynnik Poissona,

 R_m^s - granica wytrzymałości.

- struktura przestrzenna złożona z płyt obciążona w płaszczyźnie xy,
- płaski stan odkształcenia
- plaster o jednostkowej grubości H w kierunku osi z.
- modelowanie struktury elementami belkowymi o sztywnościach:

na rozciąganie:
$$C = \frac{E_s t H}{1 - v_s^2} = \frac{E_s A}{1 - v_s^2}$$

giętnej:
$$D = \frac{E_s t^3 H}{12(1-v_s^2)} = \frac{E_s J}{(1-v_s^2)}.$$

gdzie: A – pole przekroju beleczki tworzącej strukturę

J – moment bezwładności na zginanie.

,

Model materiału komórkowego o ujemnym współczynniku Poissona

.

- L.J. Gibson, M.F. Ashby Cellular Solids, Cambridge University Press. (1997).
- R.S. Lakes, *Experimental Micromechanics Methods for Conventional and Negative Poisson's Ratio Cellular Solids as Cosserat Continua*, J. Engineering Materials and Technology, (1991).

• Janus-Michalska M., *Micromechanical Model of Auxetic Cellular Materials*. Journal of Theoretical and Applied Mechanics, tom 47, zeszyt 4, 2009.

Przykład redukcji koncentracji naprężeń

D. Jasińska, M. Janus-Michalska *Material design of anisotropic elastic cellular bodies with respect to contact problem* – Engineering Transactions, zeszyt 3, 2008.

ODPORNOŚĆ NA PĘKANIE

szczelina o długości 2a , pasmo o szerokości 2b, $b \gg a \gg \max(L, h)$

gdzie: L, h wymiary geometryczne komórki.

Odporność na pękanie przy rozciąganiu jest podana przez naprężenie rozciągające $\sigma_r = \sigma_{kr}$ potrzebne do propagacji szczeliny.

Warunek pęknięcia odpowiada osiągnięciu naprężeń dopuszczalnych dla materiału szkieletu we włóknach skrajnych przekroju przywęzłowego.

$$\max\left(\sigma_{x}^{s}\right) = \frac{\left|N\right|}{A} + \frac{\left|M\right|}{J} \cdot \frac{t}{2} = R_{m}^{s}$$

gdzie:

- N siła podłużna w belce szkieletu,
- M moment zginający w przekroju przywęzłowym.

Stała K_{I} - odporność na pękanie przy rozciąganiu - definicja:

$$K_I = \sigma_r \sqrt{\pi a}$$

stała charakteryzuje własności materiału niezależnie od wielkości szczeliny.

Warunek bezpiecznej pracy konstrukcji ma postać:

$$K_I < K_{IC}$$

gdzie:

$$K_{IC} = \sigma_{kr} \sqrt{\pi a}$$

Odporność na pękanie materiału komórkowego

o dowolnej strukturze szkieletu składającej się z belek smukłych: $t/max(L_i) \le 0.1$,

ogólny przybliżony wzór :

$$^{str}K_{IC} \cong W_{str} \cdot R_m^s \frac{t}{\sqrt{L}}$$

gdzie:

 $W_{\rm str}$ - współczynnik liczbowy zależny od typu mikrostruktury,

 R_m^s - naprężenie kruchego pęknięcia materiału szkieletu

$$W_{str} \cong \frac{\sigma_{cr} \sqrt{L} \sqrt{\pi a}}{R_m^s \cdot t} = \frac{\sigma_{cr} \cdot L \sqrt{k\pi}}{R_m^s \cdot t}$$

Rys. 3. Typowe struktury materiałów komórkowych

Wartości współczynników:

$${}^{a}W_{str} \cong 0.68, \qquad {}^{b}W_{str} \cong 0.1, \qquad {}^{c}W_{str} \cong 1.5.$$

3. MODELOWANIE MES

- Obliczenia wykonano z wykorzystaniem systemu ABAQUS do analizy MES.
- Strukturę wewnętrzną materiału modelowano elementami belkowymi.
- Zadanie pękania pasma przeprowadzone jest iteracyjnie z wykorzystaniem własnych kodów napisanych w programie FORTRAN.
- Po wykonaniu iteracji następuje generowanie danych dla kolejnej iteracji poprzez usuwanie elementów, w których osiągnięte jest naprężenie dopuszczalne

Analiza pasma o skończonych wymiarach prowadzi do nieco zaniżonych wartości K_{IC} (błąd rzędu kilku procent) na korzyść bezpieczeństwa przy oszacowaniu własności materiału.

WYNIKI OBLICZEŃ NUMERYCZNYCH

Do obliczeń przyjęto materiał szkieletu o następujących danych materiałowych : $E_s = 10 \ GPa$, $v_s = 0.3$, $R_m^s = 10 \ MPa$.

Rys. 4. Wybrane struktury materiałów komórkowych

Struktura	L	h	γ	t
	[mm]	[mm]		[mm]
1)	1.5	1.5	80°	0.15
2)	1.5	3.0	60°	0.15
3)	3.0	4.0	60°	0.15
4)	3.15	3.15	70 ⁰	0.15
5)	1.5	3.0	90 ⁰	0.15

TABELA 1. Parametry geometryczne badanych mikrostruktur

Rys. 5. Sposób propagacji szczeliny w ustawieniu A) B) i dla struktury 5B

TABELA 2. Zestawienie makroskopowych własności materiałów auksetycznych o zadanych mikrostrukturach

Struktur	$\sigma_{_{cr}}$	Wstr	K _{IC}	E
а	[kPa]		$[kPa \times m^{0.5}]$	[kPa]
1A	9.47	0.0527	2.040	1.29
2A	11.29	0.0589	2.281	3.407
3A	2.65	0.0276	0.757	0.240
4A	2.11	0.0241	0.643	0.13
1B	30.4	0.1095	4.242	46.18
2B	6.88	0.0334	1.293	3.671
3B	3.59	0.0259	0.711	0.783
4B	5.78	0.0390	1.043	1.95
5B	37.9	0.4250	8.224	1250

5. WNIOSKI

- Przedstawione w pracy wyniki wskazują na dość niską odporność materiałów komórkowych na pękanie przy rozciąganiu, przy czym materiały o ujemnym współczynniku Poissona są pod tym względem jeszcze słabsze od innych typowych materiałów komórkowych.
- Wyniki obliczeń wskazują na prostą zależność między modułem Younga a współczynnikiem strukturalnym, charakteryzującym strukturę wewnętrzną materiału pod względem odporności na pękanie przy rozciąganiu.
- Wskazano na pracę szkieletu, która wpływa na odporność na pękanie.
- Wskazane zależności między własnościami sprężystymi materiału w skali makro a odpornością na pękanie sugerują, że celowe staje się sprawdzenie pod względem zwiększonej odporności struktur auxetycznych na pękanie przy ścinaniu.

Skala makro

- Nie da się doszukać wpływu ujemnej wartości współczynnika Poissona, poza faktem, że struktury tworzące materiały o takim współczynniku są bardzo podatne na deformację w porównaniu ze strukturami tworzącymi materiały o dodatnim współczynniku Poissona. Są one więc projektowane na zapotrzebowanie wysokiej deformowalności w zakresie sprężystym. Jak wykazuje powyższa analiza materiały te cechuje niska wartość współczynnika strukturalnego, która wskazuje na niską odporność na pękanie. Współczynnik ten zależny jest od proporcji parametrów geometrycznych t/L, t/h i kąta gamma, stąd różne jego wartości.
- Szczegółowa analiza pracy belek szkieletu wskazuje, że najlepsze rezultaty otrzymuje się w strukturach o mniejszym udziale stanów giętnych, a takie można otrzymać dla struktur krępszych lub o kacie γ bliskich kąta prostego. W skali makro materiały o tych strukturach charakteryzują się większą wartością modułu Younga i współczynnikiem Poissona bliskim zero. Porównanie pracy z typowymi strukturami wskazuje na podobieństwo do struktury honeycomb, która również charakteryzuje się wysoką podatnością, udziałem stanów giętnych w pracy szkieletu, niską wartością modułu Younga i współczynnika strukturalnego. Spostrzeżenia te potwierdzają lepsze własności struktury kwadratowej (korzystniejsze w ułożeniu równoległym, nieco gorsze w ułożeniu ukośnym pod kątem 45 stopni) i najlepsze dla struktury trójkątnej.

Skala mikro

LITERATURA

- ¹ Gibson L., Ashby M., *Cellular Materials.Structure and Properties.*, Cambridge University Press, 1997.
- ² Gibson L., Ashby M., Maiti S.K., *Fracture toughness of brittle cellular solids*, Scr. Metall., 18, pp.213-217, 1984.
- 3. German J., Biel-Gołaska M., *Podstawy i zastosowania mechaniki pękania w zagadnieniach inżynierskich,* Instytut Odlewnictwa, Kraków, 2005.
- 4. Janus-Michalska M., *Micromechanical Model of Auxetic Cellular Materials*. Journal of Theoretical and Applied Mechanics, tom 47, zeszyt 4, 2009.
- Jasińska D., Janus-Michalska M., Material Design of Anisotropic Elastic Cellular Bodies with Respect to Contact Problem. Engineering Transactions, vol. 56, issue 3, pp. 201-225, 2008.
- 6. Lipperman F., Ryvkin M., Fuchs M., *Fracture toughness of two-dimensional cellular material with periodic microstructure*. Int. Journal of Fracture, 146, pp.279-290, 2007.
- 7. Ryvkin M., Fuchs M., Lipperman F., Kucherov L., *Fracture Analysis of Materials with Periodic Microstructure by the Representative Cell Method*. Int. Journal of Fracture, 128, pp.215-221, 2004.
- 8. Qiu X., Fleck N.A., *The damage tolerance of elastic-brittle, 2-D isotropic laticces,* Journal of Mechanics and Physics of Solids, 55, pp.562-588, 2007.

- Huang J.S., Chiang M.S., *Effects of Microstructure, Specimen and Loading Geometries on κ_{ic} of Brittle Honeycombs,* Engineering Fracture Mechanics, Vol 54, No 6, pp.813-821, 1996.
- ^{10.}Chen C., Fleck N.A., Lu T.J. *The mode I crack resistance of metallic foams*. Journal of the Mechanics and Physics of solids, 49, pp.231-259, 2001.
- ¹¹. Minquez J.M *Study of the fracture toughness by finite element methods,*. Int J. of Solids and Structures, 37, pp. 991-1001, 2000.
- ¹² Lakes R.S. *Design considerations for negative Poisson's ratio materials,* ASME Journal of Mechanical Design, 115, pp. 696-700, 1993.

Zagadnienia mechaniki pękania materiałów komórkowych

• rozwiązania w skali mikrostruktury

metody analityczne - transformata Fouriera

Lipperman F., Ryvkin M., Fuchs M., *Fracture toughness of two-dimensional cellular material with periodic microstructure*. Int. Journal of Fracture, 2007.

numeryczne – duża liczba stopni swobody

• rozwiązania w skali efektywnego continuum

Chen J.Y., Huang Y., Ortiz M., *Fracture Analysis of Cellular Materials. A Strain Gradient Model* Journal of Mechanics and Physics of Solids, Vol. 46, 5, pp.789-828, 1998.

Huang J.S., Chiang M.S., *Effects of Microstructure, Specimen and Loading Geometries on* K_{ic} *of Brittle Honeycombs,* Engineering Fracture Mechanics, 1996.

Kierunek dalszych rozważań

F. Lipperman et al.

Fig. 13 Polar diagrams of the normalized directional fracture toughness $K_{\theta}/\sigma_{fs}\sqrt{L}$ versus loading angle θ for different honeycombs with the relative density $\rho^* = 0.15$

288