Określenie własności sprężystych materiałów komórkowych o komórkach zamkniętych na podstawie modelowania mikromechanicznego

Małgorzata Janus-Michalska

Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Politechnika Krakowska

PLAN PREZENTACJI

- 1. Wprowadzenie
- 2. Analiza sprężysta oparta na modelu mikromechanicznym
- istota modelowania wieloskalowego
- komórka reprezentatywna i jej symetria
- kinematyka mikrostruktury w jednorodnych stanach odkształceń
- model płytowy struktury komórkowej o komórkach zamkniętych
- efektywne continuum zastępcze definicja naprężeń
- tensor sztywności materiału anizotropowego

- 3. Graficzna reprezentacja stałych materiałowych
- 4. Przykłady modelowania własności sprężystych
- 5. Wnioski i kierunki dalszych prac
- 6. Literatura

struktura "honeycomb" (drewno,korek)

materiały komórkowe typu "honeycomb" (metal, tektura)

Struktura komórkowa typu "honeycomb"

Reprezentatywna komórka

pryzma o podstawie trójkąta, symetria: transwersalna izotropia

Opis geometrii:

$$\mathbf{b}_{i}^{0}$$
 wektory położenia punktów środkowych \mathbf{e}_{i}^{0} wersory $i = 1, ..., n$

 h^{w}, h^{p}, L, H - parametry geometryczne struktury

Jednorodne stany odkształceń continuum zastępczego

podobieństwo przemieszczeń węzłów i punktów środkowych

Kinematyka

$$\boldsymbol{\Delta}_{i} = \boldsymbol{\Delta}_{i-0} + \boldsymbol{\psi} \times \boldsymbol{b}_{i}^{0} + \boldsymbol{\Delta}_{0}$$

- przemieszczenia punktów środkowych
- przemieszczenia względne punktów środkowych, względem węzła środkowego
- Δ_0, ψ parametry ruchu sztywnego węzła środkowego

Metoda analizy strukturalnej

(metoda przemieszczeń)

model płytowy

zginanie

r.geom.
$$\kappa_x = -\frac{\partial^2 w}{\partial x^2}$$
 $\kappa_x = -\frac{\partial^2 w}{\partial x^2}$ $\kappa_{xy} = -2\frac{\partial^2 w}{\partial x \partial y}$
r.fiz. $m_x = D_m \left(\kappa_x + v_s \kappa_y\right)$, $m_y = D_m \left(\kappa_y + v_s \kappa_x\right)$, $m_{xy} = D_m \frac{(1 - v_s)}{2} \kappa_{xy}$
r.r $\frac{\partial t_x}{\partial x} + \frac{\partial t_y}{\partial y} + p_z = 0$ $\frac{\partial m_x}{\partial x} + \frac{\partial m_{xy}}{\partial y} - t_x + b_x = 0$
 $\frac{\partial m_{xy}}{\partial x} + \frac{\partial m_y}{\partial y} - t_y + b_y = 0$ +w.b

sztywność płytowa:
$$D_m = \frac{E_s h^3}{12(1-v_s^2)}$$

równanie przemieszczeniowe: $D_m \nabla^2 \nabla^2 w = p_z$

stan tarczowy

r.geom.
$$\varepsilon_x = \frac{\partial u}{\partial x}$$
 $\varepsilon_y = \frac{\partial v}{\partial y}$ $\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$
r.fiz. $n_x = D_n \left(\varepsilon_x + v_s \varepsilon_y\right)$, $n_y = D_n \left(\varepsilon_y + v_s \varepsilon_x\right)$, $n_{xy} = D_n \frac{\left(1 - v_s\right)}{2} \gamma_{xy}$

r.r
$$\frac{\partial n_x}{\partial x} + \frac{\partial n_{xy}}{\partial y} + p_x = 0$$
 $\frac{\partial n_{xy}}{\partial x} + \frac{\partial n_y}{\partial y} + p_y = 0$ +w.b
sztywność tarczowa: $D_n = \frac{E_s h}{1 - v_s^2}$

równanie przemieszczeniowe:

$$D_{n}\left(\frac{\partial^{2} u}{\partial x^{2}} + v_{s}\frac{\partial^{2} u}{\partial x \partial y}\right) + D_{n}\left(\frac{1 - v_{s}}{2}\right)\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) + p_{x} = 0$$
$$D_{n}\left(\frac{1 - v_{s}}{2}\right)\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) + D_{n}\left(\frac{\partial^{2} u}{\partial y^{2}} + v_{s}\frac{\partial^{2} u}{\partial x \partial y}\right) + p_{y} = 0$$

 E_s , v_s - stałe materiału szkieletu

Cel: związki siła-przemieszczenie

Sztywności elementów struktury dla obciążenia jednorodnym obciążeniem na kierunku n dla ściany

$$s_{nnL} = \frac{2E_s}{1 - v_s^2} \left(\frac{H}{L} h_w + \sqrt{3} h_p \right) , \quad s_{nmL} = \frac{2E_s v_s}{1 - v_s^2} h_w,$$

Sztywności elementów struktury dla obciążenia jednorodnym obciążeniem na kierunku n dla przepony

$$s_{nmH} = \frac{3E_{s}v_{s}}{1-v_{s}^{2}}h_{w}$$
, $s_{nnH} = \frac{3E_{s}}{1-v_{s}^{2}}\left(\frac{h_{w}L}{H}\right)$

Sztywności elementów struktury dla obciążenia jednorodnym obciążeniem na kierunku m

$$s_{mmH} = \frac{E_s h_w}{1 + v_s}$$

Sztywności elementów struktury dla obciążenia jednorodnym obciążeniem na kierunku tau

$$s_{\tau\tau L} = 2E_{s} \left(\frac{H}{L^{3}} h_{w}^{3} + \sqrt{3}h_{p} \right)$$

Związki siła - przemieszczenie $F_{in} = \mathbf{s}_{\mathrm{nnL}} \,\Delta_{0-i,n} + \sum_{i=4}^{5} \mathbf{s}_{\mathrm{nmL}} \,\Delta_{0-j,m} \qquad , \qquad \qquad F_{i\tau} = \mathbf{s}_{i\tau\tau \mathrm{L}} \,\Delta_{0-i,\tau} \,,$ $F_{im} = \mathbf{s}_{\text{mmL}} \,\Delta_{0-i,m} + \sum_{j=4}^{5} \mathbf{s}_{\text{nmH}} \,\Delta_{0-j,n} \quad ,$ i = 1, 2, 3. $F_{kn} = s_{nnH} \Delta_{0-k,n} + \sum_{i=1}^{J} s_{nnL} \Delta_{0-j,n}$, $F_{k\tau} = s_{k\tau\tau H} \Delta_{0-k,\tau}$ $F_{km} = \mathbf{s}_{mmH} \Delta_{0-k,m} + \sum_{i=1}^{3} \mathbf{s}_{nmL} \Delta_{0-j,n}$ k = 4, 5.

Warunki równowagi określające parametry ruchu sztywnego: $\sum_{i=1}^{5} \mathbf{F}_{i} = 0 \qquad \sum_{i=1}^{5} \mathbf{F}_{i} \times \mathbf{b}_{i}^{0} = 0$ a) osiowe rozciągnięcie ε_{α} w kierunku α , $\alpha = x, y, z$.

$$\Delta_i(\varepsilon_{\alpha}) = \varepsilon_{\alpha}(\mathbf{b}_i^0 \cdot \mathbf{e}_{\alpha}) \mathbf{e}_{\alpha} \qquad i = 1, \dots n.$$

b) ścięcie $\gamma_{\alpha\beta}$ w płaszczyźnie $\alpha\beta$, $\alpha\neq\beta$.

$$\Delta_{i}\left(\gamma_{\alpha\beta} / 2\right) = \left(\gamma_{\alpha\beta} / 2\right)\left(\left(\mathbf{b}_{i}^{0} \cdot \mathbf{e}_{\alpha}\right)\mathbf{e}_{\beta} + \left(\mathbf{b}_{i}^{0} \cdot \mathbf{e}_{\beta}\right)\mathbf{e}_{\alpha}\right) \qquad i = 1, \dots n.$$

łΖ

Prawo Hooke'a dla ciała anizotropowego $\sigma = S \circ \epsilon$ S, tensor sztywności, $C = S^{-1}$ tensor podatności

Definicja tensora naprężeń dla continuum zastępczego

$$\boldsymbol{\sigma} = \frac{1}{V} \int_{V} \boldsymbol{\sigma}^{S} \boldsymbol{d} V$$
$$\boldsymbol{\sigma} = \left\langle \boldsymbol{\sigma}^{s} \right\rangle_{V} = \frac{1}{V} \sum_{A_{i}} \left(\mathbf{t}_{i} \otimes \mathbf{e}_{i} \right) \boldsymbol{d} S , \quad t_{i} = \frac{F_{i}}{A_{i}}$$

Tabela 3. Elementy macierzy sztywności

Postać tensora sztywności dla transwersalnej izotropii:

$$\mathbf{S} = \begin{bmatrix} s_{1111} & s_{1122} & s_{1133} & 0 & 0 & 0 \\ s_{1122} & s_{1111} & s_{1133} & 0 & 0 & 0 \\ s_{1133} & s_{1133} & s_{3333} & 0 & 0 & 0 \\ 0 & 0 & 0 & 2s_{2323} & 0 & 0 \\ 0 & 0 & 0 & 0 & 2s_{2323} & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{1111} - s_{1122} \end{bmatrix}$$

Moduły Younga

$$\frac{1}{E(\xi)} = \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\xi}\right) \cdot \mathbf{C} \cdot \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\xi}\right)$$

gdzie:
$$\xi$$
 - dowolny kierunek

$$E_r(\xi) = \frac{E(\xi)}{E_{\max}}$$

Moduł ścinania

$$\frac{1}{2G(\xi,\eta)} = \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\eta}\right) \cdot \mathbf{C} \cdot \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\eta}\right)$$

Współczynnik Poissona

$$\frac{-\nu(\xi,\eta)}{E(\xi)} = \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\xi}\right) \cdot \mathbf{C} \cdot \left(\mathbf{e}_{\eta} \otimes \mathbf{e}_{\eta}\right)$$

gdzie:

$$\xi,\eta$$
 - kierunki wzajemnie prostopadłe

Tabela 2. Geometryczne parametry mikrostruktury

	L [m]	H [m]	h ^w [m]	h ^p [m]
struktura a)*	$3 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	$0 \cdot 10^{-3}$
struktura b)	$3 \cdot 10^{-3}$	$10 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$
struktura c)	$9 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$
struktura d)	$18 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$

*a) brak przepony

Materiał szkieletu: aluminium:

$$E_s = 70$$
 GPa $v_s = 0.3$

Graficzna reprezentacja modułu Younga dla podanych struktur

Tabela 3. Wybrane stałe materiałowe

	E _{max} [MPa]	G ₁ [MPa]	<i>G</i> ₂ [MPa]	v_1
struktura a)*	$1.895 \cdot 10^4$	$1.359 \cdot 10^{3}$	$1.776 \cdot 10^3$	0.554
struktura b)	$1.039 \cdot 10^4$	$1.348 \cdot 10^{3}$	$0.579 \cdot 10^3$	0.399
struktura c)	$4.063 \cdot 10^3$	$1.598 \cdot 10^{3}$	$0.635 \cdot 10^3$	0.129
struktura d)	$3.105 \cdot 10^3$	$1.446 \cdot 10^3$	$0.444 \cdot 10^3$	0.074

Rozciąganie

Relacja mikro-makro pomiędzy naprężeniami pozwala na określenie naprężenia krytycznego odpowiadającego stanowi granicznemu w szkielecie materiału:

$$\sigma_{CR} = \sigma_{CR} \left(L, H, h_w, h_p, R_e^s, E_s, v_s \right)$$

Table 4. Wartość naprężenia krytycznego dla rozciągania

	Struktura a	Struktura b	Struktura c	Struktura d
σ_{CR}	10.12 MPa	9.12 MPa	4.48 MPa	1.17 MPa

Materiał szkieletu: aluminium:

$$E_s = 70$$
 MPa $R_e^s = 70$ MPa $v_s = 0.3$

Wnioski:

zbudowano model efektywny dla materiałów komórkowych typu honeycomb o komórkach zamkniętych (model płytowy)

rozwiązania umożliwiają modelowanie własności sprężystych poprzez zmianę parametrów struktury

model może być rozszerzony poza zakres pozaliniowo sprężysty (rozwiązania numeryczne)

Literatura

Gibson, L.J & Ashby, M.F. 1997. *Cellular Solids*, 2nd edition Cambridge: University Press

Grediac, M. 1993, A Finite Element Study of the Transverse Shear in Honeycomb Cores, *Int.J.Solids Struct.*, 30: 1777-1788

Grenestedt, J.L. 1999. Effective elastic behaviour of some models for 'perfect' cellular solids. *Int.J.Solids Struct.*,36: 1471-1501

Janus-Michalska, M. & Pęcherski, R.B. 2003. Macroscopic properties of open-cell foams based on microstructural modeling. *Technische Mechanik.* Band 23, Heft 2-4: 234-244

Janus-Michalska, M. in press 2005. Effective Models Describing Elastic Behaviour of Cellular Materials, *Archives of Metallurgy and Materials*

Nemat-Naser, S. & Hori, M. 1999. *Micromechanics*. 2nd edition. Elsevier

Wang, C.M. & Reddy, J.N. & Lee K.H. 2000. *Shear Deformable Beams and Plates, Relationships with Classical Solutions.* 1st edition. Elsevier: Netherlands

Elastic Stiffness and Yield Strength of Periodic Closed-Cell Honeycombs

M. Janus-Michalska

A.T. Balkema & G. Westers A.A. Balkema Publishers, Rotterdam, Netherlands

Materiały konferencyjne

"Shell Structures - Theory and Applications", Jurata 12-15 October, 2005.