Elastic Stiffness and Yield Strength of Periodic Closed-Cell Honeycombs

Małgorzata Janus-Michalska

Chair of the Strength Materials Institute of Structural Mechanics Cracow University of Technology

- 1. Introduction
- 2. Physical motivation
- 3. Two-scale modeling
- 4. Framework of microstructural analysis
- representative unit cell
- kinematics in uniform strain states
- mechanical model of cellular structure with closed cells
- equivalent continuum stress definition
- stiffness tensor- effective elastic constants

- 5. Graphical representation of Young's moduli
- 6. Yield stress
- 7. Conclusions
- 8. References

natural cellular materials (cork,wood)

manufactured honeycombs (metal, paperboard)

"Honeycomb" cellular structure

Representative unit cell

Geometry:

- \mathbf{b}_{i}^{0} midpoints position vectors
- \mathbf{e}_i^0 midpoints position versors i = 1, ..., n
- h^{w}, h^{p}, L, H geometric structural parameters

Uniform strain states of equivalent continuum

displacement affinity of nodes and midpoints

Kinematics

$$\boldsymbol{\Delta}_{i} = \boldsymbol{\Delta}_{i-0} + \boldsymbol{\psi} \times \boldsymbol{b}_{i}^{0} + \boldsymbol{\Delta}_{0}$$

- midpoint displacements

Method of structural mechanics

(displacement method)

plate model

geom. eq. $\kappa_x = -\frac{\partial^2 W}{\partial r^2}$ $\kappa_x = -\frac{\partial^2 W}{\partial r^2}$ $\kappa_{xy} = -2\frac{\partial^2 W}{\partial r \partial r}$ phys.eq. $m_x = D_m (\kappa_x + \nu_s \kappa_y), \quad m_y = D_m (\kappa_y + \nu_s \kappa_x), \quad m_{xy} = D_m \frac{(1 - \nu_s)}{2} \kappa_{xy}$ equil. eq. $\frac{\partial t_x}{\partial x} + \frac{\partial t_y}{\partial v} + p_z = 0$ $\frac{\partial m_x}{\partial x} + \frac{\partial m_{xy}}{\partial v} - t_x + b_x = 0$ $\frac{\partial m_{xy}}{\partial x} + \frac{\partial m_y}{\partial y} - t_y + b_y = 0 \qquad \text{+boundary conditions}$ bending plate stiffness: $D_m = \frac{E_s h^3}{12(1 - v_s^2)}$

displacement equation: $D_m \nabla^2 \nabla^2 w = p_z$ +boundary conditions

membrane

geom. eq. $\varepsilon_x = \frac{\partial u}{\partial x}$ $\varepsilon_y = \frac{\partial v}{\partial v}$ $\gamma_{xy} = \frac{\partial u}{\partial v} + \frac{\partial v}{\partial x}$

phys.eq. $n_x = D_n \left(\varepsilon_x + v_s \varepsilon_y \right), \quad n_y = D_n \left(\varepsilon_y + v_s \varepsilon_x \right), \quad n_{xy} = D_n \left(\frac{(1 - v_s)}{2} \gamma_{xy} \right)$

equil. eq. $\frac{\partial n_x}{\partial x} + \frac{\partial n_{xy}}{\partial v} + p_x = 0 \quad \frac{\partial n_{xy}}{\partial x} + \frac{\partial n_y}{\partial v} + p_y = 0$ +boundary conditions membrane stiffness: $D_n = \frac{E_s h}{1 - v_s^2}$

displacement equation:

$$\begin{split} \mathbf{D}_{n} & \left(\frac{\partial^{2} u}{\partial x^{2}} + \mathbf{v}_{s} \frac{\partial^{2} u}{\partial x \partial y} \right) + \mathbf{D}_{n} \left(\frac{1 - \mathbf{v}_{s}}{2} \right) \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + p_{x} = 0 \\ \mathbf{D}_{n} & \left(\frac{1 - \mathbf{v}_{s}}{2} \right) \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \mathbf{D}_{n} \left(\frac{\partial^{2} u}{\partial y^{2}} + \mathbf{v}_{s} \frac{\partial^{2} u}{\partial x \partial y} \right) + p_{y} = 0 \text{ +boundary conditions} \end{split}$$

 E_s, v_s - skeleton material constants

The aim: force-displacement relations

Microstructural stiffnesses for displacements in the ni direction i=1,2,3: $s_{nnL} = \frac{2E_s}{1 - v_s^2} \left(\frac{H}{L} h_w + \sqrt{3} h_p \right) , \quad s_{nmL} = \frac{2E_s v_s}{1 - v_s^2} h_w,$

Microstructural stiffnesses for displacements in the ni direction i=4,5:

$$s_{nmH} = \frac{3E_{s}v_{s}}{1-v_{s}^{2}}h_{w}$$
, $s_{nnH} = \frac{3E_{s}}{1-v_{s}^{2}}\left(\frac{h_{w}L}{H}\right)$

Microstructural stiffnesses for displacements in the m direction :

$$s_{mmH} = \frac{E_s h_w}{1 + v_s}$$

Microstructural stiffnesses for displacements in the tau direction :

$$s_{\tau\tau L} = 2E_{s} \left(\frac{H}{L^{3}} h_{w}^{3} + \sqrt{3}h_{p} \right)$$

Force-displacement relations

$$\begin{split} F_{in} &= \mathrm{S}_{\mathrm{nnL}} \, \Delta_{0-i,n} + \sum_{j=4}^{5} \mathrm{S}_{\mathrm{nmL}} \, \Delta_{0-j,m} \quad , \qquad F_{i\tau} = \mathrm{S}_{\mathrm{i}\tau\tau\mathrm{L}} \, \Delta_{0-i,\tau} \, , \\ F_{im} &= \mathrm{S}_{\mathrm{nmL}} \, \Delta_{0-i,m} + \sum_{j=4}^{5} \mathrm{S}_{\mathrm{nmH}} \, \Delta_{0-j,n} \quad , \qquad i = 1, 2, 3. \end{split}$$

$$F_{kn} &= \mathrm{S}_{\mathrm{nnH}} \, \Delta_{0-k,n} + \sum_{j=1}^{3} \mathrm{S}_{\mathrm{nnL}} \, \Delta_{0-j,n} \quad , \qquad F_{k\tau} = \mathrm{S}_{\mathrm{k}\tau\tau\mathrm{H}} \, \Delta_{0-k,\tau} \, , \\ F_{km} &= \mathrm{S}_{\mathrm{nmH}} \, \Delta_{0-k,m} + \sum_{j=1}^{3} \mathrm{S}_{\mathrm{nmL}} \, \Delta_{0-j,n} \, , \qquad k = 4, 5. \end{split}$$

Equilibrium conditions:

$$\sum_{i=1}^{n} \mathbf{F}_{i} = 0 \qquad \sum_{i=1}^{n} \mathbf{F}_{i} \times \mathbf{b}_{i}^{0} = 0$$

a) uniaxial extension ε_{α} in the direction α , $\alpha = x, y, z$. $\Delta_i(\varepsilon_{\alpha}) = \varepsilon_{\alpha} (\mathbf{b}_i^0 \cdot \mathbf{e}_{\alpha}) \mathbf{e}_{\alpha} \qquad i = 1, \dots n.$

b) pure shear $\gamma_{\alpha\beta}$ in the plane $\alpha\beta$, $\alpha \neq \beta$.

$$\Delta_{i} \left(\gamma_{\alpha\beta} / 2 \right) = \left(\gamma_{\alpha\beta} / 2 \right) \left(\left(\mathbf{b}_{i}^{0} \cdot \mathbf{e}_{\alpha} \right) \mathbf{e}_{\beta} + \left(\mathbf{b}_{i}^{0} \cdot \mathbf{e}_{\beta} \right) \mathbf{e}_{\alpha} \right) \qquad i = 1, \dots n.$$

Hooke's law for anisotropic solid

 $\boldsymbol{\sigma} = \boldsymbol{S} \circ \boldsymbol{\epsilon}$

 ${\bf S}$, stiffness tensor , $\ {\bf C}={\bf S}^{-1}$ compliance tensor

Stress tensor definition for equivalent continuum

$$\boldsymbol{\sigma} = \frac{1}{V} \int \boldsymbol{\sigma}^{S} \boldsymbol{\sigma}^{S} dV$$
$$\boldsymbol{\sigma} = \left\langle \boldsymbol{\sigma}^{s} \right\rangle_{V} = \frac{1}{V} \sum_{A_{i}} \left(\mathbf{t}_{i} \otimes \mathbf{e}_{i} \right) dS , \quad t_{i} = \frac{F_{i}}{A_{i}}$$

Table 1. Elements of stiffness matrix

Stiffness tensor for transversal isotropy:

$$\mathbf{S} = \begin{bmatrix} s_{1111} & s_{1122} & s_{1133} & 0 & 0 & 0 \\ s_{1122} & s_{1111} & s_{1133} & 0 & 0 & 0 \\ s_{1133} & s_{1133} & s_{3333} & 0 & 0 & 0 \\ 0 & 0 & 0 & 2s_{2323} & 0 & 0 \\ 0 & 0 & 0 & 0 & 2s_{2323} & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{1111} - s_{1122} \end{bmatrix}$$

Young's moduli

$$\frac{1}{E(\xi)} = \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\xi}\right) \cdot \mathbf{C} \cdot \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\xi}\right)$$

where:
$$\xi$$
 - tension direction

dimensionless moduli:

$$E_r(\xi) = \frac{E(\xi)}{E_{\max}}$$

Shear moduli

$$\frac{1}{2G(\xi,\eta)} = \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\eta}\right) \cdot \mathbf{C} \cdot \left(\mathbf{e}_{\xi} \otimes \mathbf{e}_{\eta}\right)$$

Poisson's ratios

$$\frac{-\mathbf{v}\left(\boldsymbol{\xi},\boldsymbol{\eta}\right)}{E\left(\boldsymbol{\xi}\right)} = \left(\mathbf{e}_{\boldsymbol{\xi}} \otimes \mathbf{e}_{\boldsymbol{\xi}}\right) \cdot \mathbf{C} \cdot \left(\mathbf{e}_{\boldsymbol{\eta}} \otimes \mathbf{e}_{\boldsymbol{\eta}}\right)$$

gdzie:

 ξ,η - perpendicular directions

Table 2. Geometrical parameters of microstructures

	L [m]	H [m]	h ^w [m]	h ^p [m]
structure a)*	$3 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	$0 \cdot 10^{-3}$
structure b)	$3 \cdot 10^{-3}$	$10 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$
structure c)	$9 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$
structure d)	$18 \cdot 10^{-3}$	$6 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$

*a) brak przepony

Skeleton material: aluminium:

$$E_s = 70$$
 GPa $v_s = 0.3$

Graphical representation of Young's moduli

Table 3. Choosen material constants

	E _{max} [MPa]	G ₁ [MPa]	<i>G</i> ₂ [MPa]	v ₁
structure a)*	$1.895 \cdot 10^4$	$1.359 \cdot 10^{3}$	$1.776 \cdot 10^3$	0.554
structure b)	$1.039 \cdot 10^4$	$1.348 \cdot 10^{3}$	$0.579 \cdot 10^3$	0.399
structure c)	$4.063 \cdot 10^3$	$1.598 \cdot 10^{3}$	$0.635 \cdot 10^3$	0.129
structure d)	$3.105 \cdot 10^3$	$1.446 \cdot 10^3$	$0.444 \cdot 10^3$	0.074

Tension test

Micro-macro transition - relation between macro critical stress and limit state in skeleton material:

$$\sigma_{CR} = \sigma_{CR} \left(L, H, h_w, h_p, R_e^s, E_s, v_s \right)$$

Table 4. Critical stress in a tension test

	Structure a	Structure b	Structure c	Structure d
σ_{CR}	10.12 MPa	9.12 MPa	4.48 MPa	1.17 MPa

Conclusions:

Effective model for cellular materials with closed cells

Advantages:

- macroscopic constitutive model follows readily from the analytical treatment
- elastic stiffness and initial strength are expressed in terms of geometric and material parameters of skeleton structure
- possibility to tailor the material to special mechanical requirements in the elastic range

References

Gibson, L.J & Ashby, M.F. 1997. *Cellular Solids*, 2nd edition Cambridge: University Press

Grediac, M. 1993, A Finite Element Study of the Transverse Shear in Honeycomb Cores, *Int.J.Solids Struct.*, 30: 1777-1788

Grenestedt, J.L. 1999. Effective elastic behaviour of some models for 'perfect' cellular solids. *Int.J.Solids Struct.*,36: 1471-1501

Janus-Michalska, M. & Pęcherski, R.B. 2003. Macroscopic properties of open-cell foams based on microstructural modeling. *Technische Mechanik.* Band 23, Heft 2-4: 234-244

Janus-Michalska, M. in press 2005. Effective Models Describing Elastic Behaviour of Cellular Materials, *Archives of Metallurgy and Materials*

Nemat-Naser, S. & Hori, M. 1999. *Micromechanics*. 2nd edition Elsevier

Wang, C.M. & Reddy, J.N. & Lee K.H. 2000. *Shear Deformable Beams and Plates, Relationships with Classical Solutions.* 1st edition. Elsevier: Netherlands