Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym

Małgorzata Janus-Michalska

Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Politechnika Krakowska

PLAN PREZENTACJI

- 1. Wprowadzenie
- 2. Analiza sprężysta oparta na modelu mikromechanicznym
- istota modelowania wieloskalowego
- komórka reprezentatywna i jej symetria
- kinematyka mikrostruktury w jednorodnych stanach odkształceń
- model belkowy struktury komórkowej o komórkach otwartych
- efektywne continuum zastępcze definicja naprężeń
- tensor sztywności materiału anizotropowego

- 3. Graficzna reprezentacja stałych materiałowych
- 4. Przykłady modelowania własności sprężystych
- 5. Wnioski i kierunki dalszych prac
- 6. Literatura

Przykłady struktur materiałów komórkowych o układach regularnych

pianka

Reprezentatywna komórka opis geometrii

 \mathbf{b}_{i}^{0} wektory położenia punktów środkowych $|\mathbf{b}_{i}^{0}| = \frac{L_{0-i}}{2}$ \mathbf{e}_{i}^{0} wersory i = 1, ..., n

Komórki reprezentatywne dla podanych struktur i ich symetrie

pryzma o podstawie:

х

trójkąta sześciokąta foremnego 5 z L√3 ١z 4 т 5 2 0 Y Υ Т 3 5 8 L х

transwersalna izotropia

Jednorodne stany odkształceń continuum zastępczego

podobieństwo przemieszczeń węzłów i punktów środkowych

Kinematyka

$$\boldsymbol{\Delta}_{i} = \boldsymbol{\Delta}_{i-0} + \boldsymbol{\psi} \times \boldsymbol{b}_{i}^{0} + \boldsymbol{\Delta}_{0}$$

- przemieszczenia punktów środkowych
- przemieszczenia względne punktów środkowych, względem węzła środkowego
- Δ_0, ψ parametry ruchu sztywnego węzła środkowego

a) osiowe rozciągnięcie ε_{α} w kierunku α , $\alpha = x, y, z$.

$$\boldsymbol{\Delta}_{i}(\boldsymbol{\varepsilon}_{\alpha}) = \boldsymbol{\varepsilon}_{\alpha}(\mathbf{b}_{i}^{0} \cdot \mathbf{e}_{\alpha}) \mathbf{e}_{\alpha} \qquad i = 1, \dots, n.$$

b) ścięcie $\gamma_{\alpha\beta}$ w płaszczyźnie $\alpha\beta$, $\alpha \neq \beta$. $\Delta_i (\gamma_{\alpha\beta} / 2) = (\gamma_{\alpha\beta} / 2) ((\mathbf{b}_i^0 \cdot \mathbf{e}_{\alpha}) \mathbf{e}_{\beta} + (\mathbf{b}_i^0 \cdot \mathbf{e}_{\beta}) \mathbf{e}_{\alpha}) \qquad i = 1, \dots n.$

Metoda analizy strukturalnej

(metoda przemieszczeń)

model - belka Timoshenki

Podatność wspornika dla obciążenia siłą osiową

$$c_n = s_n^{-1} = \frac{L}{2E_S A}$$

Podatność wspornika dla obciążenia siłą poprzeczną

$$c_{\tau} = s_{\tau}^{-1} = \frac{L^3}{24E_S J} + \frac{L}{2G_S A_{\tau}}$$

- E_S, G_S charakterystyki materiału szkieletu
- A, A_{τ}, J charakterystyki przekrojowe belek szkieletu

Związki siła - przemieszczenie

$$F_{in} = \Delta_{i-0,n} \ s_n \qquad F_{i\tau} = \Delta_{i-0,\tau} \ s_{\tau}$$

Warunki równowagi określające parametry ruchu sztywnego:

$$\sum_{i=1}^{n} \mathbf{F}_{i} = 0 \qquad \sum_{i=1}^{n} \mathbf{F}_{i} \times \mathbf{b}_{i}^{0} = 0$$

Prawo Hooke'a dla ciała anizotropowego

 $\sigma = S \circ \epsilon$

$${f S}$$
, tensor sztywności, ${f C}={f S}^{-1}$ tensor podatności

Definicja tensora naprężeń dla continuum zastępczego

$$\boldsymbol{\sigma} = \frac{1}{V} \int_{V^{s}} \boldsymbol{\sigma}^{s} dV$$

WYNIKI

rozwiązania analityczne

graficzna prezentacja

Program Mathcad

Obliczenia wykonał: Piotr Kordzikowski

Komórka	1	2	3
<i>S</i> ₁₁₁₁	$\frac{s_n}{2 L}$	$\frac{2 s_{nL}}{9 \sqrt{3}L}$	$\frac{L_{1-2} \ s_{n1-2}}{2 \ L_{3-4} \ H}$
<i>S</i> ₂₂₂₂	$\frac{s_n}{2 L}$	$\frac{2 s_{nL}}{9 \sqrt{3}L}$	$\frac{L_{3-4} \ s_{n3-4}}{2 \ L_{1-2} \ H}$
<i>S</i> ₃₃₃₃	$\frac{s_n}{2 L}$	$\frac{2 s_{nL}}{9 \sqrt{3}L}$	$\frac{H s_{n5-6}}{2 L_{1-2} L_{3-4}}$
<i>S</i> ₁₁₂₂	0	$\frac{2 s_{\tau L}}{9 \sqrt{3}L}$	0
<i>S</i> ₂₃₂₃	$\frac{s_{\tau}}{4 L}$	$\frac{(s_{nL}-s_{\tau L})}{9\sqrt{3}L}$	$\frac{2 H^2 s_{\tau 5-6}}{\frac{L_{3-4}^2 s_{\tau 3-4} + H^2 s_{\tau 5-6}}{2 L_{1-2} H}} \frac{L_{3-4}}{2} s_{\tau 3-4}}{\frac{L_{3-4}}{2} s_{\tau 3-4}}$
<i>S</i> ₁₃₁₃	$\frac{s_{\tau}}{4 L}$	$\frac{(s_{nL}-s_{\tau L})}{9\sqrt{3}L}$	$\frac{\frac{2 H^2 s_{\tau 5-6}}{L_{1-2}^2 s_{\tau 1-2} + H^2 s_{\tau 5-6}} \frac{L_{1-2}}{2} s_{\tau 1-2}}{2 L_{3-4} H}$
<i>S</i> ₁₂₁₂	$\frac{s_{\tau}}{4 L}$	$\frac{(s_{nL} - s_{\tau L})}{9\sqrt{3}L}$	$\frac{\frac{2 L_{3-4}^{2} s_{\tau 3-4}}{L_{3-4}^{2} s_{\tau 3-4} + L_{1-2}^{2} s_{\tau 1-2}} \frac{L_{1-2}}{2} s_{\tau 1-2}}{2 L_{3-4} H}$

Komórka	4	5
<i>S</i> ₁₁₁₁	$\frac{\sqrt{3} (s_{nL} + 3 s_{\tau L}) s_{nL}}{12 H (s_{nL} + s_{\tau L})}$	$\frac{\sqrt{3} (3 s_{nL} + 2 s_{\tau L})}{8 H}$
<i>S</i> ₂₂₂₂	$\frac{\sqrt{3} (s_{nL} + 3 s_{\tau L}) s_{nL}}{12 H (s_{nL} + s_{\tau L})}$	$\frac{\sqrt{3} (3 s_{nL} + 2 s_{\tau L})}{8 H}$
S ₃₃₃₃	$\frac{2\sqrt{3} s_{nL}}{9 L}$	$\frac{\sqrt{3} H s_{nH}}{3 L^2}$
<i>S</i> ₁₁₂₂	$\frac{\sqrt{3} (s_{nL} - s_{\tau L}) s_{nL}}{12 H (s_{nL} + s_{\tau L})}$	$\frac{\sqrt{3} \left(s_{nL} - 2 s_{\tau L}\right)}{8 H}$
S ₂₃₂₃	$\frac{2\sqrt{3} H s_{\tau H} s_{\tau L}}{3 (3 L^2 s_{\tau L} + 4 H^2 s_{\tau H})}$	$\frac{\sqrt{3} H s_{\tau H} s_{\tau L}}{(3 L^2 s_{\tau L} + 2 H^2 s_{\tau H})}$
<i>S</i> ₁₃₁₃	$\frac{2\sqrt{3} H s_{\tau H} s_{\tau L}}{3 (3 L^2 s_{\tau L} + 4 H^2 s_{\tau H})}$	$\frac{\sqrt{3} H s_{\tau H} s_{\tau L}}{(3 L^2 s_{\tau L} + 2 H^2 s_{\tau H})}$
<i>S</i> ₁₂₁₂	$\frac{\sqrt{3} s_{\tau L} s_{nL}}{6 H (s_{nL} + s_{\tau L})}$	$\frac{\sqrt{3} \left(s_{nL} + 2 s_{\tau L} \right)}{8 H}$

 $S_{ijkl} = S_{ijkl} \left(s_n, s_\tau, H, L, A, \dots \right)$

Moduły Younga

 $\frac{1}{E(\mathbf{n})} = (\mathbf{n} \otimes \mathbf{n}) \cdot \mathbf{C} \cdot (\mathbf{n} \otimes \mathbf{n})$

wykresy bezwymiarowe: $E_r(\mathbf{n}) = \frac{E(\mathbf{n})}{E_{\max}}$ Komórka sześcienna (symetria kubiczna)

L	$1,5*10^{-6} m$
R	1,0*10 ⁻⁷ m
E_s	12 GPa
G_s	4,8 GPa

Pryzma prostopadłościenna (symetria ortotropowa)

L_{12}	$1,5*10^{-6} m$
L_{34}	$2,0*10^{-6} m$
H	$3,0*10^{-6} m$
R	$0,5*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie trójkąta równobocznego (transwersalna izotropia)

L	1,5*10 ⁻⁶ m
Н	2,0*10 ⁻⁶ m
R	$1,0*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie sześciokąta foremnego (transwersalna izotropia)

L	$1,5*10^{-6} m$
H	$2,0*10^{-6} m$
R	$1,0*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Uogólniony moduł ściśliwości

$$\frac{1}{3K(\mathbf{n})} = \mathbf{I} \cdot \mathbf{C} \cdot (\mathbf{n} \otimes \mathbf{n})$$

Komórka sześcienna (symetria kubiczna)

L	$1,5*10^{-6} m$
R	1,0*10 ⁻⁷ m
E_s	12 GPa
G_s	4,8 GPa

Pryzma prostopadłościenna (symetria ortotropowa)

L_{12}	1,5*10 ⁻⁶ m
L_{34}	$2,0*10^{-6} m$
H	$3,0*10^{-6} m$
R	$0,5*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie trójkąta równobocznego (transwersalna izotropia)

L	$1,5*10^{-6} m$
H	$2,0*10^{-6} m$
R	$1,0*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie sześciokąta foremnego (transwersalna izotropia)

L	$1,5*10^{-6} m$
H	$2,0*10^{-6} m$
R	$1,0*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Moduł ścinania

 $\frac{1}{2G(\mathbf{n},\mathbf{m})} = (\mathbf{n} \otimes \mathbf{m}) \cdot \mathbf{C} \cdot (\mathbf{n} \otimes \mathbf{m})$

Komórka sześcienna (symetria kubiczna)

L	$1,5*10^{-6} m$
R	1,0*10 ⁻⁷ m
E_s	12 GPa
G_s	4,8 GPa

Pryzma prostopadłościenna (symetria ortotropowa)

L_{12}	1,5*10 ⁻⁶ m
L_{34}	$2,0*10^{-6} m$
Н	$3,0*10^{-6} m$
R	$0,5*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie trójkąta równobocznego (transwersalna izotropia)

L	$1,5*10^{-6} m$
H	$2,0*10^{-6} m$
R	$1,0*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie sześciokąta foremnego (transwersalna izotropia)

L	$1,5*10^{-6} m$
H	$2,0*10^{-6} m$
R	1,0*10 ⁻⁷ m
E_s	12 GPa
G_s	4,8 GPa

Współczynnik Poissona

$$\frac{-\nu(\mathbf{n},\mathbf{m})}{E(\mathbf{n})} = (\mathbf{n}\otimes\mathbf{n})\cdot\mathbf{C}\cdot(\mathbf{m}\otimes\mathbf{m})$$

Komórka sześcienna (symetria kubiczna)

L	$1,5*10^{-6} m$
R	1,0*10 ⁻⁷ m
E_s	12 GPa
G_s	4,8 GPa

Pryzma prostopadłościenna (symetria ortotropowa)

L_{12}	1,5*10 ⁻⁶ m
L_{34}	$2,0*10^{-6} m$
Н	3,0*10 ⁻⁶ m
R	$0,5*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie trójkąta równobocznego (transwersalna izotropia)

L	$1,5*10^{-6} m$
H	$2,0*10^{-6} m$
R	$1,0*10^{-7} m$
E_s	12 GPa
G_s	4,8 GPa

Pryzma o podstawie sześciokąta foremnego (transwersalna izotropia)

L	$1,5*10^{-6} m$
H	$2,0*10^{-6} m$
R	1,0*10 ⁻⁷ m
E_s	12 GPa
G_s	4,8 GPa

Modelowanie

- struktura krępa ograniczająca zakres zastosownia modelu belkowego
- struktura smukła (stateczność)

Przykład: honeycomb

wykresy bezwymiarowe: $E_r(\mathbf{n}) = \frac{E(\mathbf{n})}{E_{\max}}$

struktura krępa

struktura smukła

Uogólniony moduł ściśliwości

100-

0.

-100 -400 -200 0 200-400

-400

struktura smukła

struktura krępa

Moduł ścinania

struktura krępa

struktura smukła

Wnioski:

zbudowano model efektywny dla materiałów komórkowych o komórkach otwartych (model belkowy)

rozwiązania umożliwiają modelowanie własności sprężystych poprzez zmianę parametrów struktury

zaprezentowane podejście pozwala na zbudowanie modelu efektywnego dla struktur o komórkach zamkniętych (model płytowy)

model może być rozszerzony poza zakres liniowo sprężysty (rozwiązania numeryczne)

Literatura

- [1] L.J. Gibson, M.F. Ashby (1997). Cellular Solids, 2nd edition Cambridge University Press.
- [2] **J.Rychlewski** (1984).Unconventional approach to linear elasticity, Arch. Mech., **47**, 1995, 149-171.
- [3] **S.Nemat-Naser** (1999). Micromechanics, Elsevier.
- [4] **M.Janus-Michalska, R.B.Pęcherski,** (2003). Macroscopic properties of open-cell foams based on micromechanical modelling, Technische Mechanik, Band 23, Heft 2-4, 234-244.
- [5] P.Kordzikowski, M.Janus-Michalska, R.B.Pęcherski, (2003). Analysis of the influence of the strength of the struts forming a cubic cell structure on the distribution of the energy limits, Rudy i Metale Nieżelazne, R49, No.3, 2004.